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Our Research is about 

Optimization 

 

Math in general 

everything needs to broken down into functions, 

  basic operations and numbers 

Numerics 

continuous math on discrete hardware 

Programming (serial/parallel) 

C/C++, CUDA, Matlab, ... 

Engineering 

non-convex convex 



This Course covers 

Parallel Programming (with CUDA) 
 

Computer Vision Basics 

Image Filtering (Convolution, Diffusion) 

Regularization (dealing with noise, unique solutions) 
 

Optimization + Numerics 
 

Example Problems 

Optical Flow Estimation 

Superresolution 



Course Goals 

Learn how to program massively parallel 

processors and achieve 

High performance 

Functionality and maintainability 

Scalability across future generations 

Acquire technical knowledge required to achieve 

above goals 

Principles and patterns of parallel programming 

Processor architecture features and constraints 

Programming API, tools and techniques 

Apply this knowledge to implement computer 

 vision algorithms efficiently 







Course Timeline 

Aug. 26-30 (this week) : Lecture 

4h lectures (attendance mandatory) 

programming exercises 

 

Sep. 2-20: Student project 

optical flow/superresolution 

groups of 2-3 students 

unsupervised  

 

Sep. 23-25: Presentations 

20 minutes presentation 

25 minutes questions 



Lecture Week 

Lecture 

10-14 (1h lunch pause) each day 

attendance mandatory to pass the course 

 

Exercises 

14-18 each day 

no need to be finished 

 the same day 

 

Deadline for exercises: 

02.09.2013, 23:59 

Submit all solutions by email in a zip achive 



Why Massively Parallel Processing? 

A quiet revolution: Performance!  

Computations: TFLOPs vs. 100 GFLOPs 

 

 

 

 

 

 

 

 

 

 

GPU in every PC – massive volume & impact 



Why Massively Parallel Processing? 

A quiet revolution: Performance! 

Bandwidth: ~5x 

 

 

 

 

 

 

 

 

 

 

GPU in every PC – massive volume & impact 



Serial Performance Scaling is Over 

Cannot continue to scale processor frequencies 

no 10 GHz chips 

 

 

Cannot continue to increase power consumption 

can’t melt chip 

 

 

Can continue to increase transistor density 

as per Moore’s Law 



How to Use Transistors? 

Larger caches … decreasing 

 

Instruction-level parallelism … decreasing 

out-of-order execution, speculation, … 

 

Data-level parallelism … increasing 

vector units, SIMD execution, … 

Intel SSE, GPUs, … 

 

Thread-level parallelism … increasing 

multithreading, multicore, manycore 



Design difference: CPU vs. GPU 

Different goals produce different designs 
CPU must be good at everything, parallel or not  

GPU assumes work load is highly parallel 
 

 

 

CPU: minimize latency experienced by 1 thread 
big on-chip caches 

sophisticated control logic 

 
 

 

 

 

GPU: maximize throughput of all threads 
skip big caches, multithreading hides latency 

share control logic across many threads, SIMD 

create and run thousands of threads 

 



Design difference: CPU vs. GPU 

Different goals produce different designs 
CPU must be good at everything, parallel or not  

GPU assumes work load is highly parallel 
 

 

 

CPU 

minimize latency 

GPU 

maximize throughput 



Enter the GPU 

Massively parallel 

 

Affordable supercomputing 



NVIDIA GPUs 

Compute Capability 

version number of the hardware architecture 

core architecture and incremental improvements 

 

Arch CC GPUs Features (e.g.) 

 

Tesla 

(2007) 

1.0 8800 GTX, Tesla C870 Basic functionality 

1.1 9800 GTX, Quadro FX 580 Atomics in global mem 

1.2 GT 240, Quadro FX 1800M Atomics in shared mem 

1.3 GTX 285, Tesla C1060 Double precision 

  

Fermi 

(2010) 

2.0 GTX 480/580, Tesla C2070 Memory cache 

2.1 GTX 460, GTX 560 Ti More cores (hardware) 

  

Kepler 

(2012) 

3.0 GTX 680/770, Tesla K10 Power efficiency, Many cores 

3.5 GTX 780/Titan, Tesla K20 Dynamic Parallelism, Hyper-Q 



NVIDIA GPUs: Current 

 

 

 

 

 

 

15 multiprocessors (up to) 

 

192 Cuda Cores per SM 

2880 Cores in total (up to) 

Kepler 

GPU 



Enter CUDA 
(“Compute Unified Device Architecture“) 

Scalable parallel programming model 

exposes the computational horsepower of GPUs 

 

Abstractions for parallel computing 

let programmers focus on parallel algorithms 

not mechanics of a parallel programming language 

 

Minimal extensions to familiar C/C++ 

environment to run code on the GPU 

Low learning curve 

 

 

 



CUDA: Scalable parallel programming 

Provide straightforward mapping onto hardware 

good fit to GPU architecture 

maps well to multi-core CPUs too 

 

Execute code by many threads in parallel 

 

Scale to 100s of cores & 10,000s of threads 

GPU threads are lightweight — create / switch is free 

GPU needs 1000s of threads for full utilization 

 



Outline of CUDA Basics 

Kernels and Thread Hierarchy 

Execution on the GPU 

Memory Management 
 

 

 

 

See the Programming Guide for the full API 



BASIC KERNELS AND 

THREAD HIERARCHY 



CUDA Definitions 

Device: GPU 

executes code in parallel 

 

Host: CPU 

manages execution on the device 

 

Kernel: C/C++ function executed on the device 

executed by many threads 

each thread executes the same sequential program 

each thread is free to execute a unique code path 



Quick Example  

CPU: Process subtasks serially one by one: 

 

 

 

 

GPU: Process each subtask in its own thread: 

 

 

 
 

Launch enough threads to cover all data 

__global__ void vecAdd (float* a, float* b, float* c) 

{ 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    c[i] = a[i] + b[i]; 

} 

for( int i=0; i<n; i++ ) 

{ 

    c[i] = a[i] + b[i]; 

} 

 

 

Each thread knows its index 



Thread Hierarchy 

Kernel threads are grouped into blocks 

up to 512 (CC 1.x), 1024 (CC 2.x), or 2048 (CC 3.x) 

threads per block 

 

Idea: Threads from the same block can cooperate 

synchronize their execution,  

communicate via shared memory 

threads from different blocks cannot cooperate 

 

Allows transparent scaling to different GPUs 

All kernel blocks together form a grid 



Thread Hierarchy 

# threads per block: 

up to 512 (CC 1.x), 

up to 1024 (CC 2.x), 

up to 2048 (CC 3.x) 

 

Blocks can be 1D, 2D, or 3D 

Grids can be 1D, 2D, or 3D 

CC 1.x: only 1D or 2D 

 

Dimensions set at launch  

Can be different for each grid 

 



IDs and Dimensions 

Threads: 

3D IDs, unique within a block 

Blocks: 

3D IDs, unique within a grid 

 

Built-in variables: 

threadIdx, blockIdx 

blockDim, gridDim 

 



Array Accesses: Indexing 

Obtain unique array index from block/thread IDs 

threadIdx, blockIdx 

blockDim, gridDim 

 

0 1 2 3 4 

0 

0 1 2 3 4 

1 

0 1 2 3 4 

2 blockIdx.x 

threadIdx.x 

blockDim.x = 5 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 index = 

  threadIdx.x 

+ blockDim.x*blockIdx.x 



Kernel launch 

Usual C/C++ function call, with an additional 

specification of grid and block sizes: 

 

 

 

 dim3 gridSize, dim blockSize 

 three int’s: blockSize.x, blockSize.y, blockSize.z 
 

Launched on the host side 
CC 3.x: kernels can launch other kernels 

mykernel <<< gridSize, blockSize >>> (...); 



Code executed on GPU: Restrictions 

C/C++ with some restrictions 
Only access to GPU memory, cannot access CPU 
memory 

(but access to „pinned“ host memory, requires special 
allocation) 

No access to host functions 

No variable number of arguments 

No static variables 

 



Code executed on GPU: Features 

Many C/C++ features available on the GPU 
Templates  

Operator overloading 

Classes, inheritance 

Recursion (CC >=2.0) 

Function pointers (CC >= 2.0) 

new / delete (CC >= 2.0) 

Dynamic polymorphism, virtual functions (CC >= 2.0) 

Even printf() !  (CC >= 2.0) 
 

Vector variants of basic types 
float2, float3, float4, double2, int4, char2, etc. 

float2 a = make_float2(1,2); a.x = 10; a.y = a.x; 
 



Code executed on GPU: Specifiers 

Special qualifiers to declare GPU functions: 
 

__global__ :  kernels 
 

launched by CPU to run on the GPU 

must return void 

 

__device__ : auxiliary GPU functions 
 

can only be called on the GPU 

called from __global__ or __device__ functions 

 

__host__    :  “normal” CPU C/C++ functions 
 

can only be called on the CPU 

 

__host__ and __device__ qualifiers can be combined 



Example: Vector Addition Kernel 

// Compute vector sum c = a + b 

// Each thread performs one pair-wise addition 

__global__ void vecAdd (float* a, float* b, float* c) 

{ 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    c[i] = a[i] + b[i]; 

} 

 

int main() 

{ 

    ...  

    // Run grid of N/256 blocks of 256 threads each 

    vecAdd <<< N/256, 256 >>> (d_A, d_B, d_C); 

} 



Example: 2D Indexing 

__global__ void kernel (int *a, int dimx, int dimy) 

{ 

    int x   = threadIdx.x + blockDim.x * blockIdx.x; 

    int y   = threadIdx.y + blockDim.y * blockIdx.y; 

    int ind = x + dimx*y; 

    a[ind]  = a[ind]+1; 

} 

 

int main() 

{ 

    ...  

    dim3 block = dim3( 32, 8, 1 ); 

    dim3 grid = dim3( dimx/block.x, dimy/block.y, 1); 

    kernel <<<grid,block>>> (d_A, dimx, dimy); 

} 

 



 
__global__ void kernel( int *a ) 

{ 

    int idx = blockIdx.x*blockDim.x + threadIdx.x; 

    a[idx] = 7; 

} 

 

 

__global__ void kernel( int *a ) 

{ 

    int idx = blockIdx.x*blockDim.x + threadIdx.x; 

    a[idx] = blockIdx.x; 

} 

 

 

__global__ void kernel( int *a ) 

{ 

    int idx = blockIdx.x*blockDim.x + threadIdx.x; 

    a[idx] = threadIdx.x; 

} 

Kernel Variations and Output 

Output: 

Output: 

kernel<<<4,4>>>(d_a); 

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 



Blocks must be independent 

Any possible interleaving of blocks should be 

valid 

presumed to run to completion without pre-emption 

can run in any order (order is unspecified) 

can run concurrently OR sequentially 

 

Blocks may coordinate but not synchronize 

shared queue pointer: OK 

shared lock: BAD … can easily deadlock 

 

Independence requirement gives scalability 



Execution of Kernels 

Kernel launches are asynchronous w.r.t. CPU 

After kernel launch, control immediately returns 

CPU is free to do other stuff while the GPU is busy 

 

Kernel launches are queued 

Kernel doesn‘t start until previous kernels are 

finished 

Concurrent kernels possible for CC >= 2.0 

(given enough resources) 

 

Explicit synchronization if needed 

cudaDeviceSynchronize() 



EXECUTION ON GPU 



NVIDIA GPU Architecture 

 

 

 

 

 

 

 

 

16 independent multiprocessors (SMs) 

No shared resources except global memory 

No synchronization, always work in parallel  

Fermi 

GPU 



Single Fermi SM Multiprocessor 

32 CUDA Cores per SM (512 total) 
arithmetic/logic operations 

 

16 memory load/store units 
(slow) access to off-chip GPU memory 

 

4 Special Function Units 
1/X, 1/SQRT(X), SIN, COS, EXP, … 

 

64 KB on-chip shared memory 
shared amongst CUDA cores 

enables thread communication 



NVIDIA GPU Architecture: Current 

 

 

 

 

 

 

15 multiprocessors (up to) 

 

192 Cuda Cores per SM 

2880 Cores in total (up to) 

Kepler 

GPU 



Key Architectural Ideas 

SIMT (Single Instruction Multiple Thread) execution 

threads run in groups of 32 called warps 

warp threads execute same instructions 

HW automatically handles divergence 

 

Hardware multithreading 

Allocate resources for many more 

 threads than CUDA Cores 

HW schedules which warp(s) to run next 

 

Any non-waiting warp can run 

switching between warps is free 



Execution of Kernels on the GPU 

Each block is executed on one SM 

cannot migrate 

reason for block independence 

 

Block threads share SM resources 

SM registers are divided up 

 among the threads 

SM shared memory can be 

 read/written by all threads 

 

Several blocks per SM possible 

if enough resources available 

SM resources are divided among all blocks 



Execution of Kernels on the GPU 

Blocks are distributed across SMs 

 

At each moment, 

 one or more blocks are active 

reside on a multiprocessor 

resources allocated 

executed until finished 

 

Others wait to be executed 

not yet assigned to a SM 



Execution on each Multiprocessor 

On each SM, all blocks which reside on it are 

divided into warps (groups of 32 threads) 

 

At each clock cycle: 

Each warp scheduler chooses a 

 warp which is ready to be executed 

The next instruction of these warps 

 are issued to the CUDA Cores 

or to load/store units 

or to special function units 

or to texture units 

 

 



Execution on each Multiprocessor 



MEMORY MANAGEMENT 



Memory Model 

Kernel 0 

. . . 
Per-device 

Global 
Memory 

. . . 

Kernel 1 

Sequential 

Kernels 

Device 0 
memory 

Device 1 
memory 

Host memory cudaMemcpy() 



Memory Spaces 

CPU and GPU have separate memory spaces 

Data is moved across PCIe bus 

Use functions to allocate/set/copy memory on GPU 
Very similar to corresponding C functions 

 

Pointers are just addresses 

Can’t tell from the pointer value whether the address 

is on CPU or GPU 

possible if CC >= 2.0 using unified addressing 

Must exercise care when dereferencing: 

Dereferencing CPU pointer on GPU will likely crash 

Same for vice versa 

 



GPU Memory Allocation / Release 

Host (CPU) manages device (GPU) memory: 

cudaMalloc (void ** pointer, size_t nbytes) 

cudaMemset (void * pointer, int value, size_t count) 

cudaFree (void* pointer) 

 

int n = 1024; 

int nbytes = 1024*sizeof(int); 

int * d_a = 0; 

cudaMalloc( (void**)&d_a,  nbytes ); 

cudaMemset( d_a, 0, nbytes); 

cudaFree(d_a); 

 



Data Copies 

cudaMemcpy( void *dst,   void *src,   size_t nbytes,  
         enum cudaMemcpyKind direction); 

returns after the copy is complete 

blocks CPU thread until all bytes have been copied 

doesn’t start copying until previous CUDA calls complete 

non-blocking copies are also available 

 

enum cudaMemcpyKind 

cudaMemcpyHostToDevice 

cudaMemcpyDeviceToHost 

cudaMemcpyDeviceToDevice 

 

 cudaMemcpy(dev_ptr, host_ptr, N*sizeof(float), 

  cudaMemcpyHostToDevice); 

 



Example: Host code for  vecAdd 

// allocate and initialize host (CPU) memory 

float *h_A = …,   *h_B = …; *h_C = …(empty) 

 

// allocate device (GPU) memory 

float *d_A, *d_B, *d_C; 

cudaMalloc( (void**) &d_A, N * sizeof(float)); 

cudaMalloc( (void**) &d_B, N * sizeof(float)); 

cudaMalloc( (void**) &d_C, N * sizeof(float)); 

 

// copy host memory to device 

cudaMemcpy( d_A, h_A, N * sizeof(float), 
cudaMemcpyHostToDevice ); 

cudaMemcpy( d_B, h_B, N * sizeof(float), 
cudaMemcpyHostToDevice ); 

 

// execute grid of N/256 blocks of 256 threads each 

vecAdd<<<N/256, 256>>>(d_A, d_B, d_C); 

 



Example: Host code for  vecAdd (2) 

// execute grid of N/256 blocks of 256 threads each 

vecAdd<<<N/256, 256>>>(d_A, d_B, d_C); 

 

// copy result back to host memory 

cudaMemcpy( h_C, d_C, N * sizeof(float), 
cudaMemcpyDeviceToHost ); 

 

// do something with the result… 

 

// free device (GPU) memory 

cudaFree(d_A); 

cudaFree(d_B); 

cudaFree(d_C); 

 

 



CUDA Short Summary 

Thread Hierarchy 

thread  -  smallest executable unity 

block -  group of threads, shared memory for collaboration 

grid -  consists of several blocks 

warp -  group of 32 threads 

 

Keyword extensions for C/C++ 

__global__ -  kernel - function called by CPU, executed on GPU 

__device__ -  function called by GPU and executed  on GPU 

__host__ -  [optional] - function called and executed by CPU 

<<<…>>>             -  kernel launch, chevrons specify grid and block sizes 

 

Compilation: 

nvcc <filename>.cu -o <executable>  


