
GPU Programming

in Computer Vision

Introduction to Parallel Computing

Computer Vision Group

Research

Our Research is about

Optimization

Math in general

everything needs to broken down into functions,

 basic operations and numbers

Numerics

continuous math on discrete hardware

Programming (serial/parallel)

C/C++, CUDA, Matlab, ...

Engineering

non-convex convex

This Course covers

Parallel Programming (with CUDA)

Computer Vision Basics

Image Filtering (Convolution, Diffusion)

Regularization (dealing with noise, unique solutions)

Optimization + Numerics

Example Problems

Optical Flow Estimation

Superresolution

Course Goals

Learn how to program massively parallel

processors and achieve

High performance

Functionality and maintainability

Scalability across future generations

Acquire technical knowledge required to achieve

above goals

Principles and patterns of parallel programming

Processor architecture features and constraints

Programming API, tools and techniques

Apply this knowledge to implement computer

 vision algorithms efficiently

Course Timeline

Aug. 26-30 (this week) : Lecture

4h lectures (attendance mandatory)

programming exercises

Sep. 2-20: Student project

optical flow/superresolution

groups of 2-3 students

unsupervised

Sep. 23-25: Presentations

20 minutes presentation

25 minutes questions

Lecture Week

Lecture

10-14 (1h lunch pause) each day

attendance mandatory to pass the course

Exercises

14-18 each day

no need to be finished

 the same day

Deadline for exercises:

02.09.2013, 23:59

Submit all solutions by email in a zip achive

Why Massively Parallel Processing?

A quiet revolution: Performance!

Computations: TFLOPs vs. 100 GFLOPs

GPU in every PC – massive volume & impact

Why Massively Parallel Processing?

A quiet revolution: Performance!

Bandwidth: ~5x

GPU in every PC – massive volume & impact

Serial Performance Scaling is Over

Cannot continue to scale processor frequencies

no 10 GHz chips

Cannot continue to increase power consumption

can’t melt chip

Can continue to increase transistor density

as per Moore’s Law

How to Use Transistors?

Larger caches … decreasing

Instruction-level parallelism … decreasing

out-of-order execution, speculation, …

Data-level parallelism … increasing

vector units, SIMD execution, …

Intel SSE, GPUs, …

Thread-level parallelism … increasing

multithreading, multicore, manycore

Design difference: CPU vs. GPU

Different goals produce different designs
CPU must be good at everything, parallel or not

GPU assumes work load is highly parallel

CPU: minimize latency experienced by 1 thread
big on-chip caches

sophisticated control logic

GPU: maximize throughput of all threads
skip big caches, multithreading hides latency

share control logic across many threads, SIMD

create and run thousands of threads

Design difference: CPU vs. GPU

Different goals produce different designs
CPU must be good at everything, parallel or not

GPU assumes work load is highly parallel

CPU

minimize latency

GPU

maximize throughput

Enter the GPU

Massively parallel

Affordable supercomputing

NVIDIA GPUs

Compute Capability

version number of the hardware architecture

core architecture and incremental improvements

Arch CC GPUs Features (e.g.)

Tesla

(2007)

1.0 8800 GTX, Tesla C870 Basic functionality

1.1 9800 GTX, Quadro FX 580 Atomics in global mem

1.2 GT 240, Quadro FX 1800M Atomics in shared mem

1.3 GTX 285, Tesla C1060 Double precision

Fermi

(2010)

2.0 GTX 480/580, Tesla C2070 Memory cache

2.1 GTX 460, GTX 560 Ti More cores (hardware)

Kepler

(2012)

3.0 GTX 680/770, Tesla K10 Power efficiency, Many cores

3.5 GTX 780/Titan, Tesla K20 Dynamic Parallelism, Hyper-Q

NVIDIA GPUs: Current

15 multiprocessors (up to)

192 Cuda Cores per SM

2880 Cores in total (up to)

Kepler

GPU

Enter CUDA
(“Compute Unified Device Architecture“)

Scalable parallel programming model

exposes the computational horsepower of GPUs

Abstractions for parallel computing

let programmers focus on parallel algorithms

not mechanics of a parallel programming language

Minimal extensions to familiar C/C++

environment to run code on the GPU

Low learning curve

CUDA: Scalable parallel programming

Provide straightforward mapping onto hardware

good fit to GPU architecture

maps well to multi-core CPUs too

Execute code by many threads in parallel

Scale to 100s of cores & 10,000s of threads

GPU threads are lightweight — create / switch is free

GPU needs 1000s of threads for full utilization

Outline of CUDA Basics

Kernels and Thread Hierarchy

Execution on the GPU

Memory Management

See the Programming Guide for the full API

BASIC KERNELS AND

THREAD HIERARCHY

CUDA Definitions

Device: GPU

executes code in parallel

Host: CPU

manages execution on the device

Kernel: C/C++ function executed on the device

executed by many threads

each thread executes the same sequential program

each thread is free to execute a unique code path

Quick Example

CPU: Process subtasks serially one by one:

GPU: Process each subtask in its own thread:

Launch enough threads to cover all data

__global__ void vecAdd (float* a, float* b, float* c)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 c[i] = a[i] + b[i];

}

for(int i=0; i<n; i++)

{

 c[i] = a[i] + b[i];

}

Each thread knows its index

Thread Hierarchy

Kernel threads are grouped into blocks

up to 512 (CC 1.x), 1024 (CC 2.x), or 2048 (CC 3.x)

threads per block

Idea: Threads from the same block can cooperate

synchronize their execution,

communicate via shared memory

threads from different blocks cannot cooperate

Allows transparent scaling to different GPUs

All kernel blocks together form a grid

Thread Hierarchy

threads per block:

up to 512 (CC 1.x),

up to 1024 (CC 2.x),

up to 2048 (CC 3.x)

Blocks can be 1D, 2D, or 3D

Grids can be 1D, 2D, or 3D

CC 1.x: only 1D or 2D

Dimensions set at launch

Can be different for each grid

IDs and Dimensions

Threads:

3D IDs, unique within a block

Blocks:

3D IDs, unique within a grid

Built-in variables:

threadIdx, blockIdx

blockDim, gridDim

Array Accesses: Indexing

Obtain unique array index from block/thread IDs

threadIdx, blockIdx

blockDim, gridDim

0 1 2 3 4

0

0 1 2 3 4

1

0 1 2 3 4

2 blockIdx.x

threadIdx.x

blockDim.x = 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 index =

 threadIdx.x

+ blockDim.x*blockIdx.x

Kernel launch

Usual C/C++ function call, with an additional

specification of grid and block sizes:

 dim3 gridSize, dim blockSize

 three int’s: blockSize.x, blockSize.y, blockSize.z

Launched on the host side
CC 3.x: kernels can launch other kernels

mykernel <<< gridSize, blockSize >>> (...);

Code executed on GPU: Restrictions

C/C++ with some restrictions
Only access to GPU memory, cannot access CPU
memory

(but access to „pinned“ host memory, requires special
allocation)

No access to host functions

No variable number of arguments

No static variables

Code executed on GPU: Features

Many C/C++ features available on the GPU
Templates

Operator overloading

Classes, inheritance

Recursion (CC >=2.0)

Function pointers (CC >= 2.0)

new / delete (CC >= 2.0)

Dynamic polymorphism, virtual functions (CC >= 2.0)

Even printf() ! (CC >= 2.0)

Vector variants of basic types
float2, float3, float4, double2, int4, char2, etc.

float2 a = make_float2(1,2); a.x = 10; a.y = a.x;

Code executed on GPU: Specifiers

Special qualifiers to declare GPU functions:

__global__ : kernels

launched by CPU to run on the GPU

must return void

__device__ : auxiliary GPU functions

can only be called on the GPU

called from __global__ or __device__ functions

__host__ : “normal” CPU C/C++ functions

can only be called on the CPU

__host__ and __device__ qualifiers can be combined

Example: Vector Addition Kernel

// Compute vector sum c = a + b

// Each thread performs one pair-wise addition

__global__ void vecAdd (float* a, float* b, float* c)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 c[i] = a[i] + b[i];

}

int main()

{

 ...

 // Run grid of N/256 blocks of 256 threads each

 vecAdd <<< N/256, 256 >>> (d_A, d_B, d_C);

}

Example: 2D Indexing

__global__ void kernel (int *a, int dimx, int dimy)

{

 int x = threadIdx.x + blockDim.x * blockIdx.x;

 int y = threadIdx.y + blockDim.y * blockIdx.y;

 int ind = x + dimx*y;

 a[ind] = a[ind]+1;

}

int main()

{

 ...

 dim3 block = dim3(32, 8, 1);

 dim3 grid = dim3(dimx/block.x, dimy/block.y, 1);

 kernel <<<grid,block>>> (d_A, dimx, dimy);

}

__global__ void kernel(int *a)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 a[idx] = 7;

}

__global__ void kernel(int *a)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 a[idx] = blockIdx.x;

}

__global__ void kernel(int *a)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 a[idx] = threadIdx.x;

}

Kernel Variations and Output

Output:

Output:

kernel<<<4,4>>>(d_a);

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Blocks must be independent

Any possible interleaving of blocks should be

valid

presumed to run to completion without pre-emption

can run in any order (order is unspecified)

can run concurrently OR sequentially

Blocks may coordinate but not synchronize

shared queue pointer: OK

shared lock: BAD … can easily deadlock

Independence requirement gives scalability

Execution of Kernels

Kernel launches are asynchronous w.r.t. CPU

After kernel launch, control immediately returns

CPU is free to do other stuff while the GPU is busy

Kernel launches are queued

Kernel doesn‘t start until previous kernels are

finished

Concurrent kernels possible for CC >= 2.0

(given enough resources)

Explicit synchronization if needed

cudaDeviceSynchronize()

EXECUTION ON GPU

NVIDIA GPU Architecture

16 independent multiprocessors (SMs)

No shared resources except global memory

No synchronization, always work in parallel

Fermi

GPU

Single Fermi SM Multiprocessor

32 CUDA Cores per SM (512 total)
arithmetic/logic operations

16 memory load/store units
(slow) access to off-chip GPU memory

4 Special Function Units
1/X, 1/SQRT(X), SIN, COS, EXP, …

64 KB on-chip shared memory
shared amongst CUDA cores

enables thread communication

NVIDIA GPU Architecture: Current

15 multiprocessors (up to)

192 Cuda Cores per SM

2880 Cores in total (up to)

Kepler

GPU

Key Architectural Ideas

SIMT (Single Instruction Multiple Thread) execution

threads run in groups of 32 called warps

warp threads execute same instructions

HW automatically handles divergence

Hardware multithreading

Allocate resources for many more

 threads than CUDA Cores

HW schedules which warp(s) to run next

Any non-waiting warp can run

switching between warps is free

Execution of Kernels on the GPU

Each block is executed on one SM

cannot migrate

reason for block independence

Block threads share SM resources

SM registers are divided up

 among the threads

SM shared memory can be

 read/written by all threads

Several blocks per SM possible

if enough resources available

SM resources are divided among all blocks

Execution of Kernels on the GPU

Blocks are distributed across SMs

At each moment,

 one or more blocks are active

reside on a multiprocessor

resources allocated

executed until finished

Others wait to be executed

not yet assigned to a SM

Execution on each Multiprocessor

On each SM, all blocks which reside on it are

divided into warps (groups of 32 threads)

At each clock cycle:

Each warp scheduler chooses a

 warp which is ready to be executed

The next instruction of these warps

 are issued to the CUDA Cores

or to load/store units

or to special function units

or to texture units

Execution on each Multiprocessor

MEMORY MANAGEMENT

Memory Model

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential

Kernels

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()

Memory Spaces

CPU and GPU have separate memory spaces

Data is moved across PCIe bus

Use functions to allocate/set/copy memory on GPU
Very similar to corresponding C functions

Pointers are just addresses

Can’t tell from the pointer value whether the address

is on CPU or GPU

possible if CC >= 2.0 using unified addressing

Must exercise care when dereferencing:

Dereferencing CPU pointer on GPU will likely crash

Same for vice versa

GPU Memory Allocation / Release

Host (CPU) manages device (GPU) memory:

cudaMalloc (void ** pointer, size_t nbytes)

cudaMemset (void * pointer, int value, size_t count)

cudaFree (void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int * d_a = 0;

cudaMalloc((void**)&d_a, nbytes);

cudaMemset(d_a, 0, nbytes);

cudaFree(d_a);

Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes,
 enum cudaMemcpyKind direction);

returns after the copy is complete

blocks CPU thread until all bytes have been copied

doesn’t start copying until previous CUDA calls complete

non-blocking copies are also available

enum cudaMemcpyKind

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

 cudaMemcpy(dev_ptr, host_ptr, N*sizeof(float),

 cudaMemcpyHostToDevice);

Example: Host code for vecAdd

// allocate and initialize host (CPU) memory

float *h_A = …, *h_B = …; *h_C = …(empty)

// allocate device (GPU) memory

float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));

cudaMalloc((void**) &d_B, N * sizeof(float));

cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice);

// execute grid of N/256 blocks of 256 threads each

vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

Example: Host code for vecAdd (2)

// execute grid of N/256 blocks of 256 threads each

vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

// copy result back to host memory

cudaMemcpy(h_C, d_C, N * sizeof(float),
cudaMemcpyDeviceToHost);

// do something with the result…

// free device (GPU) memory

cudaFree(d_A);

cudaFree(d_B);

cudaFree(d_C);

CUDA Short Summary

Thread Hierarchy

thread - smallest executable unity

block - group of threads, shared memory for collaboration

grid - consists of several blocks

warp - group of 32 threads

Keyword extensions for C/C++

__global__ - kernel - function called by CPU, executed on GPU

__device__ - function called by GPU and executed on GPU

__host__ - [optional] - function called and executed by CPU

<<<…>>> - kernel launch, chevrons specify grid and block sizes

Compilation:

nvcc <filename>.cu -o <executable>

