GPU Programming
In Computer Vision

Introduction to Parallel Computing

Computer Vision Group

Dr.

Daniel

stian Kerl

Research

Image-based 3D | Quadrocopter

Reconstr Optical Flow

Estimation

Shape Analys

n from

Maria K

Our Research 1s about

& Optimization

e Math in general non-convex convex
® everything needs to broken down into functions,
basic operations and numbers

® Numerics
® continuous math on discrete hardware

® Programming (serial/parallel)
¢ C/C++, CUDA, Matlab, ...

® Engineering

This Course covers

* Parallel Programming (with CUDA)

®* Computer Vision Basics
Image Filtering (Convolution, Diffusion)
Regularization (dealing with noise, unique solutions)

® Optimization + Numerics

* Example Problems
* Optical Flow Estimation
* Superresolution

Course Goals

Learn how to program massively parallel
processors and achieve
High performance
Functionality and maintainability
Scalability across future generations
®* Acquire technical knowledge required to achieve
above goals
Principles and patterns of parallel programming
Processor architecture features and constraints
Programming API, tools and techniques

* Apply this knowledge to implement computer
vision algorithms efficiently

The Essential
Map of

kurope

and Environs

B Beer/Bier
B el
Pivo pive
- Cerveza -
NMUBG
Pivo (pivo] *EEIZHILF
- Others Pivo
Tu BORY
pivOLEY
5
Based on the Wikimedia map of Europe by Jdlio Reis and Marian "maix" Sigler {htp:fcommons wikimedia orgfwikifFile:Blank_map_of_Europe svg) - Birra gl

Balaszad undar Craative " ommong Attributicn 2haraAlike (httn-firreatiiversrmanons amniliceneasfhy-saf 5

N v oW 0w 20 " WE WE WE e WE ar E!

ARGTIC OCEAN ARCTIC OCEAN ARCTIC OCEAN

Eresan Pt Gae

.

fepwagan 5oa

A Lo #EBE]

J——
| e Sn =

i AN

" —
S e 7T o 3 Ganew AT g st o 777
— P =
e 3 z
7 prv—
NORTH PAGIFIC OCEAN

SOUTH PACIFIC OCEAN 3
iy C

777777777 Pt G AT

-
-
SOUTH ATLANTIC OGEAN = SOUTH PACIFIC OCEAN.
e .
o
S et % =
SOUTHERAN OCEAN = = SOUTHERN CCEAN SOUTHERN COEAN
e 4 — 0 A8 A s Ul 3 Ve — —— === - (e L
| -8 - . ANTARGTICA i —
Armianhue S - ‘. 3 j
A N . P 4 g
: 5 . o
i Sk

Course Timeline

* Aug. 26-30 (this week) : Lecture
® 4h lectures (attendance mandatory)
programming exercises

September

® Sep. 2-20: Student project
optical flow/superresolution
groups of 2-3 students
unsupervised

* Sep. 23-25: Presentations
20 minutes presentation
25 minutes guestions

Lecture Week

Lecture
10-14 (1h lunch pause) each day
attendance mandatory to pass the course

Exercises September
14-18 each day
no need to be finished @ sl aletels] s
the same day T ETIET

16 19 20 21 22

23 26 27 28 29

for exercises:

Submit all solutions by email in a zip achive

Why Massively Parallel Processing?

* A quiet revolution: Performance!
Computations: TFLOPs vs. 100 GFLOPs

Theoretical
GFLOP/s

4750
4500
4250
4000
3750
3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000

750

500

250 -
0 1
Apr-01 Sep-02

NVIDIA GPU Single Precision
epems NVIDIA GPU Double Precision

Intel CPU Double Precision
emg=e|ntel CPU Single Precision

Tesla K20X

Tesla C2050

Tesla C1060

Harpertow
Woodcrest

Sandy Bridge

’ Bloomfield Westmere
Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

GPU in every PC — massive volume & impact

Why Massively Parallel Processing?

A gquiet revolution: Performance!
Bandwidth: ~5x

Theoretical GB/s

300

270

240 === CPU

GeForce GPU

210
Tesla GPU

Tesla M2090

Tesla C2050

Testa C1060

Sandy Bridge

Bloomfield

Harpertown
0 -Northwood
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

GPU in every PC — massive volume & impact

Serial Performance Scaling is Over

»

continue to scale processor frequencies
® no 10 GHz chips

)

continue to increase power consumption
* can’t melt chip

® Can continue to increase transistor density
¢ as per Moore’s Law

How to Use Transistors?

»

Larger caches ...

»

Instruction-level parallelism ...
* out-of-order execution, speculation, ...

»

Data-level parallelism ... increasing

* vector units, SIMD execution, ...
Intel SSE, GPUs, ...

®* Thread-level parallelism ... increasing
multithreading, multicore, manycore

Design difference: CPU vs. GPU

* Different goals produce different designs
® CPU must be good at everything, parallel or not
® GPU assumes work load is highly parallel

® CPU: minimize latency experienced by 1 thread
® big on-chip caches
® sophisticated control logic

»

GPU: maximize throughput of all threads
® skip big caches, multithreading hides latency
® share control logic across many threads, SIMD
® create and run thousands of threads

Design difference: CPU vs. GPU

* Different goals produce different designs
® CPU must be good at everything, parallel or not
® GPU assumes work load is highly parallel

Control

CPU GPU
minimize latency maximize throughput

Enter the GPU

® Massively parallel

* Affordable supercomputing

NVIDIA GPUs

® Compute Capability
® version number of the hardware architecture
® core architecture and incremental improvements

NVIDIA GPUs: Current

| WarpScheduler |~ WarpScheduler ' WarpScheduler ~ Warp Scheduler
| Dispstch Dispatch Dispstch Dispatch Diepstch Dispatch Dispatch Dispatch
Register File (65,536 x 32-bit)

4+ *
i o o 5 e e e -
o o o e I

Kepler e
GPU EEENEEEN--EEElEEEN - -

® 15 multiprocessors (up to

® 192 Cuda Cores per SM
2880 Cores in total (up to)

Enter CUDA

(“Compute Unified Device Architecture®)

* Scalable parallel programming model
* exposes the computational horsepower of GPUs

* Abstractions for parallel computing
let programmers focus on parallel algorithms
not mechanics of a parallel programming language

* Minimal extensions to familiar C/C++
environment to run code on the GPU
Low learning curve

CUDA: Scalable parallel programming

* Provide straightforward mapping onto hardware
® good fit to GPU architecture
* maps well to multi-core CPUs too

* Execute code by many threads in parallel

® Scale to 100s of cores & 10,000s of threads

® GPU threads are lightweight — create / switch is free
®* GPU needs 1000s of threads for full utilization

Outline of CUDA Basics

® Kernels and Thread Hierarchy
® Execution on the GPU
® Memory Management

® See the Programming Guide for the full API

BASIC KERNELS AND
THREAD HIERARCHY

CUDA Definitions

® Device: GPU
® executes code in parallel

® Host: CPU
® manages execution on the device

P

* Kernel: C/C++ function executed on the device
* executed by many threads

* each thread executes the same sequential program
® each thread is free to execute a unique code path

Quick Example

® CPU: Process subtasks serially one by one:

for(int i=0; i<n; i++)
{

c[i] = a[i] + b[i];
}

® GPU: Process each subtask in its own thread:

__global void vecAdd (float* a, float* b, float* c)
{
int |i = threadIdx.x + blockDim.x * blockIdx.x;

c[i] = a[i] + b[1i]; e
} Each thread knows its index

® Launch enough threads to cover all data

Thread Hierarchy

»

Kernel threads are grouped into blocks

* up to 512 (CC 1.x), 1024 (CC 2.x), or 2048 (CC 3.x)
threads per block

)

ldea: Threads from the same block can cooperate
® synchronize their execution,
® communicate via shared memory
® threads from blocks cooperate

)

Allows transparent scaling to different GPUs
All kernel blocks together form a grid

)

Thread Hierarchy

Grid

Block (0, 0) || Block (Block (

® #threads per block: §§§§§§§ §§§§§§§ W

Block (0, 1) Block (1,1) \8lock (2,
up to 512 (CC 1.x), gggggg %ggg W
up to 1024 (CC 2.x),

up to 2048 (CC 3.x)

Block (1, 1)

*» Blocks can be 1D, 2D, or 3D
® Grids can be 1D, 2D, or 3D

Thread 0,1) Thread(1 1) Thread (2,1) |Threa (3 1)
® CC1lx:only 1D or 2D
® Dimensions set at launch § § § 5

Can be different for each grid

IDs and Dimensions

Grid

Block (0, 0) = Block (Block (2, 0)

® Threads: §§§§§§§ §§§§§§§ W

Block (0, 1) Block (1,1) \8lock (2,

3D IDs, unigue within a block ggggggg g}gggggg W

* Blocks:
3D IDs, unique within a grid

Block (
® Built-in variables

® threadldx, blockldx
]]] Thread 0,1) |Thread (1, 1) [Thread (2, 1) [Threa (3 1)

Array Accesses: Indexing

® Obtain unique array index from block/thread IDs
® threadldx, blockldx
® blockDim, gridDim

blockDim.x = 5
)

blockIdx.x

threadIdx.x

index = 012 34 567 89 1011121314
threadIdx.x
+ blockDim.x*blockIdx.x

Kernel launch

® Usual C/C++ function call, with an additional
specification of grid and block sizes:

mykernel <<< gridSize, blockSize >>> (...);

.

dim3 gridSize, dim3 blockSize
® threeint’s: blockSize.x, blockSize.y, blockSize.z

® Launched on the host side
® CC 3.x: kernels can launch other kernels

Code executed on GPU: Restrictions

® C/C++ with some restrictions

® Only access to GPU memory, cannot access CPU
memory

¢ (but access to ,,pinned“ host memory, requires special
allocation)

® No access to host functions
* No variable number of arguments
® No static variables

Code executed on GPU: Features

* Many C/C++ features available on the GPU
Templates

Operator overloading

Classes, inheritance

Recursion (CC >=2.0)

Function pointers (CC >= 2.0)

new / delete (CC >= 2.0)

Dynamic polymorphism, virtual functions (CC >= 2.0)
Even printf() ! (CC >=2.0)

»

))) L))))

® Vector variants of basic types
float2, float3, float4, double2, int4, char?2, etc.
float2 a = make float2(1,2); a.x =10; a.y = a.x;

®
®

Code executed on GPU: Specifiers

® Special qualifiers to declare GPU functions:

»

~_global : kernels

¢ launched by CPU to run on the GPU
® must return void

»

device :auxiliary GPU functions

can only be called on the GPU
¢ called from _ global or device__ functions

»

host : “normal” CPU C/C++ functions
can only be called on the CPU

»

~_host_and device qualifiers can be combined

Example: Vector Addition Kernel

// Compute vector sum ¢ = a + b
// Each thread performs one pair-wise addition
__global void vecAdd (float* a, float* b, float* c)
{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;
c[i] = a[i] + b[i];

int main ()

{

// Run grid of N/256 blocks of 256 threads each
vecAdd <<< N/256, 256 >>> (d A, d B, d C);

Example: 2D Indexing

__global void kernel (int *a, int dimx, int dimy)

{

int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int ind = x + dimx*y;

alind] = a[ind]+1;

int main ()

dim3 block = dim3(32, 8, 1);
dim3 grid = dim3(dimx/block.x, dimy/block.y, 1);
kernel <<<grid,block>>> (d A, dimx, dimy)

Kernel Variations and Output

kernel<<<4,4>>>(d a);

__global void kernel(int *a)
{
int idx = blockIdx.x*blockDim.x + threadldx.x;
al[idx] = 7;
} Qutput: 7777777777777 7T77

__global void kernel(int *a)

{
int i1idx = blockIdx.x*blockDim.x + threadIlIdx.x;
a[idx] = blockIdx.x;

Output: 0000111122223333

__global void kernel(int *a)

{
int idx = blockIdx.x*blockDim.x + threadldx.x;
a[idx] = threadldx.x;

} Output:

Blocks must be independent

®* Any possible interleaving of blocks should be
valid

® presumed to run to completion without pre-emption
® can run in any order (order is unspecified)
® can run concurrently OR sequentially

* Blocks may coordinate but not synchronize
* shared queue pointer. OK
* shared lock: ... can easily deadlock

* Independence requirement gives scalability

Execution of Kernels

® Kernel launches are asynchronous w.r.t. CPU
* After kernel launch, control immediately returns
® CPU is free to do other stuff while the GPU is busy

® Kernel launches are queued

¢ Kernel doesn‘t start until previous kernels are
finished

® Concurrent kernels possible for CC >= 2.0
(given enough resources)

® Explicit synchronization if needed
® cudaDeviceSynchronize()

EXECUTION ON GPU

o
——

NVIDIA GPU Architecture

® 16 independent multiprocessors (SMs)

® No shared resources except global memory
® No synchronization, always work in parallel

Single Fermi SM Multiprocessor

® 32 CUDA Cores per SM (512 total)
* arithmetic/logic operations

® 16 memory load/store units
* (slow) access to off-chip GPU mem

® 4 Special Function Units
* 1/X, 1/SQRT(X), SIN, COS, EXP, ...

® 64 KB on-chip shared memory
® shared amongst CUDA cores
® enables thread communication

NVIDIA GPU Architecture: Current

| WarpScheduler | WarpScheduler | WarpScheduler = WarpScheduler
*———?———

Register File (65,536 x 32-bit)

i o o 5 e e e -

i - o o

Kepler e
GPU o o o o e e e -

® 15 multiprocessors (up to

® 192 Cuda Cores per SM
2880 Cores in total (up to)

Key Architectural Ideas

& SIMT (Single Instruction Multiple Thread) execution
® threads run in groups of 32 called warps _
» warp threads execute same instructions
* HW automatically handles divergence

® Hardware multithreading
* Allocate resources for many more
threads than CUDA Cores

® Any non-waiting warp can run
* switching between warps is free

Execution of Kernels on the GPU

® Each block is executed on one SM
® cannot migrate
* reason for block independence

¢ Block threads share SM

* SM are divided up
among the threads
* SM can be

read/written by all threads

* Several blocks per SM possible
* if enough resources available
® SMresources are divided among all blocks

Execution of Kernels on the GPU

Multithreaded CUDA Program

¢ Blocks are distributed across SMs

Block 0 Block 1 Block 2 Block 3

Block 4 Block5 Block6 Block7

¢ At each moment,

one or more blocks are active
® reside on a multiprocessor
® resources allocated
® executed until finished

GPU with 4 SMs

SMO SM 1 SM 2 SM 3

Block 0 Block 1 Block 0 Block1 Block2 Block3

® Others wait to be executed
® not yet assigned to a SM Block2 Block 3

Block 4 Block5 Block6 Block7

Block 4 Block 5

Block 6 Block 7

i) g

v

Execution on each Multiprocessor

® On each SM, all blocks which reside on it are
divided into warps (groups of 32 threads)

* At each clock cycle:
®* Each warp scheduler chooses a
warp which is ready to be executed
® The next instruction of these warps

are issued to the CUDA Cores
® or to load/store units
® or to special function units
® or to texture units

e 2 5

& 2 =

k] = wn

- @ @

8= 2 2
A =

s 5 3
2 =
5 S
2|
EX 2
a

= =~ y

Execution on each Multiprocessor

MEMORY MANAGEMENT

Memory Model

Kernel O

Kernel 1

Host memory

cudaMemcpy ()

Per-device
Global

Memory

Device 0
memory

Device 1
memory

Sequential
(CINES

Memory Spaces

* CPU and GPU have separate memory spaces
Data is moved across PCle bus

Use functions to allocate/set/copy memory on GPU
* Very similar to corresponding C functions

* Pointers are just addresses

Can’t tell from the pointer value whether the address
Is on CPU or GPU

* possibleif CC >=2.0 using unified addressing

Must exercise care when dereferencing:
* Dereferencing CPU pointer on GPU will likely crash
* Same for vice versa

GPU Memory Allocation / Release

® Host (CPU) manages device (GPU) memory:
® cudaMalloc (void ** pointer, size_t nbytes)
® cudaMemset (void * pointer, int value, size _t count)
® cudaFree (void* pointer)

Int n =1024;

Int nbytes = 1024*sizeof(int);

Int*d _a=0;

cudaMalloc((void**)&d _a, nbytes);
cudaMemset(d_a, 0, nbytes);
cudaFree(d_a);

Data Copies

® cudaMemcpy(void *dst, void *src, size_ t nbytes,
enum cudaMemcpyKind direction);

® returns after the copy is complete

® blocks CPU thread until all bytes have been copied

* doesn’t start copying until previous CUDA calls complete
* non-blocking copies are also available

® enum cudaMemcpyKind
® cudaMemcpyHostToDevice
® cudaMemcpyDeviceToHost
® cudaMemcpyDeviceToDevice

cudaMemcpy(dev_ptr, host_ptr, N*sizeof(float),
cudaMemcpyHostToDevice);

Example: Host code for vecAdd

// allocate and initialize host (CPU) memory
float *h A = ., *h B = .; *h C = . (empty)

// allocate device (GPU) memory

float *d A, *d B, *d C;

cudaMalloc((void**) &d A, N * sizeof(float));
cudaMalloc((void**) &d B, N * sizeof(float));
cudaMalloc((void**) &d C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d A, h A, N * sizeof(float),
cudaMemcpyHostToDevice) ;

cudaMemcpy(d B, h B, N * sizeof(float),
cudaMemcpyHostToDevice) ;

// execute grid of N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d A, d B, d C);

Example: Host code for vecAdd (2)

// execute grid of N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d A, d B, d C);

// copy result back to host memory

cudaMemcpy(h C, d C, N * sizeof(float),
cudaMemcpyDeviceToHost) ;

// do something with the result..

// free device (GPU) memory
cudaFree(d A) ;
cudaFree (d B) ;
cudaFree(d C) ;

CUDA Short Summary

Thread Hierarchy

thread - smallest executable unity

block - group of threads, shared memory for collaboration
grid - consists of several blocks

warp - group of 32 threads

Keyword extensions for C/C++

__global - kernel - function called by CPU, executed on GPU
__device__ - function called by GPU and executed on GPU
__host__ - [optional] - function called and executed by CPU
<<L...>>> - kernel launch, chevrons specify grid and block sizes

Compilation:
nvcc <filename>.cu -0 <executable>

