
CUDA Memories

GPU Programming

in Computer Vision

Outline

Overview of Memory Spaces

Shared Memory

Texture Memory

Common programming strategy for memory

accesses

See the Programming Guide for more details

OVERVIEW OF

MEMORY SPACES

CUDA Memories

Each thread can:

Read/write per-thread

registers

Read/write per-block

shared memory

Read/write per-grid

global memory

Read/only per-grid

constant memory

Grid

Global

memory

Block (0, 0)

Shared memory

Thread (0, 0)

Registers

Host

Constant

memory

Thread (1, 0)

Registers

Shared memory

Block (1, 0)

Shared memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Shared memory

CUDA Memories

Other Memories:

Local Memory

Texture Memory

both are part of

 global memory

Grid

Global

memory

Block (0, 0)

Shared memory

Thread (0, 0)

Registers

Host

Constant

memory

Texture

memory

Local

memory

Thread (1, 0)

Registers

Local

memory

Shared memory

Block (1, 0)

Shared memory

Thread (0, 0)

Registers

Local

memory

Thread (1, 0)

Registers

Local

memory

Shared memory

CUDA Variable Type Qualifiers

“automatic” scalar variables without qualifier

reside in a register

compiler may spill to thread local memory

“automatic” array variables without qualifier

reside in thread local memory

Variable declaration Memory Scope Lifetime

 int var; register thread thread

 int array_var[10]; local thread thread

__shared__ int shared_var; shared block block

__device__ int global_var; global grid application

__constant__ int constant_var; constant grid application

CUDA Variable Type Performance

scalar variables reside in fast, on-chip registers

shared variables reside in fast, on-chip

memories

thread local arrays & global variables reside in

off-chip memory

constant variables reside in cached off-chip

memory

Variable declaration Memory Penalty

 int var; register 1x

 int array_var[10]; local 100x

__shared__ int shared_var; shared 1x

__device__ int global_var; global 100x

__constant__ int constant_var; constant 1x

CUDA Variable Type Scale

100Ks per-thread variables, R/W by 1 thread

100s shared variables, each R/W by 100s of

threads

1 global variable is R/W by 100Ks threads

1 constant variable is readable by 100Ks threads

Variable declaration Instances Visibility

 int var; 100,000s 1

 int array_var[10]; 100,000s 1

__shared__ int shared_var; 100s 100s

__device__ int global_var; 1 100,000s

__constant__ int constant_var; 1 100,000s

Where to declare variables?

Can host
access it?

Outside of
any function

In the kernel

Yes

__constant__ int constant_var;

__device__ int global_var;

int var;

int array_var[10];

__shared__ int shared_var;

No

Example: Thread local variables

// motivate per-thread variables with

// Ten Nearest Neighbors application

__global__ void ten_nn(float2 *result, float2 *ps, float2 *qs,

 size_t num_qs)

{

 // p goes in a register

 float2 p = ps[threadIdx.x];

 // big array, or indices are data dependant

 float2 heap[10];

 // small array, and indices known at compile time

 float2 qarray[2];

 qarray[0] = qs[threadIdx.x];

 qarray[1] = qs[threadIdx.x + blockDim.x];

 ...

}

Register

Local

memory

Register

Local Memory

Compiler might place variables

in local memory:

too many register variables

a structure consumes too much

register space

an array is not indexed with

constant quantities, i.e.

 when the addressing of

 the array is not known at

 compile time

Grid

Global

memory

Block (0, 0)

Shared memory

Thread (0, 0)

Registers

Host

Constant

memory

Texture

memory

Local

memory

Thread (1, 0)

Registers

Local

memory

Shared memory

Block (1, 0)

Shared memory

Thread (0, 0)

Registers

Local

memory

Thread (1, 0)

Registers

Local

memory

Shared memory

SHARED MEMORY

Global and Shared Memory

Global memory is located off-chip

high latency (often the bottleneck of computation)

important to minimize accesses

not cached for CC 1.x GPUs

main difficulty: try to coalesce accesses (more later)

Shared memory is on-chip

low latency

like a user-managed per-multiprocessor cache

minor difficulty: try to minimize or avoid bank

conflicts (more later)

Take Advantage of Shared Memory

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Avoid multiple loads of same data by different

threads of the block

Use one/a few threads to load/compute data

 shared by all threads in the block

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_naive(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 float res = 0;

 if (i+1 < n)

 {

 // each thread loads two elements from global memory

 float xplus1 = input[i+1];

 float x0 = input[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

What are the bandwidth

requirements of this kernel?

two loads

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_naive(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 float res = 0;

 if (i+1 < n)

 {

 // each thread loads two elements from global memory

 float xplus1 = input[i+1];

 float x0 = input[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

How many times does this
kernel load input[i]?

 again by thread i-1

 once by thread i

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_naive(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 float res = 0;

 if (i+1 < n)

 {

 // each thread loads two elements from global memory

 float xplus1 = input[i+1];

 float x0 = input[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

Idea:

eliminate redundancy

by sharing data

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_shm(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 int iblock = threadIdx.x; // local “block” version of i

 // allocate shared array, of constant size BLOCK_SIZE

 __shared__ float sh_data[BLOCK_SIZE];

 // each thread reads one element and writes into sh_data

 sh_data[iblock] = input[i];

 // ensure all loads complete before continuing

 __syncthreads();

 ...

}

Shared Memory: Example

// forward differences discretization of derivative

__global__ void diff_shm(float *result, float *input, int n)

{

 ...

 float res = 0;

 if (i+1 < n)

 {

 // handle thread block boundary

 int xplus1 = (iblock+1<blockDim.x? sh_data[iblock+1] :

 input[i+1]);

 int x0 = sh_data[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

Shared Memory: Example

// forward differences discretization of derivative

__global__

void diff_naive(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 float res = 0;

 if (i+1 < n)

 {

 // each thread loads two elements from global

memory

 float xplus1 = input[i+1];

 float x0 = input[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

// forward differences discretization of derivative

__global__

void diff_shm(float *result, float *input, int n)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 int iblock = threadIdx.x; // local version of i

 // allocate shared array, of constant size

BLOCK_SIZE

 __shared__ float sh_data[BLOCK_SIZE];

 // each thread reads one element to sh_data

 sh_data[iblock] = input[i];

 // ensure all loads complete before continuing

 __syncthreads();

 float res = 0;

 if (i+1 < n)

 {

 // handle thread block boundary

 float xplus1 = (iblock+1<blockDim.x?

 sh_data[iblock+1] :

 input[i+1]);

 float x0 = sh_data[i];

 res = xplus1 – x0;

 }

 result[i] = res;

}

Optimization Analysis

Experiment performed on a GT200 chip

Improvement likely better on an older architecture

Improvement likely worse on a newer architecture

Optimizations tend to come with a development cost

Implementation Original Improved

Global Loads 2N N + N/BLOCK_SIZE

Global Stores N N

Throughput 36.8 GB/s 57.5 GB/s

SLOCs (# lines of code) 18 35

Relative Improvement 1x 1.57x

Improvement/SLOC 1x 0.81x

Shared Memory: Dynamic allocation

Size known at compile time

__global__ void kernel (...)

{

 ...

 __shared__ float s_data[BLOCK_SIZE];

 ...

}

int main(void)

{

 ...

 kernel <<<grid,block>>> (...);

 ...

}

Size known at kernel launch

__global__ void kernel (...)

{

 ...

 extern __shared__ float s_data[];

 ...

}

int main(void)

{

 ...

 int smBytes = block.x*block.y

 *block.z*sizeof(float);

 kernel <<<grid,block,smBytes>>> (...);

 ...

}

Synchronizing Threads within a Block

__syncthreads();

Synchronizes all threads in a block

generates a barrier synchronization instruction

no thread can pass this barrier until all threads in the

block reach it

used to avoid Read-After-Write / Write-After-Read /

Write-After-Write hazards for shared memory accesses

Allowed in conditional code („if“, „while“, etc.)

only if the conditional is uniform across the block

e.g. every thread follows the same „if“- or „else“-path

TEXTURE MEMORY

Texture Memory

Actually part of

 global memory

Read-only, cached

Global memory reads

 are performed through

 extra hardware

 for texture manipulation

Textures: Utilize Texture Memory

Texture is a CUDA abstraction for reading data

Benefits:

Data is cached

optimized for 2D spatial locality

32 B cache line (smaller than global mem cache line 128 B)

Filtering with no additional costs

linear / bilinear / trilinear

Wrap modes with no additional costs

for „out-of-bounds“ addresses

Addressable in 1D, 2D, or 3D

using integer or normalized [0,1) coordinates

Textures: Usage (General)

Host (CPU) code:

allocate global memory

create a texture reference object

bind the texture reference to the allocated memory

when done: unbind texture reference

Device (GPU) code:

Fetch (reads) using texture reference

tex1D(texRef,x), tex2D(texRef,x,y), tex3D(texRef,x,y,z)

Textures: Usage (Texture Reference)

Define a texture reference at file scope:

 texture <Type, Dim, ReadMode> texRef;

Type: int, float, float2, float4, …

Dim: 1, 2, or 3, data dimension

ReadMode:

cudaReadModeElementType

– for integer-valued textures: return value as is

cudaReadModeNormalizedFloat

– for integer-valued textures: normalize value to [0,1)

Textures: Usage (Set Parameters)

Set boundary conditions for x and y

 texRef.addressMode[0] = cudaAddressModeClamp

 texRef.addressMode[1] = cudaAddressModeClamp

cudaAddressModeClamp, cudaAddressModeWrap

Enable/disable filtering

 texRef.filterMode = cudaFilterModePoint

cudaFilterModePoint, cudaFilterModeLinear

Set whether coordinates are normalized to [0,1)

 texRef.normalized = false

Textures: Usage (Bind/Unbind)

Bind texture to array

 cudaBindTexture2D

 (NULL, &texRef, ptr, &desc, width, height, pitch)

ptr: pointer to allocated array memory

width: width of array

height: height of array

pitch: pitch of array in bytes

desc: number of bits for each texture channel

– cudaCreateChannelDesc<float>() // or float2, float4, int, …

Unbind texture

 cudaUnbindTexture(texRef)

Textures: Example

texture<float,2,cudaReadModeElementType> tex1; // at file scope

__global__ void kernel (...)

{

 int x = threadIdx.x + blockDim.x*blockIdx.x;

 int y = threadIdx.y + blockDim.y*blockIdx.y;

 float val = tex2D(tex1, x+0.5f, y+0.5f); // add 0.5f to get center of pixel

 ...

}

int main(void)

{

 ...

 cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();

 tex1.addressMode[0] = cudaAddressModeClamp; // clamp x to border

 tex1.addressMode[1] = cudaAddressModeClamp; // clamp y to border

 tex1.filterMode = cudaFilterModeLinear; // linear interpolation

 tex1.normalized = false; // access as (x+0.5f,y+0.5f), not as ((x+0.5f)/w,(y+0.5f)/h)

 cudaBindTexture2D(NULL, &tex1, d_ptr, &desc, w, h, pitchBytes);

 kernel <<<grid,block>>> (...);

 cudaUnbindTexture(tex1);

 ...

}

Constant Memory

Part of global memory

Read-only, cached

Cache is dedicated

same as for textures

will not be overwritten by

 other global memory reads

fast

limited size (48 KB)

few small crucial parameters

Constant Memory

Defined as file scope

Qualifier: __constant__

__constant__ float myparam;

__constant__ float constKernel[KERNEL_SIZE];

Read from device

float val = myparam; val = constKernel[0];

Write from host

cudaMemcpyToSymbol (constKernel, h_ptr, sizeBytes);

COMMON PROGRAMMING

STRATEGY FOR MEMORY

ACCESSES

Global Memory: Coalescing

Global memory access is slow

400-800 clock cycles

Hardware coalesces (combines) memory accesses

chunks of size 32 B, 64 B, 128 B

aligned to multiples of 32 B, 64 B, 128 B, respectively

Coalescing is per warp (CC 1.x: per halfwarp)

each thread reads a char: 1B*32 = 32 B chunk

each thread reads a float: 4B*32 = 128 B chunk

each thread reads a int2: 8B*32 = 2*128 B chunks

Global Memory: Coalescing

Global memory access is slow

400-800 clock cycles

Make sure threads within a warp access

a contiguous memory region

as few 128 B segments as possible (CC>=2.0)

CC >= 2.0: Cached accesses, cache line is always 128 B

CC 1.x: more restrictive as to when coalescing occurs

Huge performance hit for non-coalesced accesses

memory accesses per warp will be serialized

worst case: reading chars from random locations

Global Memory: Coalescing

Global Memory: Coalescing

A Common Programming Strategy

Global memory access is slow (400-800 clock

cycles)

Much slower access than shared memory

Tile data to take advantage of fast shared memory

process each subset in an own thread block

Load data from global memory to shared memory

using as coalesced accesses as possible

Process data in shared memory

Store data back to global memory

using as coalesced accesses as possible

A Common Programming Strategy

Partition data into subsets that fit into shared

memory

A Common Programming Strategy

Handle each data subset with one thread block

A Common Programming Strategy

Load the subset from global memory to shared

memory, using multiple threads to exploit

memory-level parallelism

A Common Programming Strategy

Perform the computation on the subset from

shared memory

A Common Programming Strategy

Copy the result from shared memory back to

global memory

A Common Programming Strategy

Carefully partition data according to access

patterns

Read-only  __constant__ memory (fast)

R/W & shared within block  __shared__

memory (fast)

R/W within each thread  registers (fast)

Indexed R/W within each thread  local memory

(slow)

R/W inputs/results  cudaMalloc‘ed global

memory (slow)

Communication Through Memory

Question:

__global__ void race(void)

{

 __shared__ int my_shared_variable;

 my_shared_variable = threadIdx.x;

 // what is the value of

 // my_shared_variable?

}

Communication Through Memory

This is a race condition

The result is undefined

The order in which threads access the variable

is undefined without explicit coordination

Use barriers (e.g., __syncthreads) or atomic

operations (e.g., atomicAdd) to enforce well-

defined semantics

Communication Through Memory

Use __syncthreads to ensure data is ready for

access

__global__ void share_data(int *input)

{

 __shared__ int data[BLOCK_SIZE];

 data[threadIdx.x] = input[threadIdx.x];

 __syncthreads();

 // the state of the entire data array

 // is now well-defined for all threads

 // in this block

}

Communication Through Memory

Use atomic operations to ensure exclusive

access to a variable

// assume *result is initialized to 0

__global__ void sum(int *input, int *result)

{

 atomicAdd(result, input[threadIdx.x]);

 // after this kernel exits, the value of

 // *result will be the sum of the input

}

Resource Contention

Atomic operations aren’t cheap!

They imply serialized access to a variable

__global__ void sum(int *input, int *result)

{

 atomicAdd(result, input[threadIdx.x]);

}

...

// how many threads will contend

// for exclusive access to result?

sum<<<B,N/B>>>(input,result);

Hierarchical Atomics

Divide & Conquer

Per-thread atomicAdd to a __shared__ partial sum

Per-block atomicAdd to the total sum

S

S0 S1 Si

Hierarchical Atomics

__global__ void sum(int *input, int *result)

{

 __shared__ int partial_sum;

 // thread 0 is responsible for

 // initializing partial_sum

 if(threadIdx.x == 0)

 partial_sum = 0;

 __syncthreads();

 ...

}

Hierarchical Atomics

__global__ void sum(int *input, int *result)

{

 ...

 // each thread updates the partial sum

 atomicAdd(&partial_sum,

 input[threadIdx.x]);

 __syncthreads();

 // thread 0 updates the total sum

 if(threadIdx.x == 0)

 atomicAdd(&result, partial_sum);

}

Advice

Use barriers such as __syncthreads to wait

until __shared__ data is ready

Prefer barriers to atomics when data access

patterns are regular or predictable

Prefer atomics to barriers when data access

patterns are sparse or unpredictable

Atomics to __shared__ variables are much

faster than atomics to global variables

Don’t synchronize or serialize unnecessarily

Final Thoughts

Effective use of CUDA memory hierarchy decreases

bandwidth consumption to increase throughput

Use __shared__ memory to eliminate redundant

loads from global memory

Use __syncthreads barriers to protect __shared__ data

Use atomics if access patterns are sparse or unpredictable

Optimization comes with a development cost

Memory resources ultimately limit parallelism

