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CUDA Memories 

Each thread can: 

Read/write per-thread 

registers 

 

Read/write per-block 

shared memory 

 

Read/write per-grid 

global memory 

Read/only per-grid 

constant memory 
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CUDA Memories 

Other Memories: 

Local Memory 

Texture Memory 

both are part of 

 global memory 
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CUDA Variable Type Qualifiers 

 

“automatic” scalar variables without qualifier 

reside in a register 

compiler may spill to thread local memory 

“automatic” array variables without qualifier 

reside in thread local memory 

Variable declaration Memory Scope Lifetime 

             int var; register thread thread 

             int array_var[10]; local thread thread 

__shared__   int shared_var; shared block block 

__device__   int global_var; global grid application 

__constant__ int constant_var; constant grid application 



CUDA Variable Type Performance 

 

scalar variables reside in fast, on-chip registers 

shared variables reside in fast, on-chip 

memories 

thread local arrays & global variables reside in 

off-chip memory 

constant variables reside in cached off-chip 

memory 

Variable declaration Memory Penalty 

             int var; register 1x 

             int array_var[10]; local 100x 

__shared__   int shared_var; shared 1x 

__device__   int global_var; global 100x 

__constant__ int constant_var; constant 1x 



CUDA Variable Type Scale 

100Ks per-thread variables, R/W by 1 thread 

100s shared variables, each R/W by 100s of 

threads 

1 global variable is R/W by 100Ks threads 

1 constant variable is readable by 100Ks threads 

Variable declaration Instances Visibility 

             int var; 100,000s 1 

             int array_var[10]; 100,000s 1 

__shared__   int shared_var; 100s 100s 

__device__   int global_var; 1 100,000s 

__constant__ int constant_var; 1 100,000s 



Where to declare variables? 

Can host 
access it? 

Outside of 
any function 

In the kernel 

Yes 

__constant__ int constant_var; 

__device__   int global_var; 

int var; 

int array_var[10]; 

__shared__ int shared_var; 

No 



Example: Thread local variables 

// motivate per-thread variables with 

// Ten Nearest Neighbors application 

__global__ void ten_nn(float2 *result, float2 *ps, float2 *qs, 

                       size_t num_qs) 

{ 

  // p goes in a register 

  float2 p = ps[threadIdx.x]; 

 

  // big array, or indices are data dependant 

  float2 heap[10]; 

   

  // small array, and indices known at compile time  

  float2 qarray[2]; 

  qarray[0] = qs[threadIdx.x]; 

  qarray[1] = qs[threadIdx.x + blockDim.x]; 

  ... 

} 

Register 

Local 

memory 

Register 



Local Memory 

Compiler might place variables 

in local memory: 

 

too many register variables 

a structure consumes too much 

register space 

an array is not indexed with 

constant quantities, i.e. 

 when the addressing of  

 the array is not known at 

 compile time 
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SHARED MEMORY 



Global and Shared Memory 

Global memory is located off-chip 

high latency (often the bottleneck of computation) 

important to minimize accesses 

not cached for CC 1.x GPUs 

main difficulty: try to coalesce accesses (more later) 

 

Shared memory is on-chip 

low latency 

like a user-managed per-multiprocessor cache 

minor difficulty: try to minimize or avoid bank 

conflicts (more later) 

 

 



Take Advantage of Shared Memory 

Hundreds of times faster than global memory 

 

Threads can cooperate via shared memory 

 

Avoid multiple loads of same data by different 

threads of the block 

 

Use one/a few threads to load/compute data 

 shared by all threads in the block 

 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_naive(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // each thread loads two elements from global memory 

    float xplus1 = input[i+1]; 

    float x0     = input[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

What are the bandwidth 

requirements of this kernel? 

two loads 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_naive(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // each thread loads two elements from global memory 

    float xplus1 = input[i+1]; 

    float x0     = input[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

How many times does this 
kernel load input[i]? 

 again by thread i-1 

 once by thread i 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_naive(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // each thread loads two elements from global memory 

    float xplus1 = input[i+1]; 

    float x0     = input[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

Idea: 

eliminate redundancy 

by sharing data 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_shm(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

  int iblock = threadIdx.x;  // local “block” version of i 

 

  // allocate shared array, of constant size BLOCK_SIZE 

  __shared__ float sh_data[BLOCK_SIZE]; 

 

  // each thread reads one element and writes into sh_data 

  sh_data[iblock] = input[i]; 

 

  // ensure all loads complete before continuing 

  __syncthreads(); 

  

  ... 

} 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ void diff_shm(float *result, float *input, int n) 

{ 

  ... 

  float res = 0; 

  if (i+1 < n) 

  { 

    // handle thread block boundary 

    int xplus1 = (iblock+1<blockDim.x? sh_data[iblock+1] :  

                                       input[i+1]); 

    int x0     = sh_data[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 



Shared Memory: Example 

// forward differences discretization of derivative 

__global__ 

void diff_naive(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

 

 

 

 

 

 

 

 

 

 

 

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // each thread loads two elements from global 

memory 

    float xplus1 = input[i+1]; 

 

    float x0     = input[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

 

// forward differences discretization of derivative 

__global__ 

void diff_shm(float *result, float *input, int n) 

{ 

  int i = threadIdx.x + blockDim.x*blockIdx.x; 

  int iblock = threadIdx.x;  // local version of i 

 

  // allocate shared array, of constant size 

BLOCK_SIZE 

  __shared__ float sh_data[BLOCK_SIZE]; 

 

  // each thread reads one element to sh_data 

  sh_data[iblock] = input[i]; 

 

  // ensure all loads complete before continuing 

  __syncthreads();   

 

  float res = 0; 

  if (i+1 < n) 

  { 

    // handle thread block boundary 

    float xplus1 = (iblock+1<blockDim.x? 

                      sh_data[iblock+1] :  

                      input[i+1]); 

    float x0     = sh_data[i]; 

    res = xplus1 – x0; 

  } 

  result[i] = res; 

} 

 



Optimization Analysis 

Experiment performed on a GT200 chip 

Improvement likely better on an older architecture 

Improvement likely worse on a newer architecture 

Optimizations tend to come with a development cost 

Implementation Original Improved 

Global Loads 2N N + N/BLOCK_SIZE 

Global Stores N N 

Throughput 36.8 GB/s 57.5 GB/s 

SLOCs (# lines of code) 18 35 

Relative Improvement 1x 1.57x 

Improvement/SLOC 1x 0.81x 



Shared Memory: Dynamic allocation 

Size known at compile time 
 

 

__global__ void kernel (...) 

{ 

  ... 

  __shared__ float s_data[BLOCK_SIZE]; 

  ... 

} 

 

 

int main(void) 

{ 

  ... 

  kernel <<<grid,block>>> (...); 

  ... 

} 

 

Size known at kernel launch 
 

 

__global__ void kernel (...) 

{ 

  ... 

  extern __shared__ float s_data[]; 

  ... 

} 

 

 

int main(void) 

{ 

  ... 

  int smBytes = block.x*block.y 

          *block.z*sizeof(float); 

  kernel <<<grid,block,smBytes>>> (...); 

  ... 

} 

 



Synchronizing Threads within a Block 

__syncthreads(); 

 

Synchronizes all threads in a block 

generates a barrier synchronization instruction 

no thread can pass this barrier until all threads in the 

block reach it 

used to avoid Read-After-Write / Write-After-Read / 

Write-After-Write hazards for shared memory accesses 

 

Allowed in conditional code („if“, „while“, etc.) 

only if the conditional is uniform across the block 

e.g. every thread follows the same „if“- or „else“-path 



TEXTURE MEMORY 



Texture Memory 

Actually part of 

 global memory 

 

Read-only, cached 

 

Global memory reads 

 are performed through 

 extra hardware 

 for texture manipulation 

  



Textures: Utilize Texture Memory 

Texture is a CUDA abstraction for reading data 

 

Benefits: 

Data is cached 

optimized for  2D spatial locality 

32 B cache line (smaller than global mem cache line 128 B) 

Filtering with no additional costs 

linear / bilinear / trilinear 

Wrap modes with no additional costs 

for „out-of-bounds“ addresses 

Addressable in 1D, 2D, or 3D 

using integer or normalized [0,1) coordinates 

 



Textures: Usage (General) 

Host (CPU) code: 

allocate global memory 

create a texture reference object 

bind the texture reference to the allocated memory 

when done: unbind texture reference 

 

Device (GPU) code: 

Fetch (reads) using texture reference 

tex1D(texRef,x), tex2D(texRef,x,y), tex3D(texRef,x,y,z) 



Textures: Usage (Texture Reference) 

Define a texture reference at file scope: 

  

  texture <Type, Dim, ReadMode> texRef; 

 

Type: int, float, float2, float4, … 

Dim: 1, 2, or 3, data dimension 

ReadMode: 

cudaReadModeElementType 

– for integer-valued textures: return value as is 

cudaReadModeNormalizedFloat 

– for integer-valued textures: normalize value to [0,1) 

 

  



Textures: Usage (Set Parameters) 

Set boundary conditions for x and y 

 texRef.addressMode[0] = cudaAddressModeClamp 

 texRef.addressMode[1] = cudaAddressModeClamp 

cudaAddressModeClamp, cudaAddressModeWrap 

 

Enable/disable filtering 

 texRef.filterMode = cudaFilterModePoint 

cudaFilterModePoint, cudaFilterModeLinear 

 

Set whether coordinates are normalized to [0,1) 

 texRef.normalized = false 



Textures: Usage (Bind/Unbind) 

Bind texture to array 

 cudaBindTexture2D 

            (NULL, &texRef, ptr, &desc, width, height, pitch) 

ptr: pointer to allocated array memory 

width: width of array 

height: height of array 

pitch: pitch of array in bytes 

desc: number of bits for each texture channel 

– cudaCreateChannelDesc<float>()  // or float2, float4, int, … 

 

Unbind texture 

 cudaUnbindTexture(texRef) 

 



Textures: Example 

texture<float,2,cudaReadModeElementType> tex1;   // at file scope 

 

__global__ void kernel (...) 

{ 

 int x = threadIdx.x + blockDim.x*blockIdx.x; 

    int y = threadIdx.y + blockDim.y*blockIdx.y; 

 float val = tex2D(tex1, x+0.5f, y+0.5f);   // add 0.5f to get center of pixel 

 ... 

} 

 

int main(void) 

{ 

    ... 

    cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>(); 

    tex1.addressMode[0] = cudaAddressModeClamp;   // clamp x to border 

    tex1.addressMode[1] = cudaAddressModeClamp;   // clamp y to border 

    tex1.filterMode = cudaFilterModeLinear;       // linear interpolation 

    tex1.normalized = false;   // access as (x+0.5f,y+0.5f), not as ((x+0.5f)/w,(y+0.5f)/h) 

    cudaBindTexture2D(NULL, &tex1, d_ptr, &desc, w, h, pitchBytes); 

    kernel <<<grid,block>>> (...); 

    cudaUnbindTexture(tex1); 

 ... 

} 

 



Constant Memory 

Part of global memory 

 

Read-only, cached 

Cache is dedicated 

same as for textures 

will not be overwritten by 

 other global memory reads 

 

fast 

limited size (48 KB) 

few small crucial parameters 

 



Constant Memory 

Defined as file scope 

Qualifier: __constant__ 

__constant__ float myparam; 

__constant__ float constKernel[KERNEL_SIZE]; 

 

Read from device 

float val = myparam;  val = constKernel[0]; 

 

Write from host 

cudaMemcpyToSymbol (constKernel, h_ptr, sizeBytes); 



COMMON PROGRAMMING 

STRATEGY FOR MEMORY 

ACCESSES 



Global Memory: Coalescing 

Global memory access is slow 

400-800 clock cycles 

 

Hardware coalesces (combines) memory accesses 

chunks of size 32 B, 64 B, 128 B 

aligned to multiples of 32 B, 64 B, 128 B, respectively 

 

Coalescing is per warp (CC 1.x: per halfwarp) 

each thread reads a char: 1B*32 = 32 B chunk 

each thread reads a float: 4B*32 = 128 B chunk 

each thread reads a int2:  8B*32 = 2*128 B chunks 

 



Global Memory: Coalescing 

Global memory access is slow 

400-800 clock cycles 

 

Make sure threads within a warp access 

a contiguous memory region 

as few 128 B segments as possible (CC>=2.0) 

CC >= 2.0: Cached accesses, cache line is always 128 B 

CC 1.x: more restrictive as to when coalescing occurs 

 

Huge performance hit for non-coalesced accesses 

memory accesses per warp will be serialized 

worst case: reading chars from random locations 

 



Global Memory: Coalescing 



Global Memory: Coalescing 



A Common Programming Strategy 

Global memory access is slow (400-800 clock 

cycles) 

Much slower access than shared memory 

Tile data to take advantage of fast shared memory 

process each subset in an own thread block 

 

Load data from global memory to shared memory 

using as coalesced accesses as possible 

Process data in shared memory 

Store data back to global memory 

using as coalesced accesses as possible 

 



A Common Programming Strategy 

Partition data into subsets that fit into shared 

memory 



A Common Programming Strategy 

Handle each data subset with one thread block 



A Common Programming Strategy 

Load the subset from global memory to shared 

memory, using multiple threads to exploit 

memory-level parallelism 



A Common Programming Strategy 

Perform the computation on the subset from 

shared memory 



A Common Programming Strategy 

Copy the result from shared memory back to 

global memory 



A Common Programming Strategy 

Carefully partition data according to access 

patterns 

Read-only  __constant__ memory (fast) 

R/W & shared within block  __shared__ 

memory (fast) 

R/W within each thread  registers (fast) 

Indexed R/W within each thread  local memory 

(slow) 

R/W inputs/results  cudaMalloc‘ed global 

memory (slow) 



Communication Through Memory 

Question: 

 

__global__ void race(void) 

{ 

  __shared__ int my_shared_variable; 

  my_shared_variable = threadIdx.x; 

 

  // what is the value of 

  // my_shared_variable? 

} 

 



Communication Through Memory 

This is a race condition 

The result is undefined 

The order in which threads access the variable 

is undefined without explicit coordination 

Use barriers (e.g., __syncthreads) or atomic 

operations (e.g., atomicAdd) to enforce well-

defined semantics 

 

 



Communication Through Memory 

Use __syncthreads to ensure data is ready for 

access 

 

__global__ void share_data(int *input) 

{ 

  __shared__ int data[BLOCK_SIZE]; 

  data[threadIdx.x] = input[threadIdx.x]; 

  __syncthreads(); 

  // the state of the entire data array 

  // is now well-defined for all threads 

  // in this block 

} 



Communication Through Memory 

Use atomic operations to ensure exclusive 

access to a variable 

 

// assume *result is initialized to 0 

__global__ void sum(int *input, int *result) 

{ 

  atomicAdd(result, input[threadIdx.x]); 

 

  // after this kernel exits, the value of 

  // *result will be the sum of the input 

} 



Resource Contention 

Atomic operations aren’t cheap! 

They imply serialized access to a variable 

 

__global__ void sum(int *input, int *result) 

{ 

  atomicAdd(result, input[threadIdx.x]); 

} 

... 

// how many threads will contend 

// for exclusive access to result? 

sum<<<B,N/B>>>(input,result); 



Hierarchical Atomics 

Divide & Conquer 

Per-thread atomicAdd to a __shared__ partial sum 

Per-block atomicAdd to the total sum 

S 

S0 S1 Si 



Hierarchical Atomics 

__global__ void sum(int *input, int *result) 

{ 

  __shared__ int partial_sum; 

 

  // thread 0 is responsible for 

  // initializing partial_sum 

  if(threadIdx.x == 0) 

    partial_sum = 0; 

  __syncthreads(); 

 

  ... 

} 



Hierarchical Atomics 

__global__ void sum(int *input, int *result) 

{ 

  ... 

  // each thread updates the partial sum 

  atomicAdd(&partial_sum, 

            input[threadIdx.x]); 

  __syncthreads(); 

 

  // thread 0 updates the total sum 

  if(threadIdx.x == 0) 

    atomicAdd(&result, partial_sum); 

} 



Advice 

Use barriers such as __syncthreads to wait 

until __shared__ data is ready 

Prefer barriers to atomics when data access 

patterns are regular or predictable 

Prefer atomics to barriers when data access 

patterns are sparse or unpredictable 

Atomics to __shared__ variables are much 

faster than atomics to global variables 

Don’t synchronize or serialize unnecessarily 



Final Thoughts 

Effective use of CUDA memory hierarchy decreases 

bandwidth consumption to increase throughput 

 

Use __shared__ memory to eliminate redundant 

loads from global memory 

Use __syncthreads barriers to protect __shared__ data 

Use atomics if access patterns are sparse or unpredictable 

 

Optimization comes with a development cost 

Memory resources ultimately limit parallelism 


