GPU Programming
In Computer Vision

Warps

Lecture Week

Lecture
10-14 (1h lunch pause) each day
attendance mandatory to pass the course

Exercises September
14-18 each day
no need to be finished @ sl aletels] s
the same day T ETIET

16 19 20 21 22

23 26 27 28 29

for exercises:

Submit all solutions by email in a zip achive

Remote Login

.

.

You can access your computer remotely:
ssh -X pl23@atradig789.informatik. tu-muenchen.de

p123: replace with your login

atradig789: replace with your computer name
® to find out the name, type hostname

have your password ready

Works from within Linux or Mac
® for Macs: install XQuartz first (X11 window system)

WARPS

o
——

NVIDIA GPU Architecture

® 16 independent multiprocessors (SMs)

® No shared resources except global memory
® No synchronization, always work in parallel

Warps

& SIMT (Single Instruction Multiple Thread) execution
® threads runin groups of 32 called warps

® All 32 threads in a warp execute the same
Instruction
¢ always, no matter what (even if threads diverge)

® Threads are executed warp-wise by the GPU
* for each warp, the 32 threads are executed in parallel
® warps are executed one after another

® but several warps can run simultaneously
® upto 2for CC 2.x,upto 6 for CC 3.x

Thread Hierarchy

Grid

Block (0, 0) || Block (Block (

WWW

Block (0, 1) Block (1,1) NBlock (2

Thread(o 0) Thread(1 0) |Thread (2, 0) Thread(3 0)

Thread 0,1) Thread(1 1) | Thread (2, 1) [Threa (3 1)
Thread(1 2) Thread (2,2) | Thread (3, %)

Blocks execute on Multiprocessors

® Each block is executed on one Multiprocessor (SM)

® Several blocks per SM possible

Execution on each Multiprocessor

® Assume there are three blocks on one SM,
with 128 threads per block:

Execution on each Multiprocessor

® Threads from all blocks are divided into warps

® In our example:
® 4 warps from every block (128 threads/32)

® 12 warps overall on SM (3 blocks * 4 warps/block)
® 12*32 = 384 threads

Execution on each Multiprocessor

® At each clock cycle
® each warp scheduler chooses a warp
which is ready to be executed

® For each chosen warp
® the next instruction is executed
for all 32 threads of the warp

® issued for execution to
® CUDA Cores
® or load/store units
® or special function units
® or texture units

e 2 5

& 2 =

k] = wn

- @ @

8= 2 2
A =

s 5 3
2 =
5 S
2|
EX 2
a

= =~ y

Execution on each Multiprocessor

Branch Divergence

® All 32 threads in a warp execute the same
Instruction
¢ always, no matter what

__global void kernel (float *result, float *input)
{
int 1 = threadldx.x + blockDim.x*blockIdx.x;
if (input[i]>0)
result[i] = 1.f;
else

result[i] = 0.f; within a warp

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else

»

If threads diverge within a warp execution is
serialized
¢ all 32 threads must execute the same instruction

»

Each path is taken by each of the 32 threads
Threads which do not correspond to this path
are marked as inactive during execution

»

»

Divergence in different warps: no serialization

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else result[i] = 0.£;

threadIdx.x: O 1 2 3 4 5 6 7 8 c e 31

input[i]: 7 23 -2 5 -1 66 24 -41 -3 . . 18

input[i]>0: T T ¥ T F T T F F ... T

- [J {J |I {J |I {] [J |I |I {J
\7 /

acﬂve inactive

