
GPU Programming

in Computer Vision

Warps

Lecture Week

Lecture

10-14 (1h lunch pause) each day

attendance mandatory to pass the course

Exercises

14-18 each day

no need to be finished

 the same day

Deadline for exercises:

02.09.2013, 23:59

Submit all solutions by email in a zip achive

Remote Login

You can access your computer remotely:

 ssh –X p123@atradig789.informatik.tu-muenchen.de

p123: replace with your login

atradig789: replace with your computer name
to find out the name, type hostname

have your password ready

Works from within Linux or Mac

for Macs: install XQuartz first (X11 window system)

WARPS

NVIDIA GPU Architecture

16 independent multiprocessors (SMs)

No shared resources except global memory

No synchronization, always work in parallel

Fermi

GPU

Warps

SIMT (Single Instruction Multiple Thread) execution

threads run in groups of 32 called warps

All 32 threads in a warp execute the same

instruction

always, no matter what (even if threads diverge)

Threads are executed warp-wise by the GPU

for each warp, the 32 threads are executed in parallel

warps are executed one after another

but several warps can run simultaneously

up to 2 for CC 2.x, up to 6 for CC 3.x

Thread Hierarchy

Blocks execute on Multiprocessors

Each block is executed on one Multiprocessor (SM)

Several blocks per SM possible

Execution on each Multiprocessor

Assume there are three blocks on one SM,

 with 128 threads per block:

block 0

128

threads

block 1

128

threads

block 2

128

threads

Execution on each Multiprocessor

Threads from all blocks are divided into warps

In our example:

4 warps from every block (128 threads/32)

12 warps overall on SM (3 blocks * 4 warps/block)

12*32 = 384 threads

Execution on each Multiprocessor

At each clock cycle

each warp scheduler chooses a warp

 which is ready to be executed

For each chosen warp

the next instruction is executed

 for all 32 threads of the warp

issued for execution to

CUDA Cores

or load/store units

or special function units

or texture units

Execution on each Multiprocessor

Branch Divergence

All 32 threads in a warp execute the same

instruction

always, no matter what

__global__ void kernel (float *result, float *input)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 if (input[i]>0)

 result[i] = 1.f;

 else

 result[i] = 0.f;

}

What if different paths

 are taken within a warp?

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else result[i] = 0.f;

If threads diverge within a warp execution is

serialized

all 32 threads must execute the same instruction

Each path is taken by each of the 32 threads

Threads which do not correspond to this path

 are marked as inactive during execution

Divergence in different warps: no serialization

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else result[i] = 0.f;

threadIdx.x: 0 1 2 3 4 5 6 7 8 ... 31

input[i]: 7 23 -2 5 -1 66 24 -41 -3 ... 18

input[i]>0: T T F T F T T F F ... T

Time

active inactive

