

Prepared and Provided by NVIDIA

Q2 2008

CUDA Technical

Training

Volume I:

Introduction to CUDA Programming

Table of Contents

Section Slide

Introduction to GPU Computing..1

CUDA Programming Model Overview ...10

CUDA Programming – The Basics..25

Performance Optimization ...56

 G8x Hardware..62

 Memory Optimizations ..67

 Execution Configuration Optimizations ..105

 Instruction Optimizations...115

CUDA Libraries...128

 CUBLAS..130

 CUFFT ...142

Additional CUDA Topics ..157

 CUDA Texture Functionality ..159

 CUDA Fortran Interoperability..168

 CUDA Event API ..173

 Device Management ..174

 CUDA Graphics Interoperability...176

Introduction to GPU Computing

© NVIDIA Corporation 2008 2

Parallel Computing’s Golden Age

1980s, early `90s: a golden age for parallel computing

Particularly data-parallel computing

Machines

Connection Machine, MasPar, Cray

True supercomputers: incredibly exotic, powerful, expensive

Algorithms, languages, & programming models

Solved a wide variety of problems

Various parallel algorithmic models developed

P-RAM, V-RAM, circuit, hypercube, etc.

© NVIDIA Corporation 2008 3

Parallel Computing’s Dark Age

But…impact of data-parallel computing limited

Thinking Machines sold 7 CM-1s (100s of systems total)

MasPar sold ~200 systems

Commercial and research activity subsided

Massively-parallel machines replaced by clusters
of ever-more powerful commodity microprocessors

Beowulf, Legion, grid computing, …

Massively parallel computing loses momentum to
inexorable advance of commodity technology

© NVIDIA Corporation 2008 4

Enter the GPU

GPUs are massively multithreaded manycore chips

Hundreds of cores, thousands of concurrent threads

Easily the most computationally intense workload on PCs

Huge economies of scale

G
F

lo
p

s

© NVIDIA Corporation 2008 5

Enter CUDA

Compute Unified Device Architecture

Co-designed hardware and software to expose the
computational horsepower of NVIDIA GPUs for GPU
computing

Software

Small set of extensions to C language

Low learning curve

Hardware

Shared memory – scalable thread cooperation

© NVIDIA Corporation 2008 6

CUDA Programming Model:
A Highly Multithreaded Coprocessor

The GPU is a compute device
serves as a coprocessor for the host CPU

has its own device memory on the card

executes many threads in parallel

Parallel kernels run a single program in many
threads

GPU threads are extremely lightweight
Thread creation and context switching are essentially free

GPU expects 1000’s of threads for full utilization

© NVIDIA Corporation 2008 7

GPU Computing Example Markets

Computational

Modeling

Computational

Chemistry

Computational

Medicine

Computational

Science

Computational

Biology

Computational

Finance

Computational

Geoscience

Image

Processing

© NVIDIA Corporation 2008 8

GPU Computing Sweet Spots

Applications:

High arithmetic intensity:

Dense linear algebra, PDEs, n-body, finite difference, …

High bandwidth:
Sequencing (virus scanning, genomics), sorting,
database…

Visual computing:
Graphics, image processing, tomography, machine
vision…

© NVIDIA Corporation 2008 9

Application Speedups

Isotropic turbulence simulation in
Matlab

Astrophysics nbody simulation

Cmatch exact string matching to
find similar proteins and gene

sequences

Interactive visualization of
volumetric white matter

connectivity

Financial simulation of LIBOR
Model with swaptions

Highly optimized object
oriented molecular dynamics

CUDA Programming Model Overview

© NVIDIA Corporation 2008 11

Some Design Goals

Scale to 100’s of cores, 1000’s of parallel threads

Let programmers focus on parallel algorithms

not mechanics of a parallel programming language.

Enable heterogeneous systems (i.e., CPU+GPU)

CPU & GPU are separate devices with separate DRAMs

© NVIDIA Corporation 2008 12

CUDA Kernels and Threads

Parallel portions of an application are executed on
the device as kernels

One kernel is executed at a time

Many threads execute each kernel

Differences between CUDA and CPU threads
CUDA threads are extremely lightweight

Very little creation overhead

Instant switching

CUDA uses 1000s of threads to achieve efficiency
Multi-core CPUs can use only a few

Definitions:
Device = GPU; Host = CPU

Kernel = function called from the host that runs on the device

© NVIDIA Corporation 2008 13

Arrays of Parallel Threads

A CUDA kernel is executed by an array of threads
All threads run the same code

Each thread has an ID that it uses to compute memory
addresses and make control decisions

76543210

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

© NVIDIA Corporation 2008 14

Thread Cooperation

The Missing Piece: threads may need to cooperate

Thread cooperation is valuable

Share results to avoid redundant computation

Share memory accesses

Drastic bandwidth reduction

Thread cooperation is a powerful feature of CUDA

Cooperation between a monolithic array of threads
is not scalable

Cooperation within smaller batches of threads is scalable

© NVIDIA Corporation 2008 15

Kernel launches a grid of thread blocks

Threads within a block cooperate via shared memory

Threads in different block cannot cooperate

Allows programs to transparently scale to different
GPUs

Grid

Thread Batching

Thread Block 0

Shared Memory

Thread Block 1

Shared Memory

Thread Block N-1

Shared Memory

…

© NVIDIA Corporation 2008 16

Transparent Scalability

Hardware is free to schedule thread blocks
on any processor

A kernel scales across parallel multiprocessors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

© NVIDIA Corporation 2008 17

Data Decomposition

Often want each thread in kernel to access a
different element of an array

Each thread has access to:

threadIdx.x - thread ID within block

blockIdx.x - block ID within grid

blockDim.x - number of threads per block

Grid

0

0 1 2 3 4

1

0 1 2 3 4

2

0 1 2 3 4

blockIdx.x

blockDim.x = 5

threadIdx.x

blockIdx.x*blockDim.x
+ threadIdx.x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

© NVIDIA Corporation 2008 18

Multidimensional IDs

Block ID: 1D or 2D

Thread ID: 1D, 2D, or 3D

Simplifies memory
addressing when processing
multidimensional data

Image processing

Solving PDEs on volumes

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

© NVIDIA Corporation 2008 19

CUDA Programming Model

A kernel is executed by a
grid of thread blocks

A thread block is a batch
of threads that can
cooperate with each
other by:

Sharing data through
shared memory

Synchronizing their
execution

Threads from different
blocks cannot cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

© NVIDIA Corporation 2008 20

Processors execute computing threads

Thread Execution Manager issues threads

128 Thread Processors grouped into 16 multiprocessors (SMs)

Parallel Data Cache enables thread cooperation

G80 Device

Thread Execution Manager

Input Assembler

Host

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

© NVIDIA Corporation 2008 21

Kernel Memory Access

Registers

Global Memory
Kernel input and output data reside here
Off-chip, large
Uncached

Shared Memory
Shared among threads in a single block
On-chip, small
As fast as registers

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

The host can read & write global memory but not shared memory

© NVIDIA Corporation 2008 22

Execution Model

Kernels are launched in grids

One kernel executes at a time

A block executes on one multiprocessor

Does not migrate

Several blocks can reside concurrently on one
multiprocessor

Number is limited by multiprocessor resources

Register file is partitioned among all resident threads

Shared memory is partitioned among all resident thread
blocks

© NVIDIA Corporation 2008 23

CUDA Advantages over Legacy GPGPU

Random access byte-addressable memory

Thread can access any memory location

Unlimited access to memory

Thread can read/write as many locations as needed

Shared memory (per block) and thread
synchronization

Threads can cooperatively load data into shared memory

Any thread can then access any shared memory location

Low learning curve

Just a few extensions to C

No knowledge of graphics is required

© NVIDIA Corporation 2008 24

CUDA Model Summary

Thousands of lightweight concurrent threads
No switching overhead

Hide instruction and memory latency

Shared memory
User-managed data cache

Thread communication / cooperation within blocks

Random access to global memory
Any thread can read/write any location(s)

Memory Location Cached Access Scope (“Who?”)

Shared On-chip N/A Read/write All threads in a block

Global Off-chip No Read/write All threads + host

CUDA Programming

The Basics

© NVIDIA Corporation 2008 26

Outline of CUDA Basics

Basics to set up and execute GPU code:

GPU memory management

GPU kernel launches

Some specifics of GPU code

Some additional features:

Vector types

Synchronization

Checking CUDA errors

NOTE: only the basic features are covered

See the Programming Guide for many more API functions

More in Optimization section

© NVIDIA Corporation 2008 27

Managing Memory

CPU and GPU have separate memory spaces

Host (CPU) code manages device (GPU) memory:

Allocate / free

Copy data to and from device

Applies to global device memory (DRAM)

© NVIDIA Corporation 2008 28

GPU Memory Allocation / Release

cudaMalloc(void ** pointer, size_t nbytes)

cudaMemset(void * pointer, int value, size_t count)

cudaFree(void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int *d_a = 0;

cudaMalloc((void**)&d_a, nbytes);

cudaMemset(d_a, 0, nbytes);

cudaFree(d_a);

© NVIDIA Corporation 2008 29

Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes,
enum cudaMemcpyKind direction);
direction specifies locations (host or device) of src and
dst

Blocks CPU thread: returns after the copy is complete

Doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind
cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

© NVIDIA Corporation 2008 30

CUDA Exercises

We have provided skeletons and solutions for
hands-on CUDA exercises

In each exercise, you have to implement the
missing portions of the code

Finished when you compile and run the program and get
the output “Correct!”

Solutions are included in the “solution” folder of
each exercise

© NVIDIA Corporation 2008 31

Compiling the Code: Windows

Open the <project>.sln file in Microsoft Visual
Studio

Build the project

Four configuration choices:

Release,Debug,EmuRelease, EmuDebug

To debug your code build EmuDebug configuration

Can set breakpoints inside kernels (__global__ or
__device__ functions)

Can debug the code as normal, even printf!

One CPU thread per GPU thread

Threads not actually in parallel on GPU

© NVIDIA Corporation 2008 32

Compiling the Code: Linux

nvcc <filename>.cu [-o <executable>]
Builds release mode

nvcc –g <filename>.cu
Builds debug (device) mode

Can debug host code but not device code (runs on GPU)

nvcc –deviceemu <filename>.cu
Builds device emulation mode

All code runs on CPU, but no debug symbols

nvcc –deviceemu –g <filename>.cu
Builds debug device emulation mode

All code runs on CPU, with debug symbols

Debug using gdb or other linux debugger

© NVIDIA Corporation 2008 33

Exercise 1: Copying between host
and device

Start from the “cudaMallocAndMemcpy” template.

Part1: Allocate memory for pointers d_a and d_b on the device.

Part2: Copy h_a on the host to d_a on the device.

Part3: Do a device to device copy from d_a to d_b.

Part4: Copy d_b on the device back to h_a on the host.

Part5: Free d_a and d_b on the host.

© NVIDIA Corporation 2008 34

Executing Code on the GPU

Kernels are C functions with some restrictions

Can only access GPU memory
Must have void return type
No variable number of arguments (“varargs”)
Not recursive
No static variables

Function arguments automatically copied from CPU
to GPU memory

© NVIDIA Corporation 2008 35

Function Qualifiers

__global__ : invoked from within host (CPU) code,
cannot be called from device (GPU) code
must return void

__device__ : called from other GPU functions,
cannot be called from host (CPU) code

__host__ : can only be executed by CPU, called from host

__host__ and __device__ qualifiers can be combined
Sample use: overloading operators
Compiler will generate both CPU and GPU code

© NVIDIA Corporation 2008 36

Launching kernels

Modified C function call syntax:

kernel<<<dim3 grid, dim3 block>>>(…)

Execution Configuration (“<<< >>>”):

grid dimensions: x and y

thread-block dimensions: x, y, and z

dim3 grid(16, 16);

dim3 block(16,16);

kernel<<<grid, block>>>(...);

kernel<<<32, 512>>>(...);

© NVIDIA Corporation 2008 37

CUDA Built-in Device Variables

All __global__ and __device__ functions have
access to these automatically defined variables

dim3 gridDim;

Dimensions of the grid in blocks (at most 2D)

dim3 blockDim;

Dimensions of the block in threads

dim3 blockIdx;

Block index within the grid

dim3 threadIdx;

Thread index within the block

© NVIDIA Corporation 2008 38

Minimal Kernels

__global__ void minimal(int* d_a)

{

*d_a = 13;

}

__global__ void assign(int* d_a, int value)

{

int idx = blockDim.x * blockIdx.x + threadIdx.x;

d_a[idx] = value;

}
Common Pattern!

© NVIDIA Corporation 2008 39

Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4 -> 4 blocks

blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3

blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7

blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11

blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;
will map from local index threadIdx to global index

NB: blockDim should be >= 32 in real code, this is just an example

© NVIDIA Corporation 2008 40

Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)

{

for (int idx = 0; idx<N; idx++)

a[idx] = a[idx] + b;

}

void main()

{

.....

increment_cpu(a, b, N);

}

__global__ void increment_gpu(float *a, float b, int N)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < N)

a[idx] = a[idx] + b;

}

void main()

{

…

dim3 dimBlock (blocksize);

dim3 dimGrid(ceil(N / (float)blocksize));

increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

}

© NVIDIA Corporation 2008 41

Minimal Kernel for 2D data

__global__ void assign2D(int* d_a, int w, int h, int value)

{

int iy = blockDim.y * blockIdx.y + threadIdx.y;

int ix = blockDim.x * blockIdx.x + threadIdx.x;

int idx = iy * w + ix;

d_a[idx] = value;

}

...

assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);

© NVIDIA Corporation 2008 42

Host Synchronization

All kernel launches are asynchronous

control returns to CPU immediately

kernel executes after all previous CUDA calls have
completed

cudaMemcpy() is synchronous

control returns to CPU after copy completes

copy starts after all previous CUDA calls have completed

cudaThreadSynchronize()

blocks until all previous CUDA calls complete

© NVIDIA Corporation 2008 43

Example: Host Code
// allocate host memory

int numBytes = N * sizeof(float)

float* h_A = (float*) malloc(numBytes);

// allocate device memory

float* d_A = 0;

cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device

cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel

increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host

cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory

cudaFree(d_A);

© NVIDIA Corporation 2008 44

Exercise 2: Launching kernels

Start from the “myFirstKernel” template.

Part1: Allocate device memory for the result of the kernel
using pointer d_a.

Part2: Configure and launch the kernel using a 1-D grid of 1-D
thread blocks.

Part3: Have each thread set an element of d_a as follows:

idx = blockIdx.x*blockDim.x + threadIdx.x

d_a[idx] = 1000*blockIdx.x + threadIdx.x

Part4: Copy the result in d_a back to the host pointer h_a.

Part5: Verify that the result is correct.

© NVIDIA Corporation 2008 45

Variable Qualifiers (GPU code)

__device__
Stored in device memory (large, high latency, no cache)
Allocated with cudaMalloc (__device__ qualifier implied)
Accessible by all threads
Lifetime: application

__shared__
Stored in on-chip shared memory (very low latency)
Allocated by execution configuration or at compile time
Accessible by all threads in the same thread block
Lifetime: kernel execution

Unqualified variables:
Scalars and built-in vector types are stored in registers
Arrays of more than 4 elements stored in device memory

© NVIDIA Corporation 2008 46

Using shared memory

Size known at compile time

__global__ void kernel(…)
{

…
__shared__ float sData[256];
…

}

int main(void)
{

…
kernel<<<nBlocks,blockSize>>>(…);
…

}

Size known at kernel launch

__global__ void kernel(…)
{

…
extern __shared__ float sData[];
…

}

int main(void)
{

…
smBytes = blockSize*sizeof(float);
kernel<<<nBlocks, blockSize,

smBytes>>>(…);
…

}

© NVIDIA Corporation 2008 47

Built-in Vector Types

Can be used in GPU and CPU code

[u]char[1..4], [u]short[1..4], [u]int[1..4],
[u]long[1..4], float[1..4]

Structures accessed with x, y, z, w fields:

uint4 param;

int y = param.y;

dim3

Based on uint3

Used to specify dimensions

Default value (1,1,1)

© NVIDIA Corporation 2008 48

GPU Thread Synchronization

void __syncthreads();

Synchronizes all threads in a block

Generates barrier synchronization instruction

No thread can pass this barrier until all threads in the
block reach it

Used to avoid RAW / WAR / WAW hazards when
accessing shared memory

Allowed in conditional code only if the conditional is
uniform across the entire thread block

© NVIDIA Corporation 2008 49

GPU Atomic Integer Operations

Requires hardware with compute capability 1.1

G80 = Compute capability 1.0

G84/G86/G92 = Compute capability 1.1

Atomic operations on integers in global memory:

Associative operations on signed/unsigned ints

add, sub, min, max, ...

and, or, xor

Increment, decrement

Exchange, compare and swap

© NVIDIA Corporation 2008 50

CUDA Error Reporting to CPU

All CUDA calls return error code:

Except for kernel launches

cudaError_t type

cudaError_t cudaGetLastError(void)

Returns the code for the last error (no error has a code)

Can be used to get error from kernel execution

char* cudaGetErrorString(cudaError_t code)

Returns a null-terminated character string describing the
error

printf(“%s\n”, cudaGetErrorString(cudaGetLastError()));

© NVIDIA Corporation 2008 51

Exercise 3: Reverse Array (single
block)

Given an input array {a0, a1, …, an-1} in pointer d_a, store the
reversed array {an-1, an-2, …, a0} in pointer d_b

Start from the “reverseArray_singleblock” template

Only one thread block launched, to reverse an array of size
N = numThreads = 256 elements

Part 1 (of 1): All you have to do is implement the body of the
kernel “reverseArrayBlock()”

Each thread moves a single element to reversed position
Read input from d_a pointer
Store output in reversed location in d_b pointer

© NVIDIA Corporation 2008 52

Exercise 4: Reverse Array
(multiblock)

Given an input array {a0, a1, …, an-1} in pointer d_a, store the
reversed array {an-1, an-2, …, a0} in pointer d_b

Start from the “reverseArray_multiblock” template

Multiple 256-thread blocks launched
To reverse an array of size N, N/256 blocks

Part 1: Compute the number of blocks to launch

Part 2: Implement the kernel reverseArrayBlock()

Note that now you must compute both
The reversed location within the block
The reversed offset to the start of the block

© NVIDIA Corporation 2008 53

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target

Compiler

G80 … GPU

Target code

PTX Code Virtual

Physical

CPU Code

© NVIDIA Corporation 2008 54

NVCC & PTX Virtual Machine

EDG
Separate GPU vs. CPU code

Open64
Generates GPU PTX
assembly

Parallel Thread eXecution
(PTX)

Virtual Machine and ISA

Programming model

Execution resources and
state

EDG

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;

© NVIDIA Corporation 2008 55

Compilation

Any source file containing CUDA language
extensions must be compiled with nvcc

NVCC is a compiler driver
Works by invoking all the necessary tools and compilers
like cudacc, g++, cl, ...

NVCC can output:
Either C code (CPU Code)

That must then be compiled with the rest of the application using another tool

Or PTX object code directly

An executable with CUDA code requires:
The CUDA core library (cuda)

The CUDA runtime library (cudart)

if runtime API is used

loads cuda library

Performance Optimization

© NVIDIA Corporation 2008 5757

Outline

Overview

G8x Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

© NVIDIA Corporation 2008 5858

Optimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache

GPU spends its transistors on ALUs, not memory

Do more computation on the GPU to avoid costly
data transfers

Even low parallelism computations can sometimes be
faster than transferring back and forth to host

© NVIDIA Corporation 2008 5959

Optimize Memory Access

Coalesced vs. Non-coalesced = order of magnitude

Global/Local device memory

Optimize for spatial locality in cached texture
memory

In shared memory, avoid high-degree bank conflicts

© NVIDIA Corporation 2008 6060

Take Advantage of Shared Memory

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Use one / a few threads to load / compute data
shared by all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

Matrix transpose SDK example

© NVIDIA Corporation 2008 6161

Use Parallelism Efficiently

Partition your computation to keep the GPU
multiprocessors equally busy

Many threads, many thread blocks

Keep resource usage low enough to support
multiple active thread blocks per multiprocessor

Registers, shared memory

G8x Hardware

© NVIDIA Corporation 2008 6363

Terminology

Thread: concurrent code and associated state executed on the
CUDA device (in parallel with other threads)

The unit of parallelism in CUDA

Note difference from CPU threads: creation cost, resource
usage, and switching cost of GPU threads is much smaller

Warp: a group of threads executed physically in parallel
(SIMD)

Half-warp: the first or second half of a warp of threads

Thread Block: a group of threads that are executed together
and can share memory on a single multiprocessor

Grid: a group of thread blocks that execute a single CUDA
kernel logically in parallel on a single GPU

© NVIDIA Corporation 2008 6464

Processors execute computing threads

Thread Execution Manager issues threads

128 Thread Processors

Parallel Data Cache accelerates processing

G80 Device

Thread Execution Manager

Input Assembler

Host

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

Parallel
Data

Cache

Parallel
Data

Cache

TPC

© NVIDIA Corporation 2008 6565

Texture Processor Cluster (TPC)

TPC TPC TPC TPC TPC TPC TPC TPC

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor Cluster Streaming Multiprocessor (SM)

SM

Shared Memory

© NVIDIA Corporation 2008 6666

Memory Architecture

The global, constant, and
texture spaces are regions of
device memory

Each multiprocessor has:

A set of 32-bit registers per
processor

On-chip shared memory

Where the shared memory
space resides

A read-only constant cache

To speed up access to the
constant memory space

A read-only texture cache

To speed up access to the
texture memory space

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Memory Optimizations

© NVIDIA Corporation 2008 6868

Memory optimizations

Optimizing host-device
data transfers

Coalescing global data
accesses

Using shared memory
effectively

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Host

© NVIDIA Corporation 2008 69

Host-Device Data Transfers

Device memory to host memory bandwidth much
lower than device memory to device bandwidth

4GB/s peak (PCI-e x16 Gen 1) vs. 76 GB/s peak (Tesla
C870)

Minimize transfers

Intermediate data structures can be allocated, operated
on, and deallocated without ever copying them to host
memory

Group transfers

One large transfer much better than many small ones

69

© NVIDIA Corporation 2008 7070

Page-Locked Data Transfers

cudaMallocHost() allows allocation of page-locked
(“pinned”) host memory

Enables highest cudaMemcpy performance
3.2 GB/s on PCI-e x16 Gen1

5.2 GB/s on PCI-e x16 Gen2

See the “bandwidthTest” CUDA SDK sample

Use with caution!!
Allocating too much page-locked memory can reduce
overall system performance

Test your systems and apps to learn their limits

© NVIDIA Corporation 2008 7171

Asynchronous memory copy

Asynchronous host-device memory copy for pinned
memory (allocated with “cudaMallocHost” in C)
frees up CPU on all CUDA capable devices

Overlap implemented by using a stream

Stream = Sequence of operations that execute in
order

Stream API:

0 = default stream

cudaMemcpyAsync(dst, src, size, direction, 0);

© NVIDIA Corporation 2008 7272

Overlap kernel and memory copy

Concurrent execution of a kernel and a host ��������

device memory copy for pinned memory

Devices with compute capability >= 1.1 (G84 and up)

Available as a preview feature in CUDA toolkit v1.1

Overlaps kernel execution in one stream with a memory
copy from another stream

Stream API:
cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

cudaStreamQuery(stream2); overlapped

© NVIDIA Corporation 2008 7373

Global and Shared Memory

Global memory not cached on G8x GPUs

High latency, but launching more threads hides latency

Important to minimize accesses

Coalesce global memory accesses (more later)

Shared memory is on-chip, very high bandwidth

Low latency

Like a user-managed per-multiprocessor cache

Try to minimize or avoid bank conflicts (more later)

© NVIDIA Corporation 2008 7474

Texture and Constant Memory

Texture partition is cached

Uses the texture cache also used for graphics

Optimized for 2D spatial locality

Best performance when threads of a warp read locations
that are close together in 2D

Constant memory is cached

4 cycles per address read within a single warp

Total cost 4 cycles if all threads in a warp read same address

Total cost 64 cycles if all threads read different addresses

© NVIDIA Corporation 2008 7575

Global Memory Reads/Writes

Global memory is not cached on G8x

Highest latency instructions: 400-600 clock cycles

Likely to be a performance bottleneck

Optimizations can greatly increase performance

© NVIDIA Corporation 2008 7676

Loading and storing global memory

Use -ptx flag of nvcc to inspect instructions:

ld.global.f32 $f1, [$rd4+0]; // id:74
…
st.global.f32 [$rd4+0], $f2; // id:75
…
ld.global.v2.f32 {$f3,$f5}, [$rd7+0]; //
…
st.global.v2.f32 [$rd7+0], {$f4,$f6}; //
…
ld.global.v4.f32 {$f7,$f9,$f11,$f13}, [$rd10+0]; //
…
st.global.v4.f32 [$rd10+0], {$f8,$f10,$f12,$f14}; //

4 byte load and store

8 byte load and store

16 byte load and store

© NVIDIA Corporation 2008 7777

Coalescing

A coordinated read by a half-warp (16 threads)

A contiguous region of global memory:

64 bytes - each thread reads a word: int, float, …

128 bytes - each thread reads a double-word: int2, float2, …

256 bytes – each thread reads a quad-word: int4, float4, …

Additional restrictions:

Starting address for a region must be a multiple of region
size

The kth thread in a half-warp must access the kth element in a
block being read

Exception: not all threads must be participating

Predicated access, divergence within a halfwarp

© NVIDIA Corporation 2008 7878

Coalesced Access:
Reading floats

t0 t1 t2 t14 t15t3

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

132 136 184 192128 140 144 188

Some Threads Do Not Participate

All threads participate

© NVIDIA Corporation 2008 7979

Uncoalesced Access:
Reading floats

t0 t1 t2 t14 t15t3

132 136128 140 144

Permuted Access by Threads

184 192188

Misaligned Starting Address (not a multiple of 64)

t0 t1 t2 t13 t15t3

132 136 184 192128 140 144 188

t14

© NVIDIA Corporation 2008 8080

Coalescing:
Timing Results

Experiment:

Kernel: read a float, increment, write back

3M floats (12MB)

Times averaged over 10K runs

12K blocks x 256 threads:

356µs – coalesced

357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access

© NVIDIA Corporation 2008 8181

Hands On: Array Reversal Revisited

Considering the limitations on memory coalescing,
analyze the data access patterns in your
implementation.

What, if anything, could be done to improve the data
access pattern?

© NVIDIA Corporation 2008 8282

Uncoalesced float3 Code

__global__ void accessFloat3(float3 *d_in, float3 d_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d_in[index];

a.x += 2;
a.y += 2;
a.z += 2;

d_out[index] = a;
}

© NVIDIA Corporation 2008 8383

Uncoalesced Access:
float3 Case

float3 is 12 bytes

Each thread ends up executing 3 reads

sizeof(float3) ≠ 4, 8, or 16

Half-warp reads three 64B non-contiguous regions

t0 t1 t2 t3

First read

float3 float3 float3

© NVIDIA Corporation 2008 8484

Coalescing float3 Access

t255t2t1t0

GMEM

SMEM

SMEM

t2t1t0

…

… …

S
te

p
 2

S
te

p
 1

…

…

…

Similarly, Step3 starting at offset 512

© NVIDIA Corporation 2008 8585

Coalesced Access:
float3 Case

Use shared memory to allow coalescing

Need sizeof(float3)*(threads/block) bytes of SMEM

Each thread reads 3 scalar floats:

Offsets: 0, (threads/block), 2*(threads/block)

These will likely be processed by other threads, so sync

Processing

Each thread retrieves its float3 from SMEM array

Cast the SMEM pointer to (float3*)

Use thread ID as index

Rest of the compute code does not change!

© NVIDIA Corporation 2008 8686

Coalesced float3 Code

__global__ void accessInt3Shared(float *g_in, float *g_out)
{

int index = 3 * blockIdx.x * blockDim.x + threadIdx.x;
__shared__ float s_data[256*3];
s_data[threadIdx.x] = g_in[index];
s_data[threadIdx.x+256] = g_in[index+256];
s_data[threadIdx.x+512] = g_in[index+512];
__syncthreads();
float3 a = ((float3*)s_data)[threadIdx.x];

a.x += 2;
a.y += 2;
a.z += 2;

((float3*)s_data)[threadIdx.x] = a;
__syncthreads();
g_out[index] = s_data[threadIdx.x];
g_out[index+256] = s_data[threadIdx.x+256];
g_out[index+512] = s_data[threadIdx.x+512];

}

Compute code
is not changed

Read the input
through SMEM

Write the result
through SMEM

© NVIDIA Corporation 2008 8787

Coalescing:
Timing Results

Experiment:

Kernel: read a float, increment, write back

3M floats (12MB)

Times averaged over 10K runs

12K blocks x 256 threads reading floats:

356µs – coalesced

357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access

4K blocks x 256 threads reading float3s:

3,302µs – float3 uncoalesced

359µs – float3 coalesced through shared memory

© NVIDIA Corporation 2008 8888

Coalescing:
Structures of size ≠ 4, 8, or 16 Bytes

Use a Structure of Arrays (SoA) instead of Array of Structures (AoS)

If SoA is not viable:

Force structure alignment: __align(X), where X = 4, 8, or 16

Use SMEM to achieve coalescing

x y z Point structure

x y z x y z x y z AoS

x x x y y y z z z SoA

© NVIDIA Corporation 2008 8989

Coalescing:
Summary

Coalescing greatly improves throughput

Critical to memory-bound kernels

Reading structures of size other than 4, 8, or 16
bytes will break coalescing:

Prefer Structures of Arrays over AoS

If SoA is not viable, read/write through SMEM

Additional resources:

Aligned Types SDK Sample

© NVIDIA Corporation 2008 9090

Profiler Signals

Events are tracked with hardware counters on signals in the chip:

timestamp

gld_incoherent
gld_coherent
gst_incoherent
gst_coherent

local_load
local_store

branch
divergent_branch

instructions – instruction count

warp_serialize – thread warps that serialize on address conflicts to
shared or constant memory

cta_launched – executed thread blocks

Global memory loads/stores are coalesced
(coherent) or non-coalesced (incoherent)

Total branches and divergent branches
taken by threads

Local loads/stores

© NVIDIA Corporation 2008 9191

Profiler control

CUDA_PROFILE – set to 1 or 0 to enable or disable
the profiler

CUDA_PROFILE_LOG – set to the name of the log
file (will default to ./cuda_profile.log)

CUDA_PROFILE_CSV – set to 1 or 0 to enable or
disable a comma separated version of the log

CUDA_PROFILE_CONFIG – specify a config file with
up to 4 signals

© NVIDIA Corporation 2008 9292

Interpreting profiler counters

Values represent events within a thread warp

Only targets one multiprocessor
Values will not correspond to the total number of warps
launched for a particular kernel.

Launch enough thread blocks to ensure that the target
multiprocessor is given a consistent percentage of the total
work.

Values are best used to identify relative performance
differences between unoptimized and optimized code

e.g., make the number of non-coalesced loads go from
some non-zero value to zero

© NVIDIA Corporation 2008 9393

Visual Profiler

© NVIDIA Corporation 2008 9494

Hands On: Using the Profiler

Use the profiler (either command line and text
configuration files or the visual interface) to confirm
the analysis of the data access patterns for your in-
place array reversal implementation.

© NVIDIA Corporation 2008 9595

Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

See “Matrix Transpose” SDK example

© NVIDIA Corporation 2008 9696

Parallel Memory Architecture

Many threads accessing memory

Therefore, memory is divided into banks

Essential to achieve high bandwidth

Each bank can service one address per cycle

A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

© NVIDIA Corporation 2008 9797

Bank Addressing Examples

No Bank Conflicts

Linear addressing
stride == 1

No Bank Conflicts

Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© NVIDIA Corporation 2008 9898

Bank Addressing Examples

2-way Bank Conflicts

Linear addressing
stride == 2

8-way Bank Conflicts

Linear addressing
stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0

x8

x8

© NVIDIA Corporation 2008 9999

Shared memory bank conflicts

Shared memory is as fast as registers if there are no bank
conflicts

Use the bank checker macro in the SDK to check for conflicts

warp_serialize signal can usually be used to check for conflicts

The fast case:

If all threads of a half-warp access different banks, there is no
bank conflict

If all threads of a half-warp read the identical address, there is no
bank conflict (broadcast)

The slow case:

Bank Conflict: multiple threads in the same half-warp access the
same bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank

© NVIDIA Corporation 2008 100100

Hands On: Array Reversal
Performance

Improve your array reversal code to access global
memory with coalesced loads and stores by using
shared memory.

© NVIDIA Corporation 2008 101

Textures in CUDA

Texture is an object for reading data

Benefits:
Data is cached (optimized for 2D locality)

Helpful when coalescing is a problem

Filtering
Linear / bilinear / trilinear
dedicated hardware

Wrap modes (for “out-of-bounds” addresses)
Clamp to edge / repeat

Addressable in 1D, 2D, or 3D
Using integer or normalized coordinates

Usage:
CPU code binds data to a texture object
Kernel reads data by calling a fetch function

101

© NVIDIA Corporation 2008 102

Texture Addressing

Wrap

Out-of-bounds coordinate is
wrapped (modulo arithmetic)

Clamp

Out-of-bounds coordinate is
replaced with the closest
boundary

102

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

0 1 2 3 4

1

2

3

0
(2.5, 0.5)
(1.0, 1.0)

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

© NVIDIA Corporation 2008 103103

Two CUDA Texture Types

Bound to linear memory
Global memory address is bound to a texture
Only 1D
Integer addressing
No filtering, no addressing modes

Bound to CUDA arrays
CUDA array is bound to a texture
1D, 2D, or 3D
Float addressing (size-based or normalized)
Filtering
Addressing modes (clamping, repeat)

Both:
Return either element type or normalized float

© NVIDIA Corporation 2008 104104

CUDA Texturing Steps

Host (CPU) code:

Allocate/obtain memory (global linear, or CUDA array)

Create a texture reference object

Currently must be at file-scope

Bind the texture reference to memory/array

When done:

Unbind the texture reference, free resources

Device (kernel) code:

Fetch using texture reference

Linear memory textures:

tex1Dfetch()

Array textures:

tex1D() or tex2D() or tex3D()

Execution Configuration Optimizations

© NVIDIA Corporation 2008 106106

Occupancy

Thread instructions are executed sequentially, so
executing other warps is the only way to hide
latencies and keep the hardware busy

Occupancy = Number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

Limited by resource usage:

Registers

Shared memory

© NVIDIA Corporation 2008 107107

Grid/Block Size Heuristics

of blocks > # of multiprocessors

So all multiprocessors have at least one block to execute

of blocks / # of multiprocessors > 2

Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the
hardware busy

Subject to resource availability – registers, shared memory

of blocks > 100 to scale to future devices

Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations

© NVIDIA Corporation 2008 108108

Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~11 cycles later

Scenarios: CUDA: PTX:

To completely hide the latency:
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy

Threads do not have to belong to the same thread block

add.f32 $f3, $f1, $f2

add.f32 $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32 $f3, [$r31+0]

add.f32 $f3, $f3, $f4

s_data[0] += 3;

© NVIDIA Corporation 2008 109109

Register Pressure

Hide latency by using more threads per SM

Limiting Factors:

Number of registers per kernel

8192 per SM, partitioned among concurrent threads

Amount of shared memory

16KB per SM, partitioned among concurrent threadblocks

Compile with –ptxas-options=-v flag

Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel

At some point “spilling” into LMEM may occur

Reduces performance – LMEM is slow

© NVIDIA Corporation 2008 110110

Determining resource usage

Compile the kernel code with the -cubin flag to
determine register usage.

Open the .cubin file with a text editor and look for
the “code” section.

architecture {sm_10}
abiversion {0}
modname {cubin}
code {

name = BlackScholesGPU
lmem = 0
smem = 68
reg = 20
bar = 0
bincode {

0xa0004205 0x04200780 0x40024c09 0x00200780
…

per thread local memory

per thread block shared memory

per thread registers

© NVIDIA Corporation 2008 111111

CUDA Occupancy Calculator

© NVIDIA Corporation 2008 112112

Optimizing threads per block

Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps

More threads per block == better memory latency
hiding

But, more threads per block == fewer registers per
thread

Kernel invocations can fail if too many registers are used

Heuristics

Minimum: 64 threads per block

Only if multiple concurrent blocks

192 or 256 threads a better choice

Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!

© NVIDIA Corporation 2008 113113

Occupancy != Performance

Increasing occupancy does not necessarily
increase performance

BUT…

Low-occupancy multiprocessors cannot adequately
hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available
parallelism)

© NVIDIA Corporation 2008 114114

Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
of multiprocessors

Memory bandwidth

Shared memory size

Register file size

Max. threads per block

You can even make apps self-tuning (like FFTW and
ATLAS)

“Experiment” mode discovers and saves optimal
configuration

Instruction Optimizations

© NVIDIA Corporation 2008 116116

CUDA Instruction Performance

Instruction cycles (per warp) = sum of

Operand read cycles

Instruction execution cycles

Result update cycles

Therefore instruction throughput depends on

Nominal instruction throughput

Memory latency

Memory bandwidth

“Cycle” refers to the multiprocessor clock rate

1.35 GHz on the Tesla C870, for example

© NVIDIA Corporation 2008 117117

Maximizing Instruction Throughput

Maximize use of high-bandwidth memory

Maximize use of shared memory

Minimize accesses to global memory

Maximize coalescing of global memory accesses

Optimize performance by overlapping memory
accesses with HW computation

High arithmetic intensity programs

i.e. high ratio of math to memory transactions

Many concurrent threads

© NVIDIA Corporation 2008 118118

Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad:
4 cycles per warp

int multiply (*) is by default 32-bit

requires multiple cycles / warp

Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int
multiply

Integer divide and modulo are more expensive

Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor
is a power of 2!

Useful trick: foo % n == foo & (n-1) if n is a power of 2

© NVIDIA Corporation 2008 119119

Arithmetic Instruction Throughput

The intrinsics reciprocal, reciprocal square root,
sin/cos, log, exp prefixed with “__” 16 cycles per
warp

Examples: __rcp(), __sin(), __exp()

Other functions are combinations of the above

y / x == rcp(x) * y takes 20 cycles per warp

sqrt(x) == x * rsqrt(x) takes 20 cycles per warp

© NVIDIA Corporation 2008 120120

Runtime Math Library

There are two types of runtime math operations

__func(): direct mapping to hardware ISA
Fast but lower accuracy (see prog. guide for details)

Examples: __sin(x), __exp(x), __pow(x,y)

func() : compile to multiple instructions
Slower but higher accuracy (5 ulp or less)

Examples: sin(x), exp(x), pow(x,y)

The -use_fast_math compiler option forces every
func() to compile to __func()

© NVIDIA Corporation 2008 121121

GPU results may not match CPU

Many variables: hardware, compiler, optimization
settings

CPU operations aren’t strictly limited to 0.5 ulp

Sequences of operations can be more accurate due to 80-
bit extended precision ALUs

Floating-point arithmetic is not associative!

© NVIDIA Corporation 2008 122122

FP Math is Not Associative!

In symbolic math, (x+y)+z == x+(y+z)

This is not necessarily true for floating-point
addition

Try x = 1030, y = -1030 and z = 1 in the above equation

When you parallelize computations, you potentially
change the order of operations

Parallel results may not exactly match sequential
results

This is not specific to GPU or CUDA – inherent part of
parallel execution

© NVIDIA Corporation 2008 123123

Floating Point Characteristics

G8x SSE IBM Altivec Cell SPE

Format IEEE 754 IEEE 754 IEEE 754 IEEE 754

Rounding modes for
FADD and FMUL

Round to nearest and
round to zero

All 4 IEEE, round to
nearest, zero, inf, -inf

Round to nearest only
Round to zero/truncate
only

Denormal handling Flush to zero
Supported,
1000’s of cycles

Supported,
1000’s of cycles

Flush to zero

NaN support Yes Yes Yes No

Overflow and Infinity
support

Yes, only clamps to
max norm

Yes Yes No, infinity

Flags No Yes Yes Some

Square root Software only Hardware Software only Software only

Division Software only Hardware Software only Software only

Reciprocal estimate
accuracy

24 bit 12 bit 12 bit 12 bit

Reciprocal sqrt
estimate accuracy

23 bit 12 bit 12 bit 12 bit

log2(x) and 2^x
estimates accuracy

23 bit No 12 bit No

© NVIDIA Corporation 2008 124124

G8x Deviations from IEEE-754

Addition and Multiplication are IEEE compliant

Maximum 0.5 ulp error

However, often combined into multiply-add (FMAD)

Intermediate result is truncated

Division is non-compliant (2 ulp)

Not all rounding modes are supported

Denormalized numbers are not supported

No mechanism to detect floating-point exceptions

© NVIDIA Corporation 2008 125125

Make your program float-safe!

Future hardware will have double precision support

G8x is single-precision only

Double precision will have additional cost

Important to be float-safe to avoid using double
precision where it is not needed

Add ‘f’ specifier on float literals:

foo = bar * 0.123; // double assumed

foo = bar * 0.123f; // float explicit

Use float version of standard library functions

foo = sin(bar); // double assumed

foo = sinf(bar); // float explicit

© NVIDIA Corporation 2008 126126

Control Flow Instructions

Main performance concern with branching is
divergence

Threads within a single warp take different paths

Different execution paths must be serialized

Avoid divergence when branch condition is a
function of thread ID

Example with divergence:

if (threadIdx.x > 2) { }

Branch granularity < warp size

Example without divergence:

if (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size

© NVIDIA Corporation 2008 127127

Summary

GPU hardware can achieve great performance on
data-parallel computations if you follow a few
simple guidelines:

Use parallelism efficiently

Coalesce memory accesses if possible

Take advantage of shared memory

Explore other memory spaces
Texture

Constant

Reduce bank conflicts

CUDA Libraries

© NVIDIA Corporation 2008 129

Outline

CUDA includes 2 widely used libraries

CUBLAS: BLAS implementation

CUFFT: FFT implementation

© NVIDIA Corporation 2008 130

CUBLAS

Implementation of BLAS (Basic Linear Algebra
Subprograms) on top of CUDA driver

Self-contained at the API level, no direct interaction with
CUDA driver

Basic model for use

Create matrix and vector objects in GPU memory space

Fill objects with data

Call sequence of CUBLAS functions

Retrieve data from GPU

CUBLAS library contains helper functions

Creating and destroying objects in GPU space

Writing data to and retrieving data from objects

© NVIDIA Corporation 2008 131

Supported Features

Single precision BLAS functions

Real data

Level 1 (vector-vector O(N))

Level 2 (matrix-vector O(N2))

Level 3 (matrix-matrix O(N3))

Complex data

Level 1

CGEMM

Following BLAS convention, CUBLAS uses column-
major storage

© NVIDIA Corporation 2008 132

Using CUBLAS

Interface to CUBLAS library is in cublas.h

Function naming convention

cublas + BLAS name

Eg., cublasSGEMM

Error handling

CUBLAS core functions do not return error

CUBLAS provides function to retrieve last error recorded

CUBLAS helper functions do return error

Implemented using C-based CUDA tool chain

Interfacing to C/C++ applications is trivial

© NVIDIA Corporation 2008 133

CUBLAS performance

SGEMM performance

0

20

40

60

80

100

120

140

0 512 1024 1536 2048 2560

N

G
fl

o
p

s
GPU+I/O GPU+I/O Pinned GPU only

© NVIDIA Corporation 2008 134

cublasInit(), cublasShutdown()

cublasStatus cublasInit()

Initializes the CUBLAS library

Allocated hardware resources necessary for accessing
the GPU

Must be called prior to any other CUBLAS API function

cublasStatus cublasShutdown()
Releases CPU-side resources used by CUBLAS library

Release of GPU-side resources may be deferred until
application shuts down

© NVIDIA Corporation 2008 135

cublasGetError(), cublasAlloc(),
cublasFree()

cublasStatus cublasGetError()

Returns last error that occurred from any of the CUBLAS
core functions

Resets internal error state to CUBLAS_STATE_SUCCESS

cublasStatus cublasAlloc(int n, int elemSize,

void **devPtr)

Creates object in GPU memory for an array of n elements

Each element requires elemSize bytes of storage

Wrapper around cudaMalloc() so devPtr can be used
accordingly

cublasStatus cublasFree(const void *devPtr)

Destroys object in GPU space pointer to by devPtr

© NVIDIA Corporation 2008 136

cublasSetVector(), cublasGetVector()

cublasStatus cublasSetVector(int n, int elemSize, const void *x,

int incx, void *y, int incy)

Copies n elements from a vector x in CPU memory space to a
vector y in GPU memory space

Each element occupies elemSize bytes

Storage spacing between consecutive elements in arrays x and y
is incx and incy, respectively

cublasStatus cublasGetVector(int n, int elemSize, const void *x,

int incx, void *y, int incy)

Copies n elements from a vector x in GPU memory space to a
vector y in CPU memory space

© NVIDIA Corporation 2008 137

cublasSetMatrix(), cublasGetMatrix()

cublasStatus cublasSetMatrix(int rows, int cols, int elemSize,

const void *A, int lda, void *B, int ldb)

Copies a tile of rows*cols elements from a matrix A in CPU memory
space to a matrix B in GPU memory space

Each element occupies elemSize bytes

Both matrices stored in column-major format, with leading
dimensions of lda and ldb for matrices A and B, respectively

cublasStatus cublasGetMatrix(int rows, int cols, int elemSize,

const void *A, int lda, void *B, int ldb)

Copies a tile of rows*cols elements from a matrix A in GPU memory
space to a matrix B in CPU memory space

© NVIDIA Corporation 2008 138

Calling CUBLAS from FORTRAN

Fortran-to-C calling conventions are not standardized
and differ by platform and toolchain. Differences
may include:

symbol names (capitalization, name decoration)

argument passing (by value or reference)

passing of string arguments (length information)

passing of pointer arguments (size of the pointer)

returning floating-point or compound data types (for
example, single-precision or complex data type)

CUBLAS provides wrapper functions (in the file
fortran.c) that need to be compiled with the user
preferred toolchain

Providing source code allows users to make any changes
necessary for a particular platform and toolchain.

© NVIDIA Corporation 2008 139

Calling CUBLAS from FORTRAN

Two interfaces:
Thunking (define CUBLAS_USE_THUNKING when compiling fortran.c)

Allows interfacing to existing applications without any changes

During each call, the wrappers allocate GPU memory, copy source
data from CPU memory space to GPU memory space, call
CUBLAS, and finally copy back the results to CPU memory space
and deallocate the GPGPU memory

Intended for light testing due to call overhead

Non-Thunking (default)

Intended for production code

Substitute device pointers for vector and matrix arguments in all
BLAS functions

Existing applications need to be modified slightly to allocate and
deallocate data structures in GPGPU memory space (using
CUBLAS_ALLOC and CUBLAS_FREE) and to copy data between
GPU and CPU memory spaces (using CUBLAS_SET_VECTOR,
CUBLAS_GET_VECTOR, CUBLAS_SET_MATRIX, and
CUBLAS_GET_MATRIX)

© NVIDIA Corporation 2008 140

FORTRAN 77 Code example:

program matrixmod
implicit none
integer M, N
parameter (M=6, N=5)
real*4 a(M,N)
integer i, j

do j = 1, N
do i = 1, M

a(i,j) = (i-1) * M + j
enddo

enddo

call modify (a, M, N, 2, 3, 16.0, 12.0)

do j = 1, N
do i = 1, M

write(*,"(F7.0$)") a(i,j)
enddo
write (*,*) "”

enddo

stop
end

subroutine modify (m, ldm, n, p, q, alpha, beta)
implicit none
integer ldm, n, p, q
real*4 m(ldm,*), alpha, beta

external sscal

call sscal (n-p+1, alpha, m(p,q), ldm)

call sscal (ldm-p+1, beta, m(p,q), 1)

return
end

© NVIDIA Corporation 2008 141

FORTRAN 77 Code example:
Non-thunking interface

program matrixmod
implicit none
integer M, N, sizeof_real, devPtrA
parameter (M=6, N=5, sizeof_real=4)
real*4 a(M,N)
integer i, j, stat
external cublas_init, cublas_set_matrix,cublas_get_matrix
external cublas_shutdown, cublas_alloc
integer cublas_alloc

do j = 1, N
do i = 1, M

a(i,j) = (i-1) * M + j
enddo

enddo

call cublas_init
stat = cublas_alloc(M*N, sizeof_real, devPtrA)
if (stat .NE. 0) then

write(*,*) "device memory allocation failed"
stop

endif

call cublas_set_matrix (M, N, sizeof_real, a, M, devPtrA, M)
call modify (devPtrA, M, N, 2, 3, 16.0, 12.0)
call cublas_get_matrix (M, N, sizeof_real, devPtrA, M, a, M)
call cublas_free(devPtrA)
call cublas_shutdown

do j = 1, N
do i = 1, M

write(*,"(F7.0$)") a(i,j)
enddo
write (*,*) "”

enddo

stop
end

#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1)

subroutine modify (devPtrM, ldm, n, p, q, alpha, beta)
implicit none
integer ldm, n, p, q
integer sizeof_real, devPtrM
parameter (sizeof_real=4)
real*4 alpha, beta
call cublas_sscal (n-p+1, alpha,

devPtrM+IDX2F(p,q,ldm)*sizeof_real,
ldm)

call cublas_sscal (ldm-p+1, beta,
devPtrM+IDX2F(p,q,ldm)*sizeof_real,
1)

return
end

If using fixed format check that the line
length is below the 72 column limit !!!

© NVIDIA Corporation 2008 142

CUFFT

The Fast Fourier Transform (FFT) is a divide-and-
conquer algorithm for efficiently computing discrete
Fourier transform of complex or real-valued data
sets.

CUFFT is the CUDA FFT library

Provides a simple interface for computing parallel FFT on
an NVIDIA GPU

Allows users to leverage the floating-point power and
parallelism of the GPU without having to develop a custom,
GPU-based FFT implementation

© NVIDIA Corporation 2008 143

Supported Features

1D, 2D and 3D transforms of complex and real-valued
data

Batched execution for doing multiple 1D transforms
in parallel

1D transform size up to 8M elements

2D and 3D transform sizes in the range [2,16384]

In-place and out-of-place transforms for real and
complex data.

© NVIDIA Corporation 2008 144

CUFFT Types and Definitions

cufftHandle

Handle type used to store and access CUFFT plans

cufftResults

Enumeration of API function return values

Eg. CUFFT_SUCCESS, CUFFT_INVALID_PLAN, etc.

© NVIDIA Corporation 2008 145

Transform Types

Library supports real and complex transforms
CUFFT_C2C, CUFFT_C2R, CUFFT_R2C

Directions
CUFFT_FORWARD (-1) and CUFFT_BACKWARD (1)

According to sign of the complex exponential term

Real and imaginary parts of complex input and
output arrays are interleaved

cufftComplex type is defined for this

Real to complex FFTs, output array holds only
nonredundant coefficients

N -> N/2+1

N0 x N1 x … x Nn -> N0 x N1 x … x (Nn/2+1)

For in-place transforms the input/output arrays need to be
padded

© NVIDIA Corporation 2008 146

More on Transforms

For 2D and 3D transforms, CUFFT performs transforms in row-
major (C-order)

If calling from FORTRAN or MATLAB, remember to change the
order of size parameters during plan creation

CUFFT performs un-normalized transforms:

IFFT(FFT(A))= length(A)*A

CUFFT API is modeled after FFTW. Based on plans, that
completely specify the optimal configuration to execute a
particular size of FFT

Once a plan is created, the library stores whatever state is
needed to execute the plan multiple times without recomputing
the configuration

Works very well for CUFFT, because different kinds of FFTs
require different thread configurations and GPU resources

© NVIDIA Corporation 2008 147

cufftPlan1d()

cufftResult cufftPlan1d(cufftHandle *plan, int nx, cufftType type, int batch)

Creates a 1D FFT plan configuration for a specified signal size and data
type

The batch input parameter tells CUFFT how many 1D transforms to
configure

Input:

plan Pointer to a cufftHandle object

nx The transform size (e.g., 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C)

batch Number of transforms of size nx

Output:

plan Contains a CUFFT 1D plan handle value

© NVIDIA Corporation 2008 148

cufftPlan2d()

cufftResult cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type)

Creates a 2D FFT plan configuration for a specified signal size
and data type

Input:

plan Pointer to a cufftHandle object

nx The transform size in the X direction

ny The transform size in the Y direction

type The transform data type (e.g., CUFFT_C2C)

Output:

plan Contains a CUFFT 2D plan handle value

© NVIDIA Corporation 2008 149

cufftPlan3d()

cufftResult cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType
type)

Creates a 3D FFT plan configuration for a specified signal size
and data type

Input:

plan Pointer to a cufftHandle object

nx The transform size in the X direction

ny The transform size in the Y direction

nz The transform size in the Z direction

type The transform data type (e.g., CUFFT_C2C)

Output:

plan Contains a CUFFT 3D plan handle value

© NVIDIA Corporation 2008 150

cufftDestroy()

cufftResult cufftDestroy(cufftHandle plan)

Frees all GPU resources associated with a CUFFT plan and
destroys the internal plan data structure

Should be called once a plan is no longer needed to avoid
wasting GPU memory

Input:

plan cufftHandle object

© NVIDIA Corporation 2008 151

cufftExecC2C()

cufftResult cufftExecC2C(cufftHandle plan, cufftComplex *idata,
cufftComplex *odata, int direction)

Executes a CUFFT complex to complex transform plan

Uses as input data the GPU memory pointed to by the idata
parameter

Stores the Fourier coefficients in the odata array

If idata and odata are the same, does an in-place transform

Input:

plan cufftHandle object

idata pointer to input data (in GPU memory) to transform

odata pointer to output data (in GPU memory)

direction direction of transform (CUFFT_FORWARD or CUFFT_BACKWARD)

Output:

odata contains complex Fourier coefficients

© NVIDIA Corporation 2008 152

cufftExecR2C()

cufftResult cufftExecR2C(cufftHandle plan, cufftReal *idata,
cufftComplex *odata)

Executes a CUFFT real to complex transform plan

Uses as input data the GPU memory pointed to by the idata
parameter

Stores non-redundant Fourier coefficients in the odata array

If idata and odata are the same, does an in-place transform

Input:

plan cufftHandle object

idata pointer to input data (in GPU memory) to transform

odata pointer to output data (in GPU memory)

Output:

odata contains complex Fourier coefficients

© NVIDIA Corporation 2008 153

cufftExecC2R()

cufftResult cufftExecC2R(cufftHandle plan, cufftReal *idata,
cufftComplex *odata)

Executes a CUFFT complex to real transform plan

Uses as input the GPU memory pointed to by idata

idata contains only non-redundant complex Fourier coefficients

Stores real output data in the odata array

If idata and odata are the same, does an in-place transform

Input:

plan cufftHandle object

idata pointer to complex input data (in GPU memory) to transform

odata pointer to real output data (in GPU memory)

Output:

odata contains real-valued output data

© NVIDIA Corporation 2008 154

Accuracy and performance

The CUFFT library implements several FFT algorithms, each with different
performances and accuracy.

The best performance paths correspond to transform sizes that:
1. Fit in CUDA’a shared memory
2. Are powers of a single factor (e.g. power-of-two)

If only condition 1 is satisfied, CUFFT uses a more general mixed-radix
factor algorithm that is slower and less accurate numerically.

If none of the above conditions is satisfied, CUFFT uses an out-of-place,
mixed-radix algorithm that stores all intermediate results in global GPU
memory.

One notable exception is for long 1D transforms, where CUFFT uses a
distributed algorithm that perform 1D FFT using 2D FFT.

CUFFT does not implement any specialized algorithms for real data, and
so there is no direct performance benefit to using real to complex (or
complex to real) plans instead of complex to complex. For this release,
the real data API exists primarily for convenience

© NVIDIA Corporation 2008 155

Code example:
1D complex to complex transforms

#define NX 256
#define BATCH 10

cufftHandle plan;
cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*BATCH);
…
/* Create a 1D FFT plan. */
cufftPlan1d(&plan, NX, CUFFT_C2C, BATCH);

/* Use the CUFFT plan to transform the signal in place. */
cufftExecC2C(plan, data, data, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, data, data, CUFFT_INVERSE);

/* Note:
(1) Divide by number of elements in data-set to get back original data
(2) Identical pointers to input and output arrays implies in-place transformation

*/

/* Destroy the CUFFT plan. */
cufftDestroy(plan);

cudaFree(data);

© NVIDIA Corporation 2008 156

Code example:
2D complex to complex transform

#define NX 256
#define NY 128

cufftHandle plan;
cufftComplex *idata, *odata;
cudaMalloc((void**)&idata, sizeof(cufftComplex)*NX*NY);
cudaMalloc((void**)&odata, sizeof(cufftComplex)*NX*NY);
…
/* Create a 1D FFT plan. */
cufftPlan2d(&plan, NX,NY, CUFFT_C2C);

/* Use the CUFFT plan to transform the signal out of place. */
cufftExecC2C(plan, idata, odata, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, odata, odata, CUFFT_INVERSE);

/* Note:
Different pointers to input and output arrays implies out of place transformation

*/

/* Destroy the CUFFT plan. */
cufftDestroy(plan);

cudaFree(idata), cudaFree(odata);

Additional CUDA Topics

© NVIDIA Corporation 2008 158

Outline

Texture Functionality

Fortran Interoperability

Event API

Device Management

Graphics Interoperability

CUDA Texture Functionality

© NVIDIA Corporation 2008 160

Textures in CUDA

Different hardware path to memory

Benefits of CUDA textures:
Texture fetches are cached

Optimized for 2D locality

Textures are addressable in 2D
Using integer or normalized coordinates

Means fewer addressing calculations in code

Provide filtering for free

Free wrap modes (boundary conditions)
Clamp to edge / repeat

Limitations of CUDA textures:
Read-only

Currently either 1D or 2D (3D will be added)

9-bit accuracy of filter weights

© NVIDIA Corporation 2008 161

Two CUDA Texture Types

Bound to linear memory
Global memory is bound to a texture

Only 1D

Integer addressing

No filtering, no addressing modes

Bound to CUDA arrays
CUDA array is bound to a texture

1D or 2D

Float addressing (size-based or normalized)

Filtering

Addressing modes (clamping, repeat)

Both:
Return either element type or normalized float

© NVIDIA Corporation 2008 162

CUDA Texturing Steps

Host (CPU) code:

Allocate/obtain memory (global linear, or CUDA array)

Create a texture reference object

Currently must be at file-scope

Bind the texture reference to memory/array

When done:

Unbind the texture reference, free resources

Device (kernel) code:

Fetch using texture reference

Linear memory textures:

tex1Dfetch()

Array textures:

tex1D() or tex2D()

© NVIDIA Corporation 2008 163

Texture Reference

Immutable parameters (compile-time)
Type: type returned when fetching

Basic int, float types
CUDA 1-, 2-, 4-element vectors

Dimensionality:
Currently 1 or 2 (3 will be supported in the future)

Read Mode:
cudaReadModeElementType
cudaReadModeNormalizedFloat (valid for 8- or 16-bit ints)
– returns [-1,1] for signed, [0,1] for unsigned

Mutable parameters (run-time, only for array-textures)
Normalized:

non-zero = addressing range [0, 1]

Filter Mode:
cudaFilterModePoint
cudaFilterModeLinear

Address Mode:
cudaAddressModeClamp
cudaAddressModeWrap

© NVIDIA Corporation 2008 164

Example: Host code for linear mem

// declare texture reference (must be at file-scope)

texture<unsigned short, 1, cudaReadModeNormalizedFloat> texRef;

...

// set up linear memory

unsigned short *dA = 0;

cudaMalloc((void**)&dA, numBytes);

cudaMemcpy(dA, hA, numBytes, cudaMemcpyHostToDevice);

// bind texture reference to array

cudaBindTexture(NULL, texRef, dA);

© NVIDIA Corporation 2008 165

cudaArray Type

Channel format, width, height

cudaChannelFormatDesc structure

int x, y, z, w: bits for each component

enum cudaChannelFormatKind – one of:
cudaChannelFormatKindSigned

cudaChannelFormatKindUnsigned

cudaChannelFormatKindFloat

some predefined constructors:
cudaCreateChannelDesc<float>(void);

cudaCreateChannelDesc<float4>(void);

Management functions:
cudaMallocArray, cudaFreeArray,

cudaMemcpyToArray, cudaMemcpyFromArray, ...

© NVIDIA Corporation 2008 166

Example: Host code for 2D array tex

// declare texture reference (must be at file-scope)

texture<float, 2, cudaReadModeElementType> texRef;

...

// set up the CUDA array

cudaChannelFormatDesc cf = cudaCreateChannelDesc<float>();

cudaArray *texArray = 0;

cudaMallocArray(&texArray, &cf, dimX, dimY);

cudaMempcyToArray(texArray, 0,0, hA, numBytes, cudaMemcpyHostToDevice);

// specify mutable texture reference parameters

texRef.normalized = 0;

texRef.filterMode = cudaFilterModeLinear;

texRef.addressMode = cudaAddressModeClamp;

// bind texture reference to array

cudaBindTextureToArray(texRef, texArray);

© NVIDIA Corporation 2008 167

CUDA Texturing Details

Linear (bilinear) filtering:

Only for textures bound to CUDA arrays

Only for textures that return floats

Still possible to filter 8- or 16-bit integers:
cudaReadModeNormalizedFloat texture reference

scale value in the kernel after fetching

Both run-time and driver API

driver API allows half float (16bit) storage
fetched values are 32bit

will be supported by future run-time API

It is possible to copy between linear memory and
CUDA arrays

CUDA Fortran Interoperability

© NVIDIA Corporation 2008 169

Fortran examples

Calling CUBLAS from Fortran

Using pinned memory in Fortran

Calling CUDA kernel from Fortran

© NVIDIA Corporation 2008 170

SGEMM example
! Define 3 single precision matrices A, B, C

real , dimension(m1,m1):: A, B, C

……

! Initialize

……

#ifdef CUBLAS

! Call SGEMM in CUBLAS library using THUNKING interface (library takes care of

! memory allocation on device and data movement)

call cublas_SGEMM ('n','n',m1,m1,m1,alpha,A,m1,B,m1,beta,C,m1)

#else

! Call SGEMM in host BLAS library

call SGEMM ('n','n',m1,m1,m1,alpha,A,m1,B,m1,beta,C,m1)

#endif

To use the host BLAS routine:
g95 –O3 code.f90 –L/usr/local/lib -lblas

To use the CUBLAS routine (fortran.c is provided by NVIDIA):
gcc -O3 -DCUBLAS_USE_THUNKING -I/usr/local/cuda/include -c fortran.c
g95 -O3 -DCUBLAS code.f90 fortran.o -L/usr/local/cuda/lib -lcublas

© NVIDIA Corporation 2008 171

Pinned memory example

use iso_c_binding

! The allocation is performed by C function calls. Define the C pointer as type (C_PTR)

type(C_PTR) :: cptr_A, cptr_B, cptr_C

! Define Fortran arrays as pointer.

real, dimension(:,:), pointer :: A, B, C

! Allocating memory with cudaMallocHost.

! The Fortan arrays, now defined as pointers, are then associated with the C pointers using the

! new interoperability defined in iso_c_binding. This is equivalent to allocate(A(m1,m1))

res = cudaMallocHost (cptr_A, m1*m1*sizeof(fp_kind))

call c_f_pointer (cptr_A, A, (/ m1, m1 /))

! Use A as usual.

! See example code for cudaMallocHost interface code

Pinned memory provides a fast PCI-e transfer speed and enables use of streams:
•Allocation needs to be done with cudaMallocHost
•Use new Fortran 2003 features for interoperability with C.

© NVIDIA Corporation 2008 172

Calling CUDA kernels

! Fortran -> C -> CUDA ->C ->Fortran

call cudafunction(c,c2,N)

From Fortran call C function that will call CUDA kernel

/* NB: Fortran subroutine arguments are passed by reference. */

extern "C" void cudafunction_(cuComplex *a, cuComplex *b, int *Np)

{

...

int N=*np;

cudaMalloc ((void **) &a_d , sizeof(cuComplex)*N);

cudaMemcpy(a_d, a, sizeof(cuComplex)*N ,cudaMemcpyHostToDevice);

dim3 dimBlock(block_size); dim3 dimGrid (N/dimBlock.x); if(N % block_size != 0) dimGrid.x+=1;

square_complex<<<dimGrid,dimBlock>>>(a_d,a_d,N);

cudaMemcpy(b, a_d, sizeof(cuComplex)*N,cudaMemcpyDeviceToHost);

cudaFree(a_d);

}

complex_mul: main.f90 Cuda_function.o
$(FC) -o complex_mul main.f90 Cuda_function.o -L/usr/local/cuda/lib -lcudart

Cuda_function.o: Cuda_function.cu
nvcc -c -O3 Cuda_function.cu

© NVIDIA Corporation 2008 173

CUDA Event API

Events are inserted (recorded) into CUDA call streams

Usage scenarios:
measure elapsed time for CUDA calls (clock cycle precision)

query the status of an asynchronous CUDA call

block CPU until CUDA calls prior to the event are completed

asyncAPI sample in CUDA SDK

cudaEvent_t start, stop;

cudaEventCreate(&start); cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid, block>>>(...);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float et;

cudaEventElapsedTime(&et, start, stop);

cudaEventDestroy(start); cudaEventDestroy(stop);

© NVIDIA Corporation 2008 174

Device Management

CPU can query and select GPU devices

cudaGetDeviceCount(int* count)

cudaSetDevice(int device)

cudaGetDevice(int *current_device)

cudaGetDeviceProperties(cudaDeviceProp* prop,

int device)

cudaChooseDevice(int *device, cudaDeviceProp* prop)

Multi-GPU setup:

device 0 is used by default

one CPU thread can control only one GPU
multiple CPU threads can control the same GPU

– calls are serialized by the driver

© NVIDIA Corporation 2008 175

Multiple CPU Threads and CUDA

CUDA resources allocated by a CPU thread can be
consumed only by CUDA calls from the same CPU
thread

Violation Example:

CPU thread 2 allocates GPU memory, stores address in p

thread 3 issues a CUDA call that accesses memory via p

CUDA Graphics Interoperability

© NVIDIA Corporation 2008 177

OpenGL Interoperability

OpenGL buffer objects can be mapped into the
CUDA address space and then used as global
memory

Vertex buffer objects

Pixel buffer objects

Direct3D9 Vertex objects can be mapped

Data can be accessed like any other global data in
the device code

Image data can be displayed from pixel buffer
objects using glDrawPixels / glTexImage2D

Requires copy in video memory, but still fast

© NVIDIA Corporation 2008 178

OpenGL Interop Steps

Register a buffer object with CUDA
cudaGLRegisterBufferObject(GLuint buffObj);

OpenGL can use a registered buffer only as a source
Unregister the buffer prior to rendering to it by OpenGL

Map the buffer object to CUDA memory
cudaGLMapBufferObject(void **devPtr, GLuint buffObj);

Returns an address in global memory
Buffer must registered prior to mapping

Launch a CUDA kernel to process the buffer

Unmap the buffer object prior to use by OpenGL
cudaGLUnmapBufferObject(GLuint buffObj);

Unregister the buffer object
cudaGLUnregisterBufferObject(GLuint buffObj);

Optional: needed if the buffer is a render target

Use the buffer object in OpenGL code

© NVIDIA Corporation 2008 179

Interop Scenario:
Dynamic CUDA-generated texture

Register the texture PBO with CUDA

For each frame:

Map the buffer

Generate the texture in a CUDA kernel

Unmap the buffer

Update the texture

Render the textured object

unsigned char *p_d=0;

cudaGLMapBufferObject((void**)&p_d, pbo);

prepTexture<<<height,width>>>(p_d, time);

cudaGLUnmapBufferObject(pbo);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);

glBindTexture(GL_TEXTURE_2D, texID);

glTexSubImage2D(GL_TEXTURE_2D, 0, 0,0, 256,256,

GL_BGRA, GL_UNSIGNED_BYTE, 0);

© NVIDIA Corporation 2008 180

Interop Scenario:
Frame Post-processing by CUDA

For each frame:

Render to PBO with OpenGL

Register the PBO with CUDA

Map the buffer

Process the buffer with a CUDA kernel

Unmap the buffer

Unregister the PBO from CUDA

unsigned char *p_d=0;

cudaGLRegisterBufferObject(pbo);

cudaGLMapBufferObject((void**)&p_d, pbo);

postProcess<<<blocks,threads>>>(p_d);

cudaGLUnmapBufferObject(pbo);

cudaGLUnregisterBufferObject(pbo);

...

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA and Tesla are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© 2008 NVIDIA Corporation. All rights reserved.

