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Introduction to GPU Computing
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Parallel Computing’s Golden Age

1980s, early `90s: a golden age for parallel computing

Particularly data-parallel computing

Machines 

Connection Machine, MasPar, Cray

True supercomputers: incredibly exotic, powerful, expensive

Algorithms, languages, & programming models

Solved a wide variety of problems

Various parallel algorithmic models developed

P-RAM, V-RAM, circuit, hypercube, etc.
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Parallel Computing’s Dark Age

But…impact of data-parallel computing limited 

Thinking Machines sold 7 CM-1s (100s of systems total)

MasPar sold ~200 systems

Commercial and research activity subsided 

Massively-parallel machines replaced by clusters 
of ever-more powerful commodity microprocessors

Beowulf, Legion, grid computing, …

Massively parallel computing loses momentum to 
inexorable advance of commodity technology
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Enter the GPU

GPUs are massively multithreaded manycore chips

Hundreds of cores, thousands of concurrent threads

Easily the most computationally intense workload on PCs

Huge economies of scale

G
F
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Enter CUDA

Compute Unified Device Architecture

Co-designed hardware and software to expose the 
computational horsepower of NVIDIA GPUs for GPU 
computing

Software

Small set of extensions to C language

Low learning curve

Hardware

Shared memory – scalable thread cooperation
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CUDA Programming Model:
A Highly Multithreaded Coprocessor

The GPU is a compute device
serves as a coprocessor for the host CPU

has its own device memory on the card

executes many threads in parallel

Parallel kernels run a single program in many 
threads

GPU threads are extremely lightweight
Thread creation and context switching are essentially free

GPU expects 1000’s of threads for full utilization
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GPU Computing Example Markets

Computational

Modeling

Computational

Chemistry

Computational

Medicine

Computational

Science

Computational

Biology

Computational

Finance

Computational

Geoscience

Image

Processing
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GPU Computing Sweet Spots

Applications: 

High arithmetic intensity:

Dense linear algebra, PDEs, n-body, finite difference, …

High bandwidth: 
Sequencing (virus scanning, genomics), sorting, 
database…

Visual computing:
Graphics, image processing, tomography, machine 
vision…
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Application Speedups

Isotropic turbulence simulation in 
Matlab

Astrophysics nbody simulation

Cmatch exact string matching  to 
find similar proteins and gene 

sequences

Interactive visualization of 
volumetric white matter 

connectivity

Financial simulation of LIBOR 
Model with swaptions

Highly optimized object 
oriented molecular dynamics

CUDA Programming Model Overview
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Some Design Goals

Scale to 100’s of cores, 1000’s of parallel threads

Let programmers focus on parallel algorithms

not mechanics of a parallel programming language.

Enable heterogeneous systems (i.e., CPU+GPU)

CPU & GPU are separate devices with separate DRAMs
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CUDA Kernels and Threads

Parallel portions of an application are executed on 
the device as kernels

One kernel is executed at a time

Many threads execute each kernel

Differences between CUDA and CPU threads 
CUDA threads are extremely lightweight

Very little creation overhead

Instant switching

CUDA uses 1000s of threads to achieve efficiency
Multi-core CPUs can use only a few

Definitions: 
Device = GPU; Host = CPU

Kernel = function called from the host that runs on the device
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Arrays of Parallel Threads

A CUDA kernel is executed by an array of threads
All threads run the same code

Each thread has an ID that it uses to compute memory 
addresses and make control decisions

76543210

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID
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Thread Cooperation

The Missing Piece: threads may need to cooperate

Thread cooperation is valuable

Share results to avoid redundant computation

Share memory accesses

Drastic bandwidth reduction

Thread cooperation is a powerful feature of CUDA

Cooperation between a monolithic array of threads 
is not scalable

Cooperation within smaller batches of threads is scalable 
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Kernel launches a grid of thread blocks

Threads within a block cooperate via shared memory

Threads in different block cannot cooperate

Allows programs to transparently scale to different 
GPUs

Grid

Thread Batching

Thread Block 0

Shared Memory

Thread Block 1

Shared Memory

Thread Block N-1

Shared Memory

…
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Transparent Scalability

Hardware is free to schedule thread blocks 
on any processor

A kernel scales across parallel multiprocessors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
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Data Decomposition

Often want each thread in kernel to access a 
different element of an array

Each thread has access to:

threadIdx.x - thread ID within block

blockIdx.x - block ID within grid

blockDim.x - number of threads per block

Grid

0

0 1 2 3 4

1

0 1 2 3 4

2

0 1 2 3 4

blockIdx.x

blockDim.x = 5

threadIdx.x

blockIdx.x*blockDim.x
+ threadIdx.x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Multidimensional IDs

Block ID: 1D or 2D

Thread ID: 1D, 2D, or 3D 

Simplifies memory
addressing when processing
multidimensional data

Image processing

Solving PDEs on volumes

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)



© NVIDIA Corporation 2008 19

CUDA Programming Model

A kernel is executed by a 
grid of thread blocks

A thread block is a batch 
of threads that can 
cooperate with each 
other by:

Sharing data through 
shared memory

Synchronizing their 
execution

Threads from different 
blocks cannot cooperate

Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)
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Processors execute computing threads

Thread Execution Manager issues threads

128 Thread Processors grouped into 16 multiprocessors (SMs)

Parallel Data Cache enables thread cooperation

G80 Device

Thread Execution Manager

Input Assembler

Host

Parallel 
Data

Cache

Global Memory

Load/store

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC
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Kernel Memory Access

Registers

Global Memory
Kernel input and output data reside here
Off-chip, large
Uncached

Shared Memory
Shared among threads in a single block
On-chip, small
As fast as registers

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

The host can read & write global memory but not shared memory
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Execution Model

Kernels are launched in grids

One kernel executes at a time

A block executes on one multiprocessor

Does not migrate

Several blocks can reside concurrently on one 
multiprocessor

Number is limited by multiprocessor resources

Register file is partitioned among all resident threads

Shared memory is partitioned among all resident thread 
blocks
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CUDA Advantages over Legacy GPGPU

Random access byte-addressable memory

Thread can access any memory location

Unlimited access to memory

Thread can read/write as many locations as needed

Shared memory (per block) and thread 
synchronization

Threads can cooperatively load data into shared memory

Any thread can then access any shared memory location

Low learning curve

Just a few extensions to C

No knowledge of graphics is required
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CUDA Model Summary

Thousands of lightweight concurrent threads
No switching overhead

Hide instruction and memory latency

Shared memory
User-managed data cache

Thread communication / cooperation within blocks

Random access to global memory
Any thread can read/write any location(s)

Memory Location Cached Access Scope (“Who?”)

Shared On-chip N/A Read/write All threads in a block

Global Off-chip No Read/write All threads + host



CUDA Programming

The Basics
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Outline of CUDA Basics

Basics to set up and execute GPU code:

GPU memory management

GPU kernel launches

Some specifics of GPU code

Some additional features:

Vector types

Synchronization

Checking CUDA errors

NOTE: only the basic features are covered

See the Programming Guide for many more API functions

More in Optimization section
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Managing Memory

CPU and GPU have separate memory spaces

Host (CPU) code manages device (GPU) memory:

Allocate / free

Copy data to and from device

Applies to global device memory (DRAM)
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GPU Memory Allocation / Release

cudaMalloc(void ** pointer, size_t nbytes)

cudaMemset(void * pointer, int value, size_t count)

cudaFree(void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int *d_a = 0;

cudaMalloc( (void**)&d_a,  nbytes );

cudaMemset( d_a, 0, nbytes);

cudaFree(d_a);



© NVIDIA Corporation 2008 29

Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes,
enum cudaMemcpyKind direction);
direction specifies locations (host or device) of src and 
dst

Blocks CPU thread: returns after the copy is complete

Doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind
cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice
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CUDA Exercises

We have provided skeletons and solutions for 
hands-on CUDA exercises

In each exercise, you have to implement the 
missing portions of the code 

Finished when you compile and run the program and get 
the output “Correct!”

Solutions are included in the “solution” folder of 
each exercise
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Compiling the Code: Windows

Open the <project>.sln file in Microsoft Visual 
Studio

Build the project

Four configuration choices: 

Release,Debug,EmuRelease, EmuDebug

To debug your code build EmuDebug configuration

Can set breakpoints inside kernels (__global__ or 
__device__ functions)

Can debug the code as normal, even printf!

One CPU thread per GPU thread

Threads not actually in parallel on GPU
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Compiling the Code: Linux

nvcc <filename>.cu [-o <executable>]
Builds release mode

nvcc –g <filename>.cu 
Builds debug (device) mode

Can debug host code but not device code (runs on GPU)

nvcc –deviceemu <filename>.cu 
Builds device emulation mode

All code runs on CPU, but no debug symbols

nvcc –deviceemu –g <filename>.cu 
Builds debug device emulation mode

All code runs on CPU, with debug symbols

Debug using gdb or other linux debugger
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Exercise 1: Copying between host 
and device

Start from the “cudaMallocAndMemcpy” template.

Part1: Allocate memory for pointers d_a and d_b on the device.

Part2: Copy h_a on the host to d_a on the device.

Part3: Do a device to device copy from d_a to d_b.

Part4: Copy d_b on the device back to h_a on the host.

Part5: Free d_a and d_b on the host.
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Executing Code on the GPU

Kernels are C functions with some restrictions

Can only access GPU memory
Must have void return type
No variable number of arguments (“varargs”)
Not recursive
No static variables

Function arguments automatically copied from CPU 
to GPU memory
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Function Qualifiers

__global__ : invoked from within host (CPU) code, 
cannot be called from device (GPU) code
must return void

__device__ : called from other GPU functions,
cannot be called from host (CPU) code

__host__ : can only be executed by CPU, called from host

__host__ and __device__ qualifiers can be combined
Sample use: overloading operators
Compiler will generate both CPU and GPU code
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Launching kernels

Modified C function call syntax:

kernel<<<dim3 grid, dim3 block>>>(…)

Execution Configuration (“<<< >>>”):

grid dimensions: x and y

thread-block dimensions: x, y, and z

dim3 grid(16, 16);

dim3 block(16,16);

kernel<<<grid, block>>>(...);

kernel<<<32, 512>>>(...);
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CUDA Built-in Device Variables

All __global__ and __device__ functions have 
access to these automatically defined variables

dim3 gridDim;

Dimensions of the grid in blocks (at most 2D)

dim3 blockDim;

Dimensions of the block in threads

dim3 blockIdx;

Block index within the grid

dim3 threadIdx;

Thread index within the block
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Minimal Kernels

__global__ void minimal( int* d_a)

{

*d_a = 13;

}

__global__ void assign( int* d_a, int value)

{

int idx = blockDim.x * blockIdx.x + threadIdx.x;

d_a[idx] = value;

}
Common Pattern!
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Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4   -> 4 blocks

blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3

blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7

blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11

blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;
will map from local index threadIdx to global index

NB: blockDim should be >= 32 in real code, this is just an example
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Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)

{

for (int idx = 0; idx<N; idx++) 

a[idx] = a[idx] + b;

}

void main()

{

.....

increment_cpu(a, b, N);

}

__global__ void increment_gpu(float *a, float b, int N)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < N)

a[idx] = a[idx] + b;

}

void main()

{

…

dim3 dimBlock (blocksize);

dim3 dimGrid( ceil( N / (float)blocksize)  );

increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

}
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Minimal Kernel for 2D data

__global__ void assign2D(int* d_a, int w, int h, int value)

{

int iy = blockDim.y * blockIdx.y + threadIdx.y;

int ix = blockDim.x * blockIdx.x + threadIdx.x;

int idx = iy * w + ix;

d_a[idx] = value;

}

...

assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);
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Host Synchronization

All kernel launches are asynchronous

control returns to CPU immediately

kernel executes after all previous CUDA calls have 
completed

cudaMemcpy() is synchronous

control returns to CPU after copy completes

copy starts after all previous CUDA calls have completed

cudaThreadSynchronize()

blocks until all previous CUDA calls complete
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Example: Host Code
// allocate host memory

int numBytes = N * sizeof(float)

float* h_A = (float*) malloc(numBytes);

// allocate device memory

float* d_A = 0;

cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device

cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel

increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host

cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory

cudaFree(d_A);
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Exercise 2: Launching kernels

Start from the “myFirstKernel” template.

Part1: Allocate device memory for the result of the kernel 
using pointer d_a.

Part2: Configure and launch the kernel using a 1-D grid of 1-D 
thread blocks.

Part3: Have each thread set an element of d_a as follows:

idx = blockIdx.x*blockDim.x + threadIdx.x

d_a[idx] = 1000*blockIdx.x + threadIdx.x

Part4: Copy the result in d_a back to the host pointer h_a.

Part5: Verify that the result is correct.



© NVIDIA Corporation 2008 45

Variable Qualifiers (GPU code)

__device__
Stored in device memory (large, high latency, no cache)
Allocated with cudaMalloc (__device__ qualifier implied)
Accessible by all threads
Lifetime: application

__shared__
Stored in on-chip shared memory (very low latency)
Allocated by execution configuration or at compile time
Accessible by all threads in the same thread block
Lifetime: kernel execution

Unqualified variables:
Scalars and built-in vector types are stored in registers
Arrays of more than 4 elements stored in device memory
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Using shared memory

Size known at compile time

__global__ void kernel(…)
{

…
__shared__ float sData[256];
…

}

int main(void)
{

…
kernel<<<nBlocks,blockSize>>>(…);
…

}

Size known at kernel launch

__global__ void kernel(…)
{

…
extern __shared__ float sData[];
…

}

int main(void)
{

…
smBytes = blockSize*sizeof(float);
kernel<<<nBlocks, blockSize, 

smBytes>>>(…);
…

}
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Built-in Vector Types

Can be used in GPU and CPU code

[u]char[1..4], [u]short[1..4], [u]int[1..4], 
[u]long[1..4], float[1..4]

Structures accessed with x, y, z, w fields:

uint4 param;

int y = param.y;

dim3

Based on uint3

Used to specify dimensions

Default value (1,1,1)

© NVIDIA Corporation 2008 48

GPU Thread Synchronization

void __syncthreads();

Synchronizes all threads in a block

Generates barrier synchronization instruction

No thread can pass this barrier until all threads in the 
block reach it

Used to avoid RAW / WAR / WAW hazards when 
accessing shared memory

Allowed in conditional code only if the conditional is 
uniform across the entire thread block
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GPU Atomic Integer Operations

Requires hardware with compute capability 1.1

G80 = Compute capability 1.0

G84/G86/G92 = Compute capability 1.1

Atomic operations on integers in global memory:

Associative operations on signed/unsigned ints

add, sub, min, max, ...

and, or, xor

Increment, decrement

Exchange, compare and swap
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CUDA Error Reporting to CPU

All CUDA calls return error code:

Except for kernel launches

cudaError_t type

cudaError_t cudaGetLastError(void)

Returns the code for the last error (no error has a code)

Can be used to get error from kernel execution

char* cudaGetErrorString(cudaError_t code)

Returns a null-terminated character string describing the 
error

printf(“%s\n”, cudaGetErrorString( cudaGetLastError() ) );
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Exercise 3: Reverse Array (single 
block)

Given an input array {a0, a1, …, an-1} in pointer d_a, store the 
reversed array {an-1, an-2, …, a0} in pointer d_b

Start from the “reverseArray_singleblock” template

Only one thread block launched, to reverse an array of size 
N = numThreads = 256 elements

Part 1 (of 1): All you have to do is implement the body of the 
kernel “reverseArrayBlock()”

Each thread moves a single element to reversed position
Read input from d_a pointer
Store output in reversed location in d_b pointer
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Exercise 4: Reverse Array 
(multiblock)

Given an input array {a0, a1, …, an-1} in pointer d_a, store the 
reversed array {an-1, an-2, …, a0} in pointer d_b

Start from the “reverseArray_multiblock” template

Multiple 256-thread blocks launched
To reverse an array of size N, N/256 blocks 

Part 1: Compute the number of blocks to launch

Part 2: Implement the kernel reverseArrayBlock()

Note that now you must compute both 
The reversed location within the block
The reversed offset to the start of the block
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Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target

Compiler

G80 … GPU 

Target code

PTX Code Virtual

Physical

CPU Code
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NVCC & PTX Virtual Machine

EDG
Separate GPU vs. CPU code 

Open64
Generates GPU PTX 
assembly

Parallel Thread eXecution
(PTX)

Virtual Machine and ISA

Programming model

Execution resources and 
state

EDG

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32           $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;
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Compilation

Any source file containing CUDA language 
extensions must be compiled with nvcc

NVCC is a compiler driver
Works by invoking all the necessary tools and compilers 
like cudacc, g++, cl, ...

NVCC can output:
Either C code (CPU Code)

That must then be compiled with the rest of the application using another tool

Or PTX object code directly

An executable with CUDA code requires:
The CUDA core library (cuda)

The CUDA runtime library (cudart)

if runtime API is used

loads cuda library

Performance Optimization
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Outline

Overview

G8x Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary
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Optimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache

GPU spends its transistors on ALUs, not memory

Do more computation on the GPU to avoid costly 
data transfers

Even low parallelism computations can sometimes be 
faster than transferring back and forth to host
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Optimize Memory Access

Coalesced vs. Non-coalesced = order of magnitude

Global/Local device memory 

Optimize for spatial locality in cached texture 
memory

In shared memory, avoid high-degree bank conflicts
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Take Advantage of Shared Memory

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Use one / a few threads to load / compute data 
shared by all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

Matrix transpose SDK example
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Use Parallelism Efficiently

Partition your computation to keep the GPU 
multiprocessors equally busy

Many threads, many thread blocks

Keep resource usage low enough to support 
multiple active thread blocks per multiprocessor

Registers, shared memory

G8x Hardware
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Terminology

Thread: concurrent code and associated state executed on the 
CUDA device (in parallel with other threads)

The unit of parallelism in CUDA

Note difference from CPU threads: creation cost, resource 
usage, and switching cost of GPU threads is much smaller 

Warp: a group of threads executed physically in parallel 
(SIMD)

Half-warp: the first or second half of a warp of threads

Thread Block: a group of threads that are executed together 
and can share memory on a single multiprocessor

Grid: a group of thread blocks that execute a single CUDA 
kernel logically in parallel on a single GPU
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Processors execute computing threads

Thread Execution Manager issues threads

128 Thread Processors

Parallel Data Cache accelerates processing

G80 Device

Thread Execution Manager

Input Assembler

Host

Parallel 
Data

Cache

Global Memory

Load/store

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC

Parallel 
Data

Cache

Parallel 
Data

Cache

TPC
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Texture Processor Cluster (TPC)

TPC TPC TPC TPC TPC TPC TPC TPC

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor Cluster Streaming Multiprocessor (SM)

SM

Shared Memory
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Memory Architecture

The global, constant, and 
texture spaces are regions of 
device memory

Each multiprocessor has:

A set of 32-bit registers per 
processor

On-chip shared memory

Where the shared memory 
space resides

A read-only constant cache

To speed up access to the 
constant memory space

A read-only texture cache

To speed up access to the 
texture memory space

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache



Memory Optimizations
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Memory optimizations

Optimizing host-device 
data transfers

Coalescing global data 
accesses

Using shared memory 
effectively

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Host
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Host-Device Data Transfers

Device memory to host memory bandwidth much 
lower than device memory to device bandwidth

4GB/s peak (PCI-e x16 Gen 1) vs. 76 GB/s peak (Tesla 
C870)

Minimize transfers

Intermediate data structures can be allocated, operated 
on, and deallocated without ever copying them to host 
memory

Group transfers

One large transfer much better than many small ones

69
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Page-Locked Data Transfers

cudaMallocHost() allows allocation of page-locked 
(“pinned”) host memory

Enables highest cudaMemcpy performance
3.2 GB/s on PCI-e x16 Gen1

5.2 GB/s on PCI-e x16 Gen2

See the “bandwidthTest” CUDA SDK sample

Use with caution!!
Allocating too much page-locked memory can reduce 
overall system performance

Test your systems and apps to learn their limits
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Asynchronous memory copy

Asynchronous host-device memory copy for pinned 
memory (allocated with “cudaMallocHost” in C) 
frees up CPU on all CUDA capable devices

Overlap implemented by using a stream

Stream = Sequence of operations that execute in 
order

Stream API:

0 = default stream

cudaMemcpyAsync(dst, src, size, direction, 0);
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Overlap kernel and memory copy

Concurrent execution of a kernel and a host ��������

device memory copy for pinned memory

Devices with compute capability >= 1.1 (G84 and up)

Available as a preview feature in CUDA toolkit v1.1

Overlaps kernel execution in one stream with a memory 
copy from another stream

Stream API:
cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

cudaStreamQuery(stream2); overlapped
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Global and Shared Memory

Global memory not cached on G8x GPUs

High latency, but launching more threads hides latency

Important to minimize accesses

Coalesce global memory accesses (more later)

Shared memory is on-chip, very high bandwidth

Low latency

Like a user-managed per-multiprocessor cache

Try to minimize or avoid bank conflicts (more later)
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Texture and Constant Memory

Texture partition is cached

Uses the texture cache also used for graphics

Optimized for 2D spatial locality

Best performance when threads of a warp read locations 
that are close together in 2D

Constant memory is cached

4 cycles per address read within a single warp

Total cost 4 cycles if all threads in a warp read same address

Total cost 64 cycles if all threads read different addresses
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Global Memory Reads/Writes

Global memory is not cached on G8x

Highest latency instructions: 400-600 clock cycles

Likely to be a performance bottleneck

Optimizations can greatly increase performance
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Loading and storing global memory

Use -ptx flag of nvcc to inspect instructions:

ld.global.f32 $f1, [$rd4+0]; //  id:74
…
st.global.f32 [$rd4+0], $f2; //  id:75
…
ld.global.v2.f32 {$f3,$f5}, [$rd7+0]; //  
…
st.global.v2.f32 [$rd7+0], {$f4,$f6}; //  
…
ld.global.v4.f32 {$f7,$f9,$f11,$f13}, [$rd10+0]; //  
…
st.global.v4.f32 [$rd10+0], {$f8,$f10,$f12,$f14}; //  

4 byte load and store

8 byte load and store

16 byte load and store
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Coalescing

A coordinated read by a half-warp (16 threads)

A contiguous region of global memory:

64 bytes - each thread reads a word: int, float, …

128 bytes - each thread reads a double-word: int2, float2, …

256 bytes – each thread reads a quad-word: int4, float4, …

Additional restrictions:

Starting address for a region must be a multiple of region 
size

The kth thread in a half-warp must access the kth element in a 
block being read

Exception: not all threads must be participating

Predicated access, divergence within a halfwarp
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Coalesced Access: 
Reading floats

t0 t1 t2 t14 t15t3

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

132 136 184 192128 140 144 188

Some Threads Do Not Participate

All threads participate
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Uncoalesced Access: 
Reading floats

t0 t1 t2 t14 t15t3

132 136128 140 144

Permuted Access by Threads

184 192188

Misaligned Starting Address (not a multiple of 64)

t0 t1 t2 t13 t15t3

132 136 184 192128 140 144 188

t14
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Coalescing: 
Timing Results

Experiment: 

Kernel: read a float, increment, write back

3M floats (12MB)

Times averaged over 10K runs

12K blocks x 256 threads:

356µs – coalesced

357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access
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Hands On: Array Reversal Revisited

Considering the limitations on memory coalescing, 
analyze the data access patterns in your 
implementation.

What, if anything, could be done to improve the data 
access pattern?
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Uncoalesced float3 Code

__global__ void accessFloat3(float3 *d_in, float3 d_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d_in[index];

a.x += 2;
a.y += 2;
a.z += 2;

d_out[index] = a;
}
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Uncoalesced Access: 
float3 Case

float3 is 12 bytes

Each thread ends up executing 3 reads

sizeof(float3) ≠ 4, 8, or 16

Half-warp reads three 64B non-contiguous regions

t0 t1 t2 t3

First read

float3 float3 float3
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Coalescing float3 Access

t255t2t1t0

GMEM

SMEM

SMEM

t2t1t0

…

… …

S
te

p
 2

S
te

p
 1

…

…

…

Similarly, Step3 starting at offset 512
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Coalesced Access:
float3 Case

Use shared memory to allow coalescing

Need sizeof(float3)*(threads/block) bytes of SMEM

Each thread reads 3 scalar floats:

Offsets: 0, (threads/block), 2*(threads/block)

These will likely be processed by other threads, so sync

Processing

Each thread retrieves its float3 from SMEM array

Cast the SMEM pointer to (float3*)

Use thread ID as index

Rest of the compute code does not change!
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Coalesced float3 Code

__global__ void accessInt3Shared(float *g_in, float *g_out)
{

int index = 3 * blockIdx.x * blockDim.x + threadIdx.x;
__shared__ float s_data[256*3];
s_data[threadIdx.x] = g_in[index];
s_data[threadIdx.x+256] = g_in[index+256];
s_data[threadIdx.x+512] = g_in[index+512];
__syncthreads();
float3 a = ((float3*)s_data)[threadIdx.x];

a.x += 2;
a.y += 2;
a.z += 2;

((float3*)s_data)[threadIdx.x] = a;
__syncthreads();
g_out[index] = s_data[threadIdx.x];
g_out[index+256] = s_data[threadIdx.x+256];
g_out[index+512] = s_data[threadIdx.x+512];

}

Compute code
is not changed

Read the input
through SMEM

Write the result
through SMEM
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Coalescing: 
Timing Results

Experiment: 

Kernel: read a float, increment, write back

3M floats (12MB)

Times averaged over 10K runs

12K blocks x 256 threads reading floats:

356µs – coalesced

357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access

4K blocks x 256 threads reading float3s:

3,302µs – float3 uncoalesced

359µs – float3 coalesced through shared memory
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Coalescing:
Structures of size ≠ 4, 8, or 16 Bytes

Use a Structure of Arrays (SoA) instead of Array of Structures (AoS)

If SoA is not viable:

Force structure alignment: __align(X), where X = 4, 8, or 16

Use SMEM to achieve coalescing

x y z Point structure

x y z x y z x y z AoS

x x x y y y z z z SoA
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Coalescing: 
Summary

Coalescing greatly improves throughput

Critical to memory-bound kernels

Reading structures of size other than 4, 8, or 16 
bytes will break coalescing:

Prefer Structures of Arrays over AoS

If SoA is not viable, read/write through SMEM

Additional resources:

Aligned Types SDK Sample
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Profiler Signals

Events are tracked with hardware counters on signals in the chip:

timestamp

gld_incoherent
gld_coherent
gst_incoherent
gst_coherent

local_load
local_store

branch
divergent_branch

instructions – instruction count

warp_serialize – thread warps that serialize on address conflicts to 
shared or constant memory

cta_launched – executed thread blocks

Global memory loads/stores are coalesced 
(coherent) or non-coalesced (incoherent)

Total branches and divergent branches 
taken by threads

Local loads/stores
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Profiler control

CUDA_PROFILE – set to 1 or 0 to enable or disable 
the profiler

CUDA_PROFILE_LOG – set to the name of the log 
file (will default to ./cuda_profile.log)

CUDA_PROFILE_CSV – set to 1 or 0 to enable or 
disable a comma separated version of the log

CUDA_PROFILE_CONFIG – specify a config file with 
up to 4 signals
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Interpreting profiler counters

Values represent events within a thread warp

Only targets one multiprocessor
Values will not correspond to the total number of warps 
launched for a particular kernel.

Launch enough thread blocks to ensure that the target 
multiprocessor is given a consistent percentage of the total 
work.

Values are best used to identify relative performance 
differences between unoptimized and optimized code

e.g., make the number of non-coalesced loads go from 
some non-zero value to zero
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Visual Profiler

© NVIDIA Corporation 2008 9494

Hands On: Using the Profiler

Use the profiler (either command line and text 
configuration files or the visual interface) to confirm 
the analysis of the data access patterns for your in-
place array reversal implementation.
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Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

See “Matrix Transpose” SDK example
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Parallel Memory Architecture

Many threads accessing memory

Therefore, memory is divided into banks

Essential to achieve high bandwidth

Each bank can service one address per cycle

A memory can service as many simultaneous 
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict 

Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0
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Bank Addressing Examples

No Bank Conflicts

Linear addressing 
stride == 1

No Bank Conflicts

Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0
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Bank Addressing Examples

2-way Bank Conflicts

Linear addressing 
stride == 2

8-way Bank Conflicts

Linear addressing 
stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0

x8

x8
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Shared memory bank conflicts

Shared memory is as fast as registers if there are no bank 
conflicts

Use the bank checker macro in the SDK to check for conflicts

warp_serialize signal can usually be used to check for conflicts

The fast case:

If all threads of a half-warp access different banks, there is no 
bank conflict

If all threads of a half-warp read the identical address, there is no 
bank conflict (broadcast)

The slow case:

Bank Conflict: multiple threads in the same half-warp access the 
same bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank
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Hands On: Array Reversal 
Performance

Improve your array reversal code to access global 
memory with coalesced loads and stores by using 
shared memory.
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Textures in CUDA

Texture is an object for reading data

Benefits:
Data is cached (optimized for 2D locality)

Helpful when coalescing is a problem

Filtering
Linear / bilinear / trilinear
dedicated hardware

Wrap modes (for “out-of-bounds” addresses)
Clamp to edge / repeat

Addressable in 1D, 2D, or 3D
Using integer or normalized coordinates

Usage:
CPU code binds data to a texture object
Kernel reads data by calling a fetch function

101
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Texture Addressing

Wrap

Out-of-bounds coordinate is 
wrapped (modulo arithmetic)

Clamp

Out-of-bounds coordinate is 
replaced with the closest 
boundary

102
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Two CUDA Texture Types

Bound to linear memory
Global memory address is bound to a texture
Only 1D
Integer addressing
No filtering, no addressing modes

Bound to CUDA arrays
CUDA array is bound to a texture
1D, 2D, or 3D
Float addressing (size-based or normalized)
Filtering
Addressing modes (clamping, repeat)

Both:
Return either element type or normalized float
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CUDA Texturing Steps

Host (CPU) code:

Allocate/obtain memory (global linear, or CUDA array)

Create a texture reference object

Currently must be at file-scope

Bind the texture reference to memory/array

When done:

Unbind the texture reference, free resources

Device (kernel) code:

Fetch using texture reference

Linear memory textures: 

tex1Dfetch()

Array textures: 

tex1D() or tex2D() or tex3D()



Execution Configuration Optimizations
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Occupancy

Thread instructions are executed sequentially, so 
executing other warps is the only way to hide 
latencies and keep the hardware busy

Occupancy = Number of warps running 
concurrently on a multiprocessor divided by 
maximum number of warps that can run 
concurrently

Limited by resource usage:

Registers

Shared memory
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Grid/Block Size Heuristics

# of blocks > # of multiprocessors

So all multiprocessors have at least one block to execute

# of blocks / # of multiprocessors > 2

Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the 
hardware busy

Subject to resource availability – registers, shared memory

# of blocks > 100 to scale to future devices

Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations
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Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~11 cycles later

Scenarios: CUDA: PTX:

To completely hide the latency: 
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy

Threads do not have to belong to the same thread block

add.f32   $f3, $f1, $f2

add.f32   $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32  $f3, [$r31+0] 

add.f32           $f3, $f3, $f4

s_data[0] += 3;
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Register Pressure

Hide latency by using more threads per SM

Limiting Factors:

Number of registers per kernel

8192 per SM, partitioned among concurrent threads

Amount of shared memory

16KB per SM, partitioned among concurrent threadblocks

Compile with –ptxas-options=-v flag

Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel

At some point “spilling” into LMEM may occur

Reduces performance – LMEM is slow
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Determining resource usage

Compile the kernel code with the -cubin flag to 
determine register usage.

Open the .cubin file with a text editor and look for 
the “code” section.

architecture {sm_10}
abiversion {0}
modname {cubin}
code  {

name = BlackScholesGPU
lmem = 0
smem = 68
reg = 20
bar = 0
bincode {

0xa0004205 0x04200780 0x40024c09 0x00200780 
…

per thread local memory

per thread block shared memory

per thread registers
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CUDA Occupancy Calculator
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Optimizing threads per block

Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps

More threads per block == better memory latency 
hiding

But, more threads per block == fewer registers per 
thread

Kernel invocations can fail if too many registers are used

Heuristics

Minimum: 64 threads per block

Only if multiple concurrent blocks

192 or 256 threads a better choice

Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!
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Occupancy != Performance

Increasing occupancy does not necessarily 
increase performance

BUT…

Low-occupancy multiprocessors cannot adequately 
hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available 
parallelism)
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Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
# of multiprocessors

Memory bandwidth

Shared memory size

Register file size

Max. threads per block

You can even make apps self-tuning (like FFTW and 
ATLAS)

“Experiment” mode discovers and saves optimal 
configuration



Instruction Optimizations
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CUDA Instruction Performance

Instruction cycles (per warp) = sum of

Operand read cycles

Instruction execution cycles

Result update cycles

Therefore instruction throughput depends on

Nominal instruction throughput

Memory latency

Memory bandwidth

“Cycle” refers to the multiprocessor clock rate

1.35 GHz on the Tesla C870, for example
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Maximizing Instruction Throughput

Maximize use of high-bandwidth memory

Maximize use of shared memory

Minimize accesses to global memory

Maximize coalescing of global memory accesses

Optimize performance by overlapping memory 
accesses with HW computation

High arithmetic intensity programs

i.e. high ratio of math to memory transactions

Many concurrent threads
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Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad: 
4 cycles per warp

int multiply (*) is by default 32-bit

requires multiple cycles / warp

Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int
multiply

Integer divide and modulo are more expensive

Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor 
is a power of 2!

Useful trick: foo % n == foo & (n-1) if n is a power of 2
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Arithmetic Instruction Throughput

The intrinsics reciprocal, reciprocal square root, 
sin/cos, log, exp prefixed with “__” 16 cycles per 
warp

Examples: __rcp(), __sin(), __exp()

Other functions are combinations of the above

y / x == rcp(x) * y takes 20 cycles per warp

sqrt(x) == x * rsqrt(x) takes 20 cycles per warp
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Runtime Math Library

There are two types of runtime math operations

__func(): direct mapping to hardware ISA
Fast but lower accuracy (see prog. guide for details)

Examples: __sin(x), __exp(x), __pow(x,y)

func() : compile to multiple instructions
Slower but higher accuracy (5 ulp or less)

Examples: sin(x), exp(x), pow(x,y)

The -use_fast_math compiler option forces every 
func() to compile to __func()
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GPU results may not match CPU

Many variables: hardware, compiler, optimization 
settings

CPU operations aren’t strictly limited to 0.5 ulp

Sequences of operations can be more accurate due to 80-
bit extended precision ALUs

Floating-point arithmetic is not associative!

© NVIDIA Corporation 2008 122122

FP Math is Not Associative!

In symbolic math, (x+y)+z == x+(y+z)

This is not necessarily true for floating-point 
addition

Try x = 1030, y = -1030 and z = 1 in the above equation

When you parallelize computations, you potentially 
change the order of operations

Parallel results may not exactly match sequential 
results

This is not specific to GPU or CUDA – inherent part of 
parallel execution
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Floating Point Characteristics

G8x SSE IBM Altivec Cell SPE

Format IEEE 754 IEEE 754 IEEE 754 IEEE 754

Rounding modes for 
FADD and FMUL

Round to nearest and 
round to zero

All 4 IEEE, round to 
nearest, zero, inf, -inf

Round to nearest only
Round to zero/truncate 
only

Denormal handling Flush to zero
Supported,
1000’s of cycles

Supported,
1000’s of cycles

Flush to zero

NaN support Yes Yes Yes No

Overflow and Infinity 
support

Yes, only clamps to 
max norm

Yes Yes No, infinity

Flags No Yes Yes Some

Square root  Software only Hardware Software only Software only

Division  Software only Hardware Software only Software only

Reciprocal estimate 
accuracy

24 bit 12 bit 12 bit 12 bit

Reciprocal sqrt
estimate accuracy

23 bit 12 bit 12 bit 12 bit

log2(x) and 2^x 
estimates accuracy

23 bit No 12 bit No
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G8x Deviations from IEEE-754

Addition and Multiplication are IEEE compliant

Maximum 0.5 ulp error

However, often combined into multiply-add (FMAD)

Intermediate result is truncated

Division is non-compliant (2 ulp)

Not all rounding modes are supported

Denormalized numbers are not supported

No mechanism to detect floating-point exceptions
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Make your program float-safe!

Future hardware will have double precision support

G8x is single-precision only

Double precision will have additional cost

Important to be float-safe to avoid using double 
precision where it is not needed

Add ‘f’ specifier on float literals:

foo = bar * 0.123; // double assumed

foo = bar * 0.123f; // float explicit

Use float version of standard library functions

foo = sin(bar); // double assumed

foo = sinf(bar); // float explicit
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Control Flow Instructions

Main performance concern with branching is 
divergence

Threads within a single warp take different paths

Different execution paths must be serialized

Avoid divergence when branch condition is a 
function of thread ID

Example with divergence: 

if (threadIdx.x > 2) { }

Branch granularity < warp size

Example without divergence:

if (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size
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Summary

GPU hardware can achieve great performance on 
data-parallel computations if you follow a few 
simple guidelines:

Use parallelism efficiently

Coalesce memory accesses if possible

Take advantage of shared memory

Explore other memory spaces
Texture

Constant

Reduce bank conflicts

CUDA Libraries
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Outline

CUDA  includes 2 widely used libraries

CUBLAS: BLAS implementation

CUFFT:    FFT implementation
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CUBLAS

Implementation of BLAS (Basic Linear Algebra 
Subprograms) on top of CUDA driver

Self-contained at the API level, no direct interaction with 
CUDA driver

Basic model for use

Create matrix and vector objects in GPU memory space

Fill objects with data

Call sequence of CUBLAS functions

Retrieve data from GPU

CUBLAS library contains helper functions

Creating and destroying objects in GPU space

Writing data to and retrieving data from objects
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Supported Features

Single precision BLAS functions

Real data

Level 1 (vector-vector O(N) )

Level 2 (matrix-vector O(N2) )

Level 3 (matrix-matrix O(N3) )

Complex data

Level 1

CGEMM

Following BLAS convention, CUBLAS uses column-
major storage
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Using CUBLAS

Interface to CUBLAS library is in cublas.h

Function naming convention

cublas + BLAS name

Eg., cublasSGEMM

Error handling

CUBLAS core functions do not return error

CUBLAS provides function to retrieve last error recorded

CUBLAS helper functions do return error

Implemented using C-based CUDA tool chain

Interfacing to C/C++ applications is trivial
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CUBLAS performance

SGEMM performance 

0

20

40

60

80

100

120

140

0 512 1024 1536 2048 2560

N

G
fl

o
p

s
GPU+I/O GPU+I/O Pinned GPU only
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cublasInit(), cublasShutdown()

cublasStatus cublasInit()

Initializes the CUBLAS library

Allocated hardware resources necessary for accessing 
the GPU

Must be called prior to any other CUBLAS API function

cublasStatus cublasShutdown()
Releases CPU-side resources used by CUBLAS library

Release of GPU-side resources may be deferred until 
application shuts down
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cublasGetError(), cublasAlloc(),
cublasFree()

cublasStatus cublasGetError()

Returns last error that occurred from any of the CUBLAS 
core functions

Resets internal error state to CUBLAS_STATE_SUCCESS

cublasStatus cublasAlloc(int n, int elemSize, 

void **devPtr)

Creates object in GPU memory for an array of n elements

Each element requires elemSize bytes of storage

Wrapper around cudaMalloc() so devPtr can be used 
accordingly

cublasStatus cublasFree(const void *devPtr)

Destroys object in GPU space pointer to by devPtr
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cublasSetVector(), cublasGetVector()

cublasStatus cublasSetVector(int n, int elemSize, const void *x, 

int incx, void *y, int incy)

Copies n elements from a vector x in CPU memory space to a 
vector y in GPU memory space

Each element occupies elemSize bytes

Storage spacing between consecutive elements in arrays x and y
is incx and incy, respectively

cublasStatus cublasGetVector(int n, int elemSize, const void *x, 

int incx, void *y, int incy)

Copies n elements from a vector x in GPU memory space to a 
vector y in CPU memory space
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cublasSetMatrix(), cublasGetMatrix()

cublasStatus cublasSetMatrix(int rows, int cols, int elemSize, 

const void *A, int lda, void *B, int ldb)

Copies a tile of rows*cols elements from a matrix A in CPU memory 
space to a matrix B in GPU memory space

Each element occupies elemSize bytes

Both matrices stored in column-major format, with leading 
dimensions of lda and ldb for matrices A and B, respectively

cublasStatus cublasGetMatrix(int rows, int cols, int elemSize, 

const void *A, int lda, void *B, int ldb)

Copies a tile of rows*cols elements from a matrix A in GPU memory 
space to a matrix B in CPU memory space
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Calling CUBLAS from FORTRAN

Fortran-to-C calling conventions are not standardized 
and differ by platform and toolchain.  Differences 
may include:

symbol names (capitalization, name decoration)

argument passing (by value or reference)

passing of string arguments (length information)

passing of pointer arguments (size of the pointer)

returning floating-point or compound data types (for 
example, single-precision or complex data type)

CUBLAS provides wrapper functions (in the file 
fortran.c) that need to be compiled with the user 
preferred toolchain

Providing source code allows users to make any changes 
necessary for a particular platform and toolchain. 
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Calling CUBLAS from FORTRAN

Two interfaces:
Thunking (define CUBLAS_USE_THUNKING when compiling fortran.c)

Allows interfacing to existing applications without any changes

During each call, the wrappers allocate GPU memory, copy source 
data from CPU memory space to GPU memory space, call 
CUBLAS, and finally copy back the results to CPU memory space 
and deallocate the GPGPU memory

Intended for light testing due to call overhead

Non-Thunking (default)

Intended for production code

Substitute device pointers for vector and matrix arguments in all 
BLAS functions

Existing applications need to be modified slightly to allocate and 
deallocate data structures in GPGPU memory space (using 
CUBLAS_ALLOC and CUBLAS_FREE) and to copy data  between 
GPU and CPU memory spaces (using CUBLAS_SET_VECTOR, 
CUBLAS_GET_VECTOR, CUBLAS_SET_MATRIX, and 
CUBLAS_GET_MATRIX)
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FORTRAN 77  Code example:

program matrixmod
implicit none
integer M, N
parameter (M=6, N=5)
real*4 a(M,N)
integer i, j

do j = 1, N
do i = 1, M

a(i,j) = (i-1) * M + j
enddo

enddo

call modify (a, M, N, 2, 3, 16.0, 12.0)

do j = 1, N
do i = 1, M

write(*,"(F7.0$)") a(i,j)
enddo
write (*,*) "”

enddo

stop
end

subroutine modify (m, ldm, n, p, q, alpha, beta)
implicit none
integer ldm, n, p, q
real*4 m(ldm,*), alpha, beta

external sscal

call sscal (n-p+1, alpha, m(p,q), ldm)

call sscal (ldm-p+1, beta, m(p,q), 1)

return
end
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FORTRAN 77  Code example:
Non-thunking interface

program matrixmod
implicit none
integer M, N, sizeof_real, devPtrA
parameter (M=6, N=5, sizeof_real=4)
real*4 a(M,N)
integer i, j, stat
external cublas_init, cublas_set_matrix,cublas_get_matrix
external cublas_shutdown, cublas_alloc
integer cublas_alloc

do j = 1, N
do i = 1, M

a(i,j) = (i-1) * M + j
enddo

enddo

call cublas_init
stat = cublas_alloc(M*N, sizeof_real, devPtrA)
if (stat .NE. 0) then

write(*,*) "device memory allocation failed"
stop

endif

call cublas_set_matrix (M, N, sizeof_real, a, M, devPtrA, M)
call modify (devPtrA, M, N, 2, 3, 16.0, 12.0)
call cublas_get_matrix (M, N, sizeof_real, devPtrA, M, a, M)
call cublas_free(devPtrA)
call cublas_shutdown

do j = 1, N
do i = 1, M

write(*,"(F7.0$)") a(i,j)
enddo
write (*,*) "”

enddo

stop
end

#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1)

subroutine modify (devPtrM, ldm, n, p, q, alpha, beta)
implicit none
integer ldm, n, p, q
integer sizeof_real, devPtrM
parameter (sizeof_real=4)
real*4  alpha, beta
call cublas_sscal (n-p+1, alpha, 

devPtrM+IDX2F(p,q,ldm)*sizeof_real, 
ldm)

call cublas_sscal (ldm-p+1, beta, 
devPtrM+IDX2F(p,q,ldm)*sizeof_real, 
1)

return
end

If using fixed format check that the line
length is below the 72 column limit !!!
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CUFFT

The Fast Fourier Transform (FFT) is a divide-and-
conquer algorithm for efficiently computing discrete 
Fourier transform of complex or real-valued data 
sets.

CUFFT is the CUDA FFT library

Provides a simple interface for computing parallel FFT on 
an NVIDIA GPU

Allows users to leverage the floating-point power and 
parallelism of the GPU without having to develop a custom, 
GPU-based FFT implementation
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Supported Features

1D, 2D and 3D transforms of complex and real-valued 
data

Batched execution for doing multiple 1D transforms 
in parallel

1D transform size up to 8M elements

2D and 3D transform sizes in the range [2,16384]

In-place and out-of-place transforms for real and 
complex data.
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CUFFT Types and Definitions

cufftHandle

Handle type used to store and access CUFFT plans

cufftResults

Enumeration of API function return values

Eg. CUFFT_SUCCESS, CUFFT_INVALID_PLAN, etc.
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Transform Types

Library supports real and complex transforms
CUFFT_C2C, CUFFT_C2R, CUFFT_R2C

Directions
CUFFT_FORWARD (-1) and CUFFT_BACKWARD (1)

According to sign of the complex exponential term

Real and imaginary parts of complex input and 
output arrays are interleaved

cufftComplex type is defined for this

Real to complex FFTs, output array holds only 
nonredundant coefficients

N -> N/2+1

N0 x N1 x … x Nn -> N0 x N1 x … x (Nn/2+1)

For in-place transforms the input/output arrays need to be 
padded
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More on Transforms

For 2D and 3D transforms, CUFFT performs transforms in row-
major  (C-order)

If calling from FORTRAN or MATLAB, remember to change the 
order of size parameters during plan creation

CUFFT performs un-normalized transforms:

IFFT(FFT(A))= length(A)*A

CUFFT API is modeled after FFTW. Based on plans, that 
completely specify the optimal configuration to execute a 
particular size of FFT

Once a plan is created, the library stores whatever state is 
needed to execute the plan multiple times without recomputing
the configuration

Works very well for CUFFT, because different kinds of FFTs
require different thread configurations and GPU resources
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cufftPlan1d()

cufftResult cufftPlan1d(cufftHandle *plan, int nx, cufftType type, int batch)

Creates a 1D FFT plan configuration for a specified signal size and  data 
type

The batch input parameter tells CUFFT how many 1D transforms to 
configure

Input:

plan Pointer to a cufftHandle object

nx The transform size (e.g., 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C)

batch Number of transforms of size nx

Output:

plan Contains a CUFFT 1D plan handle value

© NVIDIA Corporation 2008 148

cufftPlan2d()

cufftResult cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type)

Creates a 2D FFT plan configuration for a specified signal size 
and  data type

Input:

plan Pointer to a cufftHandle object

nx The transform size in the X direction

ny The transform size in the Y direction

type The transform data type (e.g., CUFFT_C2C)

Output:

plan Contains a CUFFT 2D plan handle value
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cufftPlan3d()

cufftResult cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType
type)

Creates a 3D FFT plan configuration for a specified signal size 
and  data type

Input:

plan Pointer to a cufftHandle object

nx The transform size in the X direction

ny The transform size in the Y direction

nz The transform size in the Z direction

type The transform data type (e.g., CUFFT_C2C)

Output:

plan Contains a CUFFT 3D plan handle value
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cufftDestroy()

cufftResult cufftDestroy(cufftHandle plan)

Frees all GPU resources associated with a CUFFT plan and 
destroys the internal plan data structure

Should be called once a plan is no longer needed to avoid 
wasting GPU memory

Input:

plan cufftHandle object
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cufftExecC2C()

cufftResult cufftExecC2C(cufftHandle plan, cufftComplex *idata,                          
cufftComplex *odata, int direction)

Executes a CUFFT complex to complex transform plan

Uses as input data the GPU memory pointed to by the idata
parameter

Stores the Fourier coefficients in the odata array

If idata and odata are the same, does an in-place transform

Input:

plan cufftHandle object

idata pointer to input data (in GPU memory) to transform

odata pointer to output data (in GPU memory)

direction direction of transform (CUFFT_FORWARD or CUFFT_BACKWARD)

Output:

odata contains complex Fourier coefficients
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cufftExecR2C()

cufftResult cufftExecR2C(cufftHandle plan, cufftReal *idata,                          
cufftComplex *odata)

Executes a CUFFT real to complex transform plan

Uses as input data the GPU memory pointed to by the idata
parameter

Stores non-redundant Fourier coefficients in the odata array

If idata and odata are the same, does an in-place transform

Input:

plan cufftHandle object

idata pointer to input data (in GPU memory) to transform

odata pointer to output data (in GPU memory)

Output:

odata contains complex Fourier coefficients
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cufftExecC2R()

cufftResult cufftExecC2R(cufftHandle plan, cufftReal *idata,                          
cufftComplex *odata)

Executes a CUFFT complex to real transform plan

Uses as input the GPU memory pointed to by idata

idata contains only non-redundant complex Fourier coefficients

Stores real output data in the odata array

If idata and odata are the same, does an in-place transform

Input:

plan cufftHandle object

idata pointer to complex input data (in GPU memory) to transform

odata pointer to real output data (in GPU memory)

Output:

odata contains real-valued output data
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Accuracy and performance

The CUFFT library implements several FFT algorithms, each with different
performances and accuracy. 

The best performance paths correspond to transform sizes that:
1. Fit in CUDA’a shared memory
2. Are powers of a single factor (e.g. power-of-two)

If only condition 1 is satisfied, CUFFT uses a more general mixed-radix 
factor algorithm that is slower and less accurate numerically.

If none of the above conditions is satisfied, CUFFT uses an out-of-place, 
mixed-radix algorithm that stores all intermediate results in global GPU 
memory. 

One notable exception is for long 1D transforms, where CUFFT uses a 
distributed algorithm that perform 1D FFT using 2D FFT.

CUFFT does not implement any specialized algorithms for real data, and 
so there is no direct performance benefit to using real to complex (or 
complex to real) plans instead of complex to complex. For this release, 
the real data API exists primarily for convenience
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Code example:
1D complex to complex transforms

#define NX 256
#define BATCH 10

cufftHandle plan;
cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*BATCH);
…
/* Create a 1D FFT plan. */
cufftPlan1d(&plan, NX, CUFFT_C2C, BATCH);

/* Use the CUFFT plan to transform the signal in place. */
cufftExecC2C(plan, data, data, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, data, data, CUFFT_INVERSE);

/* Note:
(1) Divide by number of elements in data-set to get back original data
(2) Identical pointers to input and output arrays implies in-place transformation

*/

/* Destroy the CUFFT plan. */
cufftDestroy(plan);

cudaFree(data);
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Code example:
2D complex to complex transform

#define NX 256
#define NY 128

cufftHandle plan;
cufftComplex *idata, *odata;
cudaMalloc((void**)&idata, sizeof(cufftComplex)*NX*NY);
cudaMalloc((void**)&odata, sizeof(cufftComplex)*NX*NY);
…
/* Create a 1D FFT plan. */
cufftPlan2d(&plan, NX,NY, CUFFT_C2C);

/* Use the CUFFT plan to transform the signal out of place. */
cufftExecC2C(plan, idata, odata, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, odata, odata, CUFFT_INVERSE);

/* Note:
Different pointers to input and output arrays implies out of place transformation

*/

/* Destroy the CUFFT plan. */
cufftDestroy(plan);

cudaFree(idata), cudaFree(odata);



Additional CUDA Topics

© NVIDIA Corporation 2008 158

Outline

Texture Functionality

Fortran Interoperability

Event API

Device Management

Graphics Interoperability



CUDA Texture Functionality

© NVIDIA Corporation 2008 160

Textures in CUDA

Different hardware path to memory

Benefits of CUDA textures:
Texture fetches are cached

Optimized for 2D locality

Textures are addressable in 2D
Using integer or normalized coordinates

Means fewer addressing calculations in code

Provide filtering for free

Free wrap modes (boundary conditions)
Clamp to edge / repeat

Limitations of CUDA textures:
Read-only

Currently either 1D or 2D  (3D will be added)

9-bit accuracy of filter weights
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Two CUDA Texture Types

Bound to linear memory
Global memory is bound to a texture

Only 1D

Integer addressing

No filtering, no addressing modes

Bound to CUDA arrays
CUDA array is bound to a texture

1D or 2D

Float addressing (size-based or normalized)

Filtering

Addressing modes (clamping, repeat)

Both:
Return either element type or normalized float
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CUDA Texturing Steps

Host (CPU) code:

Allocate/obtain memory (global linear, or CUDA array)

Create a texture reference object

Currently must be at file-scope

Bind the texture reference to memory/array

When done:

Unbind the texture reference, free resources

Device (kernel) code:

Fetch using texture reference

Linear memory textures: 

tex1Dfetch()

Array textures: 

tex1D() or tex2D()
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Texture Reference

Immutable parameters (compile-time)
Type: type returned when fetching

Basic int, float types
CUDA 1-, 2-, 4-element vectors

Dimensionality:
Currently 1 or 2 (3 will be supported in the future)

Read Mode:
cudaReadModeElementType
cudaReadModeNormalizedFloat (valid for 8- or 16-bit ints)
– returns [-1,1] for signed, [0,1] for unsigned

Mutable parameters (run-time, only for array-textures)
Normalized:

non-zero = addressing range [0, 1]

Filter Mode:
cudaFilterModePoint
cudaFilterModeLinear

Address Mode:
cudaAddressModeClamp
cudaAddressModeWrap
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Example: Host code for linear mem

// declare texture reference (must be at file-scope)

texture<unsigned short, 1, cudaReadModeNormalizedFloat> texRef;

...

// set up linear memory

unsigned short *dA = 0;

cudaMalloc((void**)&dA, numBytes);

cudaMemcpy(dA, hA, numBytes, cudaMemcpyHostToDevice);

// bind texture reference to array

cudaBindTexture(NULL, texRef, dA);
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cudaArray Type

Channel format, width, height

cudaChannelFormatDesc structure

int x, y, z, w: bits for each component

enum cudaChannelFormatKind – one of:
cudaChannelFormatKindSigned

cudaChannelFormatKindUnsigned

cudaChannelFormatKindFloat

some predefined constructors:
cudaCreateChannelDesc<float>(void);

cudaCreateChannelDesc<float4>(void);

Management functions:
cudaMallocArray, cudaFreeArray, 

cudaMemcpyToArray, cudaMemcpyFromArray, ...
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Example: Host code for 2D array tex

// declare texture reference (must be at file-scope)

texture<float, 2, cudaReadModeElementType> texRef;

...

// set up the CUDA array

cudaChannelFormatDesc cf = cudaCreateChannelDesc<float>();

cudaArray *texArray = 0;

cudaMallocArray(&texArray, &cf, dimX, dimY);

cudaMempcyToArray(texArray, 0,0, hA, numBytes, cudaMemcpyHostToDevice);

// specify mutable texture reference parameters

texRef.normalized = 0;

texRef.filterMode = cudaFilterModeLinear;

texRef.addressMode = cudaAddressModeClamp;

// bind texture reference to array

cudaBindTextureToArray(texRef, texArray);
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CUDA Texturing Details

Linear (bilinear) filtering:

Only for textures bound to CUDA arrays

Only for textures that return floats

Still possible to filter 8- or 16-bit integers:
cudaReadModeNormalizedFloat texture reference

scale value in the kernel after fetching

Both run-time and driver API

driver API allows half float (16bit) storage
fetched values are 32bit

will be supported by future run-time API

It is possible to copy between linear memory and 
CUDA arrays

CUDA Fortran Interoperability
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Fortran examples

Calling CUBLAS from Fortran

Using pinned memory in Fortran

Calling CUDA kernel from Fortran
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SGEMM example
! Define  3  single precision matrices A, B, C

real , dimension(m1,m1)::      A, B, C

……

! Initialize

……

#ifdef CUBLAS

! Call SGEMM in CUBLAS library using THUNKING interface (library takes care of 

! memory allocation on device and data movement)

call cublas_SGEMM ('n','n',m1,m1,m1,alpha,A,m1,B,m1,beta,C,m1)

#else

! Call SGEMM in  host BLAS library

call SGEMM ('n','n',m1,m1,m1,alpha,A,m1,B,m1,beta,C,m1)

#endif

To use the host BLAS routine:
g95 –O3 code.f90 –L/usr/local/lib -lblas

To use the CUBLAS routine (fortran.c is provided by NVIDIA):
gcc -O3 -DCUBLAS_USE_THUNKING -I/usr/local/cuda/include -c  fortran.c
g95 -O3 -DCUBLAS code.f90 fortran.o -L/usr/local/cuda/lib -lcublas
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Pinned memory example

use iso_c_binding

! The allocation is performed by C function calls. Define the C pointer as type (C_PTR)

type(C_PTR) :: cptr_A, cptr_B, cptr_C

! Define Fortran arrays as pointer.

real, dimension(:,:), pointer ::      A, B, C

! Allocating memory with cudaMallocHost. 

! The Fortan arrays, now defined as pointers, are then associated with the C pointers using the 

! new interoperability defined in iso_c_binding. This is equivalent to allocate(A(m1,m1)) 

res = cudaMallocHost ( cptr_A, m1*m1*sizeof(fp_kind) )

call c_f_pointer ( cptr_A, A, (/ m1, m1 /) )

! Use A as usual.

! See example code for cudaMallocHost interface code

Pinned memory provides a fast PCI-e transfer speed and enables use of  streams:
•Allocation needs to be done with cudaMallocHost
•Use new Fortran 2003 features for interoperability with C.
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Calling CUDA kernels

! Fortran -> C -> CUDA ->C ->Fortran

call cudafunction(c,c2,N)

From Fortran call C function that will call CUDA kernel

/* NB: Fortran subroutine arguments are passed by reference.    */

extern "C" void cudafunction_(cuComplex *a, cuComplex *b,  int *Np)

{

...

int N=*np;

cudaMalloc ((void **) &a_d , sizeof(cuComplex)*N); 

cudaMemcpy( a_d, a,  sizeof(cuComplex)*N   ,cudaMemcpyHostToDevice);

dim3 dimBlock(block_size); dim3 dimGrid (N/dimBlock.x); if( N % block_size != 0 ) dimGrid.x+=1;

square_complex<<<dimGrid,dimBlock>>>(a_d,a_d,N);

cudaMemcpy( b, a_d, sizeof(cuComplex)*N,cudaMemcpyDeviceToHost);  

cudaFree(a_d);

}

complex_mul: main.f90 Cuda_function.o
$(FC) -o complex_mul main.f90 Cuda_function.o -L/usr/local/cuda/lib -lcudart

Cuda_function.o: Cuda_function.cu
nvcc -c -O3 Cuda_function.cu
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CUDA Event API

Events are inserted (recorded) into CUDA call streams

Usage scenarios:
measure elapsed time for CUDA calls (clock cycle precision)

query the status of an asynchronous CUDA call

block CPU until CUDA calls prior to the event are completed

asyncAPI sample in CUDA SDK

cudaEvent_t start, stop;

cudaEventCreate(&start); cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid, block>>>(...);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float et;

cudaEventElapsedTime(&et, start, stop);

cudaEventDestroy(start); cudaEventDestroy(stop);
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Device Management

CPU can query and select GPU devices

cudaGetDeviceCount( int* count )

cudaSetDevice( int device )

cudaGetDevice( int *current_device )

cudaGetDeviceProperties( cudaDeviceProp* prop, 

int device )

cudaChooseDevice( int *device, cudaDeviceProp* prop )

Multi-GPU setup:

device 0 is used by default

one CPU thread can control only one GPU
multiple CPU threads can control the same GPU 

– calls are serialized by the driver
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Multiple CPU Threads and CUDA

CUDA resources allocated by a CPU thread can be 
consumed only by CUDA calls from the same CPU 
thread

Violation Example:

CPU thread 2 allocates GPU memory, stores address in p

thread 3 issues a CUDA call that accesses memory via p

CUDA Graphics Interoperability
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OpenGL Interoperability

OpenGL buffer objects can be mapped into the 
CUDA address space and then used as global 
memory

Vertex buffer objects

Pixel buffer objects

Direct3D9 Vertex objects can be mapped

Data can be accessed like any other global data in 
the device code

Image data can be displayed from pixel buffer 
objects using glDrawPixels / glTexImage2D

Requires copy in video memory, but still fast
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OpenGL Interop Steps

Register a buffer object with CUDA
cudaGLRegisterBufferObject(GLuint buffObj);

OpenGL can use a registered buffer only as a source
Unregister the buffer prior to rendering to it by OpenGL

Map the buffer object to CUDA memory
cudaGLMapBufferObject(void **devPtr, GLuint buffObj);

Returns an address in global memory
Buffer must registered prior to mapping

Launch a CUDA kernel to process the buffer

Unmap the buffer object prior to use by OpenGL
cudaGLUnmapBufferObject(GLuint buffObj);

Unregister the buffer object
cudaGLUnregisterBufferObject(GLuint buffObj);

Optional: needed if the buffer is a render target

Use the buffer object in OpenGL code
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Interop Scenario:
Dynamic CUDA-generated texture

Register the texture PBO with CUDA

For each frame:

Map the buffer

Generate the texture in a CUDA kernel

Unmap the buffer

Update the texture

Render the textured object

unsigned char *p_d=0;

cudaGLMapBufferObject((void**)&p_d, pbo);

prepTexture<<<height,width>>>(p_d, time);

cudaGLUnmapBufferObject(pbo);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);

glBindTexture(GL_TEXTURE_2D, texID);

glTexSubImage2D(GL_TEXTURE_2D, 0, 0,0, 256,256, 

GL_BGRA, GL_UNSIGNED_BYTE, 0);
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Interop Scenario:
Frame Post-processing by CUDA

For each frame:

Render to PBO with OpenGL

Register the PBO with CUDA

Map the buffer

Process the buffer with a CUDA kernel

Unmap the buffer

Unregister the PBO from CUDA

unsigned char *p_d=0;

cudaGLRegisterBufferObject(pbo);

cudaGLMapBufferObject((void**)&p_d, pbo);

postProcess<<<blocks,threads>>>(p_d);

cudaGLUnmapBufferObject(pbo);

cudaGLUnregisterBufferObject(pbo);

...
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