Representing Images as Functions

Image

In the continuous setting, an image I is a function

$$
I: \Omega \rightarrow \mathbb{R}^{n}
$$

Domain of the image
Image domain Ω is a rectangular subset of $\mathbb{R}^{d}, d \geq 1$
$\Omega \subset \mathbb{R}^{1}$: signal (1D)
$\Omega \subset \mathbb{R}^{2}$: image (2D)
$\Omega \subset \mathbb{R}^{3}$: volume (3D)

Range of the image

Image values lie in $\mathbb{R}^{n}, n \geq 1$, where n is the number of components:
\mathbb{R}^{1} : scalar valued image (grayscale)
\mathbb{R}^{2} : e.g. 2D-vector field
\mathbb{R}^{3} : e.g. RGB image, HSV values, 3D-vector field
\mathbb{R}^{4} : e.g. matrix valued images

Differential Operators on Images

We assume the image domain to be two-dimensional: $\Omega \rightarrow \mathbb{R}^{2}$.
Since images are functions, we can apply differential operators to them (assuming they are sufficiently smooth):

Partial derivative w.r.t. x of a scalar image $I: \Omega \rightarrow \mathbb{R}$

$$
\partial_{x} I: \Omega \rightarrow \mathbb{R}, \quad\left(\partial_{x} I\right)(x, y)=\lim _{h \rightarrow 0} \frac{I(x+h, y)-I(x, y)}{h}
$$

Partial derivative w.r.t. y of a scalar image $I: \Omega \rightarrow \mathbb{R}$

$$
\partial_{y} I: \Omega \rightarrow \mathbb{R}, \quad\left(\partial_{y} I\right)(x, y)=\lim _{h \rightarrow 0} \frac{I(x, y+h)-I(x, y)}{h}
$$

Derivatives for vector-valued images are defined component-wise

Differential Operators on Images

Gradient of a scalar image $I: \Omega \rightarrow \mathbb{R}$
The gradient combines all partial derivatives into a vector:

$$
\nabla I: \Omega \rightarrow \mathbb{R}^{2}, \quad(\nabla I)(x, y)=\binom{\left(\partial_{x} I\right)(x, y)}{\left(\partial_{y} I\right)(x, y)}
$$

Divergence of a 2D-vector field $v: \Omega \rightarrow \mathbb{R}^{2}$
This one needs a vector field as input. The result is a scalar function:

$$
\operatorname{div} v: \Omega \rightarrow \mathbb{R}, \quad(\operatorname{div} v)(x, y)=\left(\partial_{x} v_{1}\right)(x, y)+\left(\partial_{y} v_{2}\right)(x, y)
$$

Differential Operators on Images

Gradient magnitude of a scalar image
Pointwise absolute value of ∇I :

$$
|\nabla I|: \Omega \rightarrow \mathbb{R}, \quad(|\nabla I|)(x, y)=\sqrt{\left(\partial_{x} I\right)(x, y)^{2}+\left(\partial_{y} I\right)(x, y)^{2}}
$$

One often uses this as an edge detector, where big values of $|\nabla I|(x, y)$ indicate an edge at (x, y).

Differential Operators on Images

Laplacian of a scalar image $I: \Omega \rightarrow \mathbb{R}$
The gradient $\nabla I: \Omega \rightarrow \mathbb{R}^{2}$ is a 2 D -vector field, and divergence div operates on 2D-vector fields. Thus, we can concatenate these two operators. The result is the Laplacian:

$$
\begin{gathered}
\Delta I: \Omega \rightarrow \mathbb{R}, \quad \Delta I:=\operatorname{div}(\nabla I)=\operatorname{div}\binom{\partial_{x} I}{\partial_{y} I} \\
(\Delta I)(x, y)=\left(\partial_{x x} I\right)(x, y)+\left(\partial_{y y} I\right)(x, y)
\end{gathered}
$$

The laplacian is useful in physical models. For example, if the value $I(x, y)$ specifies the temperature at each point (x, y), then ΔI turns out to be the rate of local temperature decrease: $\left(\partial_{t} I\right)(x, y)=a(\Delta I)(x, y)$ for some $a>0$.

Convolution

Convolution computes a weighted of image values.

Convolution

Given a kernel $K: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an image $I: \Omega \rightarrow \mathbb{R}^{n}$:

$$
K * I: \Omega \rightarrow \mathbb{R}^{n}, \quad(K * I)(x, y)=\int_{\mathbb{R}^{2}} K(a, b) I(x-a, y-b) d a d b
$$

Definition at boundary of image domain
Special handling at (x, y) near the boundary of Ω is needed, as the argument ($x-a, y-b$) of I may be outside of Ω.
Typical choices: Set to zero or Clamping.
2D-Gaussian kernel

$$
K(a, b)=G_{\sigma_{1}, \sigma_{2}}(a, b):=\frac{1}{2 \pi \sigma_{1} \sigma_{2}} e^{-\frac{a^{2}}{2 \sigma_{1}^{2}}-\frac{b^{2}}{2 \sigma_{2}^{2}}}
$$

with a standard deviations $\sigma_{1}>0$ and $\sigma_{2}>0$.
Usually we have $\sigma_{1}=\sigma_{2}$, i.e. the kernel is symmetric.

Convolution: Properties

Assuming the image has been prolonged also beyond Ω to whole \mathbb{R}^{2}.

- Commutativity:

$$
K * I=I * K
$$

- Associativity:

$$
K_{1} *\left(K_{2} * I\right)=\left(K_{1} * K_{2}\right) * I
$$

- Bilinearity:

$$
\begin{gathered}
\left(\alpha_{1} K_{1}+\alpha_{2} K_{2}\right) * I=\alpha_{1}\left(K_{1} * I\right)+\alpha_{2}\left(K_{2} * I\right) \\
K *\left(\beta_{1} I_{1}+\beta_{2} I_{2}\right)=\beta_{1}\left(K * I_{1}\right)+\beta_{2}\left(K * I_{2}\right)
\end{gathered}
$$

for $\alpha_{2}, \alpha_{2} \in \mathbb{R}, \beta_{2}, \beta_{2} \in \mathbb{R}$.

- Differential operators:

$$
\begin{aligned}
& \partial_{x}(K * I)=\left(\partial_{x} K\right) * I=K *\left(\partial_{x} I\right) \\
& \partial_{y}(K * I)=\left(\partial_{y} K\right) * I=K *\left(\partial_{y} I\right)
\end{aligned}
$$

Discretization of Scalar Images

For the numeral implementations, the image domain $\Omega \subset \mathbb{R}^{2}$ is discretized into a two-dimensional grid of $M \times N$ pixels.
Scalar valued images $I: \Omega \rightarrow \mathbb{R}$
We have one real number at each pixel: $I(x, y), 0 \leq x \leq M-1$, $0 \leq y \leq N-1$. This can be represented as matrices $\mathbb{R}^{\bar{M} \times N}$.

Linearized storage

For computing purposes, the 2D-grid is linearized into a one-dimensional array $a \in \mathbb{R}^{M N}$ of size $M N$. Usual convention is row-major storage:

$$
\begin{aligned}
a= & (I(0,0), I(1,0), I(2,0), \ldots, I(M-1,0) \\
& I(0,1), I(1,1), I(2,1), \ldots, I(M-1,1), \ldots \\
& I(0, N-1), I(1, N-1), I(2, N-1), \ldots, I(M-1, N-1))
\end{aligned}
$$

Linearized access to image values
Pixel (x, y) corresponds to the linearized index is $i=x+M \cdot y$:

$$
I(x, y)=a[x+M \cdot y]
$$

Discretization of Vector-Valued Images

2D-vector fields $v: \Omega \rightarrow \mathbb{R}^{2}$
We have two real numbers at each pixel: $v(x, y)=\left(v_{1}(x, y), v_{2}(x, y)\right)$.
This can be represented two matrices $\mathbb{R}^{M \times N}$.
Linearized storage, component-wise
There are two common options for linearizing v. One is to first store v_{1}, and then v_{2} :

$$
a=\left(v_{1}(0,0), \ldots, v_{1}(M-1, N-1), v_{2}(0,0), \ldots, v_{2}(M-1, N-1)\right) .
$$

Linearized (component-wise) access to image values
Values $v_{1}(x, y), v_{2}(x, y)$ are at locations $(x+M \cdot y)+k \cdot M N, k=0,1$.

Discretization of Vector-Valued Images

2D-vector fields $v: \Omega \rightarrow \mathbb{R}^{2}$
We have two real numbers at each pixel: $v(x, y)=\left(v_{1}(x, y), v_{2}(x, y)\right)$.
This can be represented two matrices $\mathbb{R}^{M \times N}$.
Linearized storage, interlieved
Interlieved storage stores v_{1} and v_{2} pixel-wise:

$$
\begin{aligned}
a=(& v_{1}(0,0), v_{2}(0,0), v_{1}(1,0), v_{2}(1,0), \ldots, v_{1}(M-1,0), v_{2}(M-1,0) \\
& \left.\ldots, v_{1}(0, N-1), v_{2}(0, N-1), \ldots, v_{2}(M-1, N-1)\right) .
\end{aligned}
$$

Linearized (interlieved) access to image values
Values $v_{1}(x, y), v_{2}(x, y)$ are at locations $2(x+M \cdot y)+k, k=0,1$.

Discretization of Differential Operators

Gradient

Forward differences:

$$
(\nabla I)(x, y)=\binom{\left(\partial_{x}^{+} I\right)(x, y)}{\left(\partial_{y}^{+} I\right)(x, y)}
$$

Forward differences (with Neumann boundary conditions)

$$
\begin{aligned}
& \left(\partial_{x}^{+} I\right)(x, y)= \begin{cases}I(x+1, y)-I(x, y) & \text { if } x+1<M \\
0 & \text { else }\end{cases} \\
& \left(\partial_{y}^{+} I\right)(x, y)= \begin{cases}I(x, y+1)-I(x, y) & \text { if } y+1<N \\
0 & \text { else }\end{cases}
\end{aligned}
$$

This assumes I to have slope 0 at the boundary: $\partial_{\text {normal }_{\Omega}} I=0$.

Discretization of Differential Operators

Divergence

Backward differences:

$$
(\operatorname{div} v)(x, y)=\left(\partial_{x}^{-} v_{1}\right)(x, y)+\left(\partial_{y}^{-} v_{2}\right)(x, y)
$$

Backward differences (with Dirichlet boundary conditions)

$$
\begin{aligned}
& \left(\partial_{x}^{-} I\right)(x, y)=\left\{\begin{array}{ll}
I(x, y) & \text { if } x+1<M \\
0 & \text { else }
\end{array}\right\}-\left\{\begin{array}{ll}
I(x-1, y) & \text { if } x>0 \\
0 & \text { else }
\end{array}\right\} \\
& \left(\partial_{y}^{-} I\right)(x, y)=\left\{\begin{array}{ll}
I(x, y) & \text { if } y+1<N \\
0 & \text { else }
\end{array}\right\}-\left\{\begin{array}{ll}
I(x, y-1) & \text { if } y>0 \\
0 & \text { else }
\end{array}\right\}
\end{aligned}
$$

This assumes / to have zero values at the boundary.

Discretization of the Convolution

Convolution

$$
(K * I)(x, y)=\int_{\mathbb{R}^{2}} K(a, b) I(x-a, y-b) d a d b
$$

Discretized convolution

The convolution is discretized as a finite weighted sum in each pixel:

$$
(K * I)(x, y)=\sum_{(a, b) \in S_{K}} K(a, b) \cdot I(x-a, y-b)
$$

where S_{K} is the support of K, i.e. the positions (a, b) with $K(a, b) \neq 0$.

Discretization of the Convolution

Convolution

$$
(K * I)(x, y)=\int_{\mathbb{R}^{2}} K(a, b) I(x-a, y-b) d a d b
$$

Discretized kernel

In computer vision one often deals with the convolution with a small-support kernel K. An examples is the Gaussian kernel.

Windowing

The support is assumed to be in a small window of size $\left(2 r_{x}+1\right) \times\left(2 r_{y}+1\right)$ with radii $r_{x} \geq 1, r_{y} \geq 1$, which is symmetric w.r.t. zero:

$$
(K * I)(x, y)=\sum_{a=-r_{x}}^{r_{x}} \sum_{b=-r_{y}}^{r_{y}} K(a, b) I(x-a, y-b) d a d b
$$

For storing the discretized kernel K, the same row-major approach is used.

