Representing Images as Functions

Image
In the continuous setting, an image [is a function

1:Q—R"

Domain of the image

Image domain € is a rectangular subset of R d>1
Q c R®: signal (1D)

Q C R?: image (2D)

Q C R3: volume (3D)

Range of the image

Image values lie in R”, n > 1, where n is the number of components:
R!: scalar valued image (grayscale)

R?: e.g. 2D-vector field

R3: e.g. RGB image, HSV values, 3D-vector field

R*: e.g. matrix valued images

Differential Operators on Images

We assume the image domain to be two-dimensional: Q — R2.
Since images are functions, we can apply differential operators to them
(assuming they are sufficiently smooth):

Partial derivative w.r.t. x of a scalar image / : 2 — R

im I(X+h’)/)_l(xa)/)

Okl - Q—=R, (0«)(x,y) = /|1—>0 p

Partial derivative w.r.t. y of a scalar image / : Q2 — R

Ol :Q—=R, (0,)(x,y)= iLmo

I(x,y + h) = 1(x,y)
h

Derivatives for vector-valued images are defined component-wise

Differential Operators on Images

Gradient of a scalar image / : 2 — R
The gradient combines all partial derivatives into a vector:

viaow, @i - ((00)

Divergence of a 2D-vector field v : Q — R?
This one needs a vector field as input. The result is a scalar function:

divv:Q =R, (divv)(x,y) = (0xwv1)(x,y)+ (Oyv2)(x,y)

Differential Operators on Images

Gradient magnitude of a scalar image
Pointwise absolute value of V/:

V11 =R, (VI y) = /(D)0 + (@) (x,y)?

One often uses this as an edge detector, where big values of |V/|(x, y)
indicate an edge at (x, y).

Differential Operators on Images

Laplacian of a scalar image / : Q - R

The gradient V/ : Q — R? is a 2D-vector field, and divergence div
operates on 2D-vector fields. Thus, we can concatenate these two
operators. The result is the Laplacian:

Al:Q =R, Al:=div(V]) = div (ax/>
o,

(AN (x,y) = (Bud)(x,y) + Oy 1)(x,¥)

The laplacian is useful in physical models. For example, if the value
I(x, y) specifies the temperature at each point (x, y), then A/l turns out
to be the rate of local temperature decrease: (9;/)(x,y) = a(Al)(x,y)
for some a > 0.

Convolution

Convolution computes a weighted of image values.

Convolution

Given a kernel K : R?> — R and an image / : Q — R":

Kxl:Q—R", (K*I)(x,y):/ K(a,b)I(a—x,b—y)dadb
R2

Definition at boundary of image domain

Special handling at (x, y) near the boundary of Q is needed, as the
argument (a — x, b — y) of | may be outside of €.

Typical choices: Set to zero or Clamping.

2D-Gaussian kernel

1 _ 2242

e 202
2mo?

K(a, b) = G,(a, b) :=

with a standard deviation ¢ > 0.

Convolution: Properties

Assuming the image has been prolonged also beyond € to whole R2.

» Commutativity:
Kxl=1xK

» Associativity:
Kl*(KQ*/):(Kl*Kz)*/

> Bilinearity:
(1K1 4+ ko) x| = g (Ky 1) + aa(Ka * 1)

K * (B1h + B2k) = B1(K x 1) + B2(K *)
for ap,ap € R, ﬂ2,62 c R.

» Differential operators:
O (K % 1) = (0xK) * | = K % (0xl)

O, (K 1) = (0,K) % | = K % (1)

Discretization of Scalar Images

For the numeral implementations, the image domain Q C R? is
discretized into a two-dimensional grid of M x N pixels.

Scalar valued images / : 2 — R
We have one real number at each pixel: /(x,y), 0 <x <M -1,
0 <y < N —1. This can be represented as matrices RM*N.

Linearized storage
For computing purposes, the 2D-grid is linearized into a one-dimensional
array a € RMN of size MN. Usual convention is row-major storage:

a=(1(0,0), I(1,0), 1(2,0), ..., /(M — 1,0),
10,1), 1(1,1), 1(2,1), ..., (M —1,1), ...,
10,N —1), I(1,N —1), I(2,N —1), ..., I(M—1,N—1)).

Linearized access to image values
Pixel (x,y) corresponds to the linearized index is i = x+ M - y:

I(x,y)=alx+ M-y

Discretization of Vector-Valued Images

2D-vector fields v : Q — R?
We have two real numbers at each pixel: v(x,y) = (vi(x,y), va(x, y)).
This can be represented two matrices RM*N.

Linearized storage, component-wise
There are two common options for linearizing v. One is to first store vy,
and then vs:

a= (vl(0,0),...,vl(l\/l—1,N—1), v2(o,0),...,v2(/v/—1,/v—1)).

Linearized (component-wise) access to image values
Values vi(x,y), va(x, y) are at locations (x + M -y) + k- MN, k=0, 1.

Discretization of Vector-Valued Images

2D-vector fields v : Q — R?
We have two real numbers at each pixel: v(x,y) = (vi(x,y), va(x,y)).
This can be represented two matrices RM*N.

Linearized storage, interlieved
Interlieved storage stores v; and v, pixel-wise:

a= (vl(O, 0), v2(0,0), vi(1,0), v2(1,0), .. ., vi(M — 1,0), va(M — 1,0)

...,Vl(O,/\/—l),VQ(O,N—1),...,V2(M—1,N—1)>.

Linearized (interlieved) access to image values
Values vi(x,y), va(x, y) are at locations 2(x + M - y) + k, k =0, 1.

Discretization of Differential Operators

Gradient
Forward differences:

769 = (7 4s00)

Forward differences (with Neumann boundary conditions)

O N, y) = 4 T L) —Hloy) ifx1<M
0 else

(5;r’)(x>y):{é(x’y+1)—/(x,y) ify+1<N
else

This assumes / to have slope 0 at the boundary: Onormal, ! = 0.

Discretization of Differential Operators

Divergence
Backward differences:

(divv)(x,y) = (O v1)(x,y) + (9, v2)(x,¥)

Backward differences (with Dirichlet boundary conditions)

(07 1)(x,){I(x,y) ifx—|—1<M}_{l(X—1,y) if x>0

0 else 0 else

_) (x,y) fy+1<N B I(x,y—1) ify>0
(@ 1lxy) = {0 else } {0 else }

This assumes /| to have zero values at the boundary.

Discretization of the Convolution

Convolution
(K« 1)(x,y) :/ K(a,b)I(a—x,b—y)dadb
R2

Discretized convolution
The convolution is discretized as a finite weighted sum in each pixel:

(K= N(x,y) = Z K(a,b) - I(x —a,y — b)
(a,b)ESK

where Sk is the support of K, i.e. the positions (a, b) with K(a, b) # 0.

Discretization of the Convolution

Convolution
(K *N(x,y) :/ K(a,b)I(a—x,b—y)dadb
RZ

Discretized kernel
In computer vision one often deals with the convolution with a
small-support kernel K. An examples is the Gaussian kernel.

Windowing

The support is assumed to be in a small window of size

(2r¢ + 1) x (2r, + 1) with radii r, > 1, r, > 1, which is symmetric
w.r.t. zero:

(K= 1)(x Z Z K(a,b)I(a—x,b—y)dadb
a=—rx b=—r,

For storing the discretized kernel K, the same row-major approach is
used.

	Image Filters
	Diffusion
	Variational Methods

