
Representing Images as Functions

Image
In the continuous setting, an image I is a function

I : Ω→ Rn

Domain of the image
Image domain Ω is a rectangular subset of Rd , d ≥ 1
Ω ⊂ R1: signal (1D)
Ω ⊂ R2: image (2D)
Ω ⊂ R3: volume (3D)

Range of the image
Image values lie in Rn, n ≥ 1, where n is the number of components:
R1: scalar valued image (grayscale)
R2: e.g. 2D-vector field
R3: e.g. RGB image, HSV values, 3D-vector field
R4: e.g. matrix valued images



Differential Operators on Images

We assume the image domain to be two-dimensional: Ω→ R2.
Since images are functions, we can apply differential operators to them
(assuming they are sufficiently smooth):

Partial derivative w.r.t. x of a scalar image I : Ω→ R

∂x I : Ω→ R, (∂x I )(x , y) = lim
h→0

I (x + h, y)− I (x , y)

h

Partial derivative w.r.t. y of a scalar image I : Ω→ R

∂y I : Ω→ R, (∂y I )(x , y) = lim
h→0

I (x , y + h)− I (x , y)

h

Derivatives for vector-valued images are defined component-wise



Differential Operators on Images

Gradient of a scalar image I : Ω→ R
The gradient combines all partial derivatives into a vector:

∇I : Ω→ R2, (∇I )(x , y) =

(
(∂x I )(x , y)

(∂y I )(x , y)

)

Divergence of a 2D-vector field v : Ω→ R2

This one needs a vector field as input. The result is a scalar function:

div v : Ω→ R, (div v)(x , y) = (∂xv1)(x , y) + (∂yv2)(x , y)



Differential Operators on Images

Gradient magnitude of a scalar image
Pointwise absolute value of ∇I :

|∇I | : Ω→ R, (|∇I |)(x , y) =
√

(∂x I )(x , y)2 + (∂y I )(x , y)2

One often uses this as an edge detector, where big values of |∇I |(x , y)
indicate an edge at (x , y).



Differential Operators on Images

Laplacian of a scalar image I : Ω→ R
The gradient ∇I : Ω→ R2 is a 2D-vector field, and divergence div
operates on 2D-vector fields. Thus, we can concatenate these two
operators. The result is the Laplacian:

∆I : Ω→ R, ∆I := div(∇I ) = div

(
∂x I

∂y I

)
(∆I )(x , y) = (∂xx I )(x , y) + (∂yy I )(x , y)

The laplacian is useful in physical models. For example, if the value
I (x , y) specifies the temperature at each point (x , y), then ∆I turns out
to be the rate of local temperature decrease: (∂t I )(x , y) = a(∆I )(x , y)
for some a > 0.



Convolution

Convolution computes a weighted of image values.



Convolution

Given a kernel K : R2 → R and an image I : Ω→ Rn:

K ∗ I : Ω→ Rn, (K ∗ I )(x , y) =

∫
R2

K (a, b) I (a− x , b − y) da db

Definition at boundary of image domain
Special handling at (x , y) near the boundary of Ω is needed, as the
argument (a− x , b − y) of I may be outside of Ω.
Typical choices: Set to zero or Clamping.

2D-Gaussian kernel

K (a, b) = Gσ(a, b) :=
1

2πσ2
e−

a2+b2

2σ2

with a standard deviation σ > 0.



Convolution: Properties

Assuming the image has been prolonged also beyond Ω to whole R2.

I Commutativity:
K ∗ I = I ∗ K

I Associativity:
K1 ∗ (K2 ∗ I ) = (K1 ∗ K2) ∗ I

I Bilinearity:

(α1K1 + α2K2) ∗ I = α1(K1 ∗ I ) + α2(K2 ∗ I )

K ∗ (β1I1 + β2I2) = β1(K ∗ I1) + β2(K ∗ I2)

for α2, α2 ∈ R, β2, β2 ∈ R.

I Differential operators:

∂x(K ∗ I ) = (∂xK ) ∗ I = K ∗ (∂x I )

∂y (K ∗ I ) = (∂yK ) ∗ I = K ∗ (∂y I )



Discretization of Scalar Images
For the numeral implementations, the image domain Ω ⊂ R2 is
discretized into a two-dimensional grid of M × N pixels.

Scalar valued images I : Ω→ R
We have one real number at each pixel: I (x , y), 0 ≤ x ≤ M − 1,
0 ≤ y ≤ N − 1. This can be represented as matrices RM×N .

Linearized storage
For computing purposes, the 2D-grid is linearized into a one-dimensional
array a ∈ RMN of size MN. Usual convention is row-major storage:

a =
(
I (0, 0), I (1, 0), I (2, 0), . . . , I (M − 1, 0),

I (0, 1), I (1, 1), I (2, 1), . . . , I (M − 1, 1), . . . ,

I (0,N − 1), I (1,N − 1), I (2,N − 1), . . . , I (M − 1,N − 1)
)
.

Linearized access to image values
Pixel (x , y) corresponds to the linearized index is i = x + M · y :

I (x , y) = a[x + M · y ]



Discretization of Vector-Valued Images

2D-vector fields v : Ω→ R2

We have two real numbers at each pixel: v(x , y) = (v1(x , y), v2(x , y)).
This can be represented two matrices RM×N .

Linearized storage, component-wise
There are two common options for linearizing v . One is to first store v1,
and then v2:

a =
(
v1(0, 0), . . . , v1(M − 1,N − 1), v2(0, 0), . . . , v2(M − 1,N − 1)

)
.

Linearized (component-wise) access to image values
Values v1(x , y), v2(x , y) are at locations (x + M · y) + k ·MN, k = 0, 1.



Discretization of Vector-Valued Images

2D-vector fields v : Ω→ R2

We have two real numbers at each pixel: v(x , y) = (v1(x , y), v2(x , y)).
This can be represented two matrices RM×N .

Linearized storage, interlieved
Interlieved storage stores v1 and v2 pixel-wise:

a =
(
v1(0, 0), v2(0, 0), v1(1, 0), v2(1, 0), . . . , v1(M − 1, 0), v2(M − 1, 0)

. . . , v1(0,N − 1), v2(0,N − 1), . . . , v2(M − 1,N − 1)
)
.

Linearized (interlieved) access to image values
Values v1(x , y), v2(x , y) are at locations 2(x + M · y) + k, k = 0, 1.



Discretization of Differential Operators

Gradient
Forward differences:

(∇I )(x , y) =

(
(∂+

x I )(x , y)

(∂+
y I )(x , y)

)
Forward differences (with Neumann boundary conditions)

(∂+
x I )(x , y) =

{
I (x + 1, y)− I (x , y) if x + 1 < M

0 else

(∂+
y I )(x , y) =

{
I (x , y + 1)− I (x , y) if y + 1 < N

0 else

This assumes I to have slope 0 at the boundary: ∂normalΩ I = 0.



Discretization of Differential Operators

Divergence
Backward differences:

(div v)(x , y) = (∂−x v1)(x , y) + (∂−y v2)(x , y)

Backward differences (with Dirichlet boundary conditions)

(∂−x I )(x , y) =

{
I (x , y) if x + 1 < M

0 else

}
−

{
I (x − 1, y) if x > 0

0 else

}

(∂−y I )(x , y) =

{
I (x , y) if y + 1 < N

0 else

}
−

{
I (x , y − 1) if y > 0

0 else

}

This assumes I to have zero values at the boundary.



Discretization of the Convolution

Convolution

(K ∗ I )(x , y) =

∫
R2

K (a, b) I (a− x , b − y) da db

Discretized convolution
The convolution is discretized as a finite weighted sum in each pixel:

(K ∗ I )(x , y) =
∑

(a,b)∈SK

K (a, b) · I (x − a, y − b)

where SK is the support of K , i.e. the positions (a, b) with K (a, b) 6= 0.



Discretization of the Convolution

Convolution

(K ∗ I )(x , y) =

∫
R2

K (a, b) I (a− x , b − y) da db

Discretized kernel
In computer vision one often deals with the convolution with a
small-support kernel K . An examples is the Gaussian kernel.

Windowing
The support is assumed to be in a small window of size
(2rx + 1)× (2ry + 1) with radii rx ≥ 1, ry ≥ 1, which is symmetric
w.r.t. zero:

(K ∗ I )(x , y) =
rx∑

a=−rx

ry∑
b=−ry

K (a, b) I (a− x , b − y) da db

For storing the discretized kernel K , the same row-major approach is
used.
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