Image Evolutions

Images as functions
Last time we considered images as functions

[:Q—R"

Image evolutions
Now we consider image evolutions over time

1:Qx[0,T] - R".

Assuming a 2D-domain, the image has now three parameters: /(x,y, t).

Discretized view
In practice, this means starting with an initial image ly, and generating a
sequence of images I : Q — R™

b, h,b, k5, ...

by some specific algorithm. One is interested in the result image /x for
some k > 1.



Image Evolutions

Image evolution
1:Qx[0,T] = R".

Usual form
The evolution is usually specified in the form

(0:1)(x,y,t) = f(x,y,t).

The right hand side is some function £ : Q x [0, T] — R" which may
depend on the image / it self (at time t), and its derivatives.

Incremental update
At each time step t, this gives an incremental update of the value
I(x,y,t) of | at each point (x,y) €

I(x,y,t +dt) = 1(x,y,t) + 7 f(x,y,t)
with a small time step 7 > 0, or, in the discretized view,

/k+1(X7Y) = Ik(X7y) + T fk(Xa)/)



Diffusion

For simplicity we will work with grayscale images / : Q x [0, T] — R.

Diffusion
A general diffusion is given by the update equation

¢l = div(DV1)

D:Qx [0, T] - R?*?is a 2 x 2 matrix called the diffusion tensor.
It may vary depending on the position in © and the time t,
and may depend on the image / itself.

Differential operators V and div are only w.r.t. spatial variables x, y.

Gradient of a scalar image / : Q x [0, T] = R

VI:Qx[0,T] =R (VI)(x,y,t)= (Egﬁx g)

Divergence of a 2D-vector field v : Q x [0, T] — R?

divv:Qx [0, T] =R, (divv)(x,y,t) = (0xwv1)(x,y,t)+ (0yv2)(x,y)



Diffusion: Computation of the right hand side

Diffusion
(afl)(xa)/a t) = (dIV(DVI) )(Xa)/» t)

1. Start with image / : Q x [0, T] — R, values /(x,y,t) € R
2. Compute the gradient

glx.y. t) = (V)(x,y,t) = ((6X/)(X,y, t))E R2

(8}//)(va7 t)

3. Multiply the diffusion tensor D(x, y,t) € R?*2 with the gradient
g(x,y, t) € R?%

v(x,y,t) = D(x,y, t)g(x,y, t)c R?
4. Take divergence of v:

d(x,y,t) = (divv)(x,y,t) = (Oxv1)(x,y, t) + (Oyv2)(x, ¥, t) € R



Types of Diffusion: Isotropic/Nonisotropic

» lIsotropic diffusion:
D(x,y,t) € R?*2 is a diagonal matrix with two equal entries

oer=otora (3 8)=(5 48 0

with a scalar ¢ : Q x [0, T] = R. ¢ is called diffusivity.
Then div(DV1) = div(¢V1). Diffusion equation becomes:

Bl = div(pV1)

» Anisotropic Diffusion:
D(x,y, t) € R?*2 is not isotropic (a general positive definite,
symmetric matrix).



Types of Diffusion: Linear/Nonlinear

» Linear Diffusion:
D(x,y, t) € R?*2 does not depend on the image / at time t.

» Nonlinear Diffusion:
D(x,y,t) € R?*2 depends on the image / at time t.

D:H:(é (1)>:>div(DVI):A/



Special case: Dissipation (linear isotropic diffusion)

Constant diffusion tensor at each point (x,y, t):

DQJJL:(&?).

Then DV = VI, so that we get the Laplacian

div(DV 1) = div(VI) = Al

Diffusion equation simplifies to

(atl)(xvyv t) = (A I)(vav t)



Special case: Perona-Malik (nonlinear isotropic diffusion)

Diffusion tensor depends on the image /:

_ (e(x,y,1) 0
D(x,y,t) = ( 0 o(x.y, t))
1

t) =
\/‘(VI)(x,y7 t)’2 +e

o(x,y,



Discretization of isotropic diffusion

Diffusion:

!
0l = div(pV1) = div <<pa ) = 0 (00, 1) + 0, (00, 1).
w0, 1

Temporal derivative
Discretization of (9:/)(x, y, t) by forward differences with time step 7:

I(X7y7t+7—)_l(X7y7t)
T




Discretization of isotropic diffusion

Diffusion:

Ol = div(pVI) = d|v< g ;) Ox(@0xl) + 0y (00 1).

Spatial derivatives

Discretization of J, 0, by central differences with step %:

Ox(p01)(x, y, 1) :
9y (pal)(x,y, 1) :

~

— e ~—

SIS N <
~ o+

~

(QDaXI)(X+ %ay7 )

(00x)(x = 3.y, t)

(60, )(x,y + 5, 1) = (90 1)(x. v — 1.)
e(x+ 3,y t) (I(x+1,y,t) = I(x,y,1t))
o(x = 3.y, t) (I(x,y,t) = I(x = 1,y,1))
<p(x,y+% t)(l(x y+1,t) —IX LY, ))
o,y —5.t) (I(x,y, 1) — 1,t))



Discretization of isotropic diffusion

Diffusion:
. . (Ol
Ol = div(pVI) = div = (00 1) + B, (00, 1).
wdy |
Diffusivity
Approximate the diffusivity ¢ at half-pixel locations by averaging:
1 1
SD(X+§ﬂyat): 5(@(X+17yat)+@(xvy>t)) = Pr
1
@(X*%,y,t): 5(@(X*1,y,t)+g0(X,y,t)> =. Qi
1
Py +73.1): 5(%0(X7y +1,6) +o(x,y, t)) =1 Py
1
e(x,y —1,0): 5 (go(x,y —1,t) + o(x,y, t)) = g



Discretization: Final scheme
Diffusion:

.1 = div(¢V1) = div <@3X') = 0 (0041 + 0, (00, 1).
wdy |

Discretized

I(vaat+7—)7/(x’ya t)
T

= @r/(X+17y7t)+§0/l(X_1vyat)
+S0ul(x7y+ 13 t)+<pdl(x7y7 1a t)
—(¢r + @1+ u+0a)l(x,y,t)

Final scheme
Iy, t+7)=1(x,y,t) +T< orl(x+1,y,t) +@il(x—1,y,t)
+oul(,y +1,t) + gl (x,y — 1,t)

—(or + @1 + pu + @a)l(x, y, t))



Discretization: Boundary conditions

A natural assumption is to have the gradient vanish at the image
boundaries, meaning that %/ = 0 at the left and right boundary and
[%I = 0 at the top and bottom boundary. This ensures, that the average
grey value of the image is preserved. you implement this by setting

I(fla}@ t)
I(w,y,t)
I(x,—1,t)
I(x, h,t)

1(0,y,t)
/W_1y7 )

(
(
I1(x,0, t)
I(x,h—1,t)

This simply means clamping the pixel locations back to €.
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