
GPU Programming in Computer Vision

CUDA Project Assignment

Evgeny Strekalovskiy, Jakob Engel, Julia Bergbauer

August 30, Summer Semester 2013

1 General Project Introduction

Your assignment in this project is to implement a variational motion estimation
/ optical flow method as well as a superresolution method using the NVIDIA
CUDA Framework. Comment your code well.

The final version of your code has to be sent to cuda-ss13@in.tum.de in a zip
archive 24 hours prior to your presentation.

Prepare a presentation about your work explaining the benefit of parallel com-
putation for the methods you have implemented and display the runtime results
of your method. The presentation should include a short live demonstration of
your program as well.

2 Organizational Details

You work in the assigned groups. The workload and the general understanding
of the project should be equally distributed within the team.
If you have questions, send an email to cuda-ss13@in.tum.de.

2.1 Final Presentation

Please prepare a 20min presentation of your work.

2.1.1 General requirements

• the presentation should have a clear structure and slide layout

• give a general overview over the project and its goals

• explain how you achieved your goals

• give an overview over who did what in the project (coding, presentation,
organization, etc.)

• discuss where you have encountered difficulties and how you solved them

1

cuda-ss13@in.tum.de
cuda-ss13@in.tum.de

2.1.2 Requirements on the technical and mathematical part

• explain the main ideas of optical flow and super-resolution estimation.

• emphasize on how various GPU programming techniques have been ap-
plied in the implementation and why.

• show and explain/discuss experimental results.

• give a live demo of your project (optical flow and super-resolution)

2.1.3 Further notes

• the presentation can be in English or German

• everybody in the group should present roughly for the same amount of
time

2.2 Presentation Q&A

After your presentation there will be a 25min Q&A session, where we will ask
you some questions about your work.

• you should be familiar with the CUDA programming model, for instance
with the hierarchical memory model and thread organization

• you should have a good understanding of the both energies (optical flow
and superresolution) and be able to explain the meaning of each term in
each energy

• we might ask you about the general programming framework of the project

• we will not ask about the theoretical part of the optimization or any
derivations

2.3 Assessment

• 30% basic implementations (first week): We will thoroughly evaluate
your programming assignments of the first week.

• 20% final project presentation: See above (2.1).

• 50% final project code quality / results; presentation Q&A: That
will be based on how well your program works. Further, we assess your
answers on questions about the project and CUDA related topics. See
above (2.2).

2

3 Theoretical Details

3.1 Optical Flow

3.1.1 Original Quadratic Approach

The general idea of optical flow is that given two images I1, I2 : Ω → R, one
computes a vector field u : Ω→ R2, that matches the image intensities:

I2(x + u(x)) = I1(x)

Naturally, for an intensity value in a pixel x = (x, y) in I1 there may be many
pixels x + u(x) in I2 that have the same value. Also, there might be none at
all. Therefore, it is common to formulate the problem as a variational approach
with a data term penalizing deviations from the intensity values and a regularity
term penalizing spatial variations of the flow field:

E(u) =

∫
Ω

(
I2(x + u(x))− I1(x)

)2
+ λ|(∇u)(x)|2 dx (1)

For the two-dimensional flow field u(x) = [u1(x), u2(x)]>, the gradient magni-
tude |(∇u)(x)| at each pixel x ∈ Ω is defined as

|(∇u)(x)| =
√

(∂xu1)2 + (∂yu1)2 + (∂xu2)2 + (∂yu2)2

The minimum of this energy is a flow field u : Ω → R2 that is smooth and
matches the image intensities reasonably well.
The energy (1) above however is highly non-convex, since the desired argument
u arises as an argument of the image intensities I. Therefore, a typical approach
is to approximate I2(x+u(x)) by a first order Taylor expansion. For this, I1 and
I2 are considered as instances of a time-dependant image I(x, t) at two different
times t and t+ 1, respectively, i.e. I1(x) = I(x, t) and I2(x) = I(x, t+ 1):

I2(x + u(x)) = I(x + u(x), t+ 1)

≈ I(x, t) + (∇I)(x, t)>u(x) + (∂tI)(x, t)
(2)

Here (∇I)(x, t) = [(∂xI)(x, t), (∂yI)(x, t)]> ∈ R2 is the gradient w.r.t. the spa-
tial variables. For brevity, we will write

I = I(x, t), ∇I = (∇I)(x, t), Ix = (∂xI)(x, t), Iy = (∂yI)(x, t),

It = (∂tI)(x, t), u = u(x), ∇u = (∇u)(x).

Concerning the implementation, the temporal derivative It is simply the differ-
ence

It = I(x, t+ 1)− I(x, t) = I2(x)− I1(x)

at each pixel x, while the gradient ∇I is usually averaged over both images for
each pixel,

∇I ≈ 1

2

(
(∇I1)(x) + (∇I2)(x)

)

3

since it is arbitrary whether one chooses to linearize the spatial displacement
at time t or at time t+ 1. Plugging (2) into the original energy (1), we get the
linearized energy

E(u) =

∫
Ω

(
I +∇I>u+ ∂tI − I

)2

+ λ|∇u|2 dx

=

∫
Ω

(∇I>u+ It)
2 + λ|∇u|2 dx

(3)

This is the method of Horn, B. and Schunck, B. 1981. “Determining optical
flow.” in ”Artificial Intelligence“, 17:185-203. (You do not have to read this).

For the two-dimensional flow field u(x) = [u1(x), u2(x)]> ∈ R2, one gets two
Euler-Lagrange equations:

0 = I2
xu1 + IxIyu2 + IxIt − λ∆u1

0 = IxIyu1 + I2
yu2 + IyIt − λ∆u2

Since 1981, there have been developed a large amount of improvements of this
method, some of which you are going to implement as well. As a reference, read
the paper1

Papenberg et al., IJCV 2006
“Highly accurate optical flow computation

with theoretically justified warping.’.

Except for advanced constancy assumptions and temporal smoothness of the
flow field, your task is to implement the method presented in this paper, with
the features listed below.

3.1.2 Advanced Penalty Functions

Implement the method with a robust regularity penalty function as you did
previously for image regularization Φ(s2) =

√
s2 + ε :

E(u) =

∫
Ω

ΦD

(
(∇I>u+ It)

2
)

+ λΦR

(
|∇u|2

)
dx

Differently than in the image regularization method you implemented in the
course, here also the data term has a penalty function ΦD that yields better
robustness against noisy outliers.

3.1.3 Warping

Implement the method with the course-to-fine warping approach as described
in the paper above.
Warping is somewhat similar to the fixed-point iteration scheme which you use
for the last subsection 3.1.2. In the fixed-point iteration for nonlinear diffusivity,

1 http://www.mia.uni-saarland.de/Publications/papenberg-ijcv06.pdf

4

http://www.mia.uni-saarland.de/Publications/papenberg-ijcv06.pdf

you compute an approximate solution of a system of equations by fixing the dif-
fusivity, and then update the diffusivity using this computed solution. Warping
means having an approximate solution uk, and computing the desired u as the
sum of known part uk and an unknown increment duk, i.e. uk+1 = uk + duk.
In other words, we linearize the original energy (with a robust data term and
gradient penalizers)

E(u) =

∫
Ω

ΦD

(
(I2(x + u(x))− I1(x))2

)
+ λΦR

(
|∇u|

)2
dx

by using the Taylor expansion (2) at point u = uk instead of at u = 0. As the
linearized energy we get

E(duk) =

∫
Ω

ΦD

((
I2
(
x + uk(x) + duk(x)

)
− I1(x)

)2
)

+ λΦR

(
|∇uk +∇duk|2

)
dx

≈
∫

Ω

ΦD

((
∇IkT duk + I2

(
x + uk(x)

)
− I1(x)

)2
)

+ λΦR

(
|∇uk +∇duk|2

)
dx

=

∫
Ω

ΦD

((
∇IkT duk + Ikt

)2)
+ λΦR

(
|∇uk +∇duk|2

)
dx

(4)

Here we set

∇Ik = (∇I2)
(
x + uk(x)

)
, Ikt = I2

(
x + uk(x)

)
− I1(x). (5)

Practically, this means you create a warped image Ik2warped, by looking it up in

I2 with the computed flow uk:

Ik2warped(x) := I2(x + uk(x))

From this image, you create the new image gradient ∇Ik and the temporal
derivative Ikt as in (5). If the warped second image matches the first image
perfectly, the resulting incremental flow duk will be zero, since the already
computed flow uk is perfect and Ikt ≡ 0.

In order to compute the minimizer duk of the linearized energy (4), you proceed
just as for (3) by computing the Euler-Lagrange equations, with the difference
of having additional terms involving λ∇uk on the right-hand-side:

0 = Φ′D · (Ikx
2
duk1 + IkxI

k
y du

k
2 + IkxI

k
t)− λdiv(Φ′R∇uk1)− λdiv(Φ′R∇duk1)

0 = Φ′D · (IkxIky duk1 + Iky
2
duk2 + Iky I

k
t)− λdiv(Φ′R∇uk2)− λdiv(Φ′R∇duk2)

These are solved for duk, and for this computation uk is regarded constant.
After each warping iteration, the increment is added to the known flow:

uk+1 := uk + duk

Although the warping strategy might improve the flow results on one image
resolution alone, the really interesting fact is that you can start with very small
versions of the image (downsampled versions), and compute the coarse, far-
reaching flow on those scales, and then upsample the flow, and compute the
incremental flow on the next finer scale. This way, you are able to compute the
flow between two images that spans over several pixels and naturally violates
the assumption of a small motion required for linearization as in (2).

5

3.2 Superresolution

3.2.1 General Variational Superresolution Model

Consider an image I : Ω → R, that has been degraded by a linear degrading
operator F

ID = FI.

(think of I as being a long vector with the number of component equal to the
number of pixels, and of F as a matrix). The operator F is assumed to be
singular, i.e. it eliminates certain parts of the image (e.g. when FI is a local
average of I at each pixel). If we have several degraded observations of the image
I, which arise by first transforming I by some linear operators T i, i ∈ {1, ..., n}
and then applying the operator F , we get a large system of linear equations
consisting of systems of linear equations for every observation i:

I1
F = FT 1I

I2
F = FT 2I

...

InF = FTnI

(6)

For every observation i by itself, the system IiF = FT i of linear equations
is under-determined because F is singular. But the combined linear system
of equations (6) is in general overdetermined (due to noise, for example). In
other words, each pixel in the original image I is observed in multiple degraded
images. This redundancy suggests that we can enhance the resolution of the
degraded images, effectively reconstructing the high-resolution image I from
the low-resolution ones IiF . However, it still may happen that the system of
linear equations (6) it is under-determined.

Therefore, similar to the optical flow approach above, we penalize the deviations
from a perfect solution, and also regularize:

E(I) =

n∑
i=1

µ
∥∥FT iI − IiF∥∥1

+ λ ‖∇I‖1 (7)

In case the system (6) is over-determined (i.e. they may not exist an exect solu-
tion I to (6)) this then chooses some solution which some the closest to approx-
imately satisfy (6). And in case the system (6) is under-determined (i.e. they
may exist infinitely many different solutions to (6)), the regularizer allows us
to still obtain a unique solution. The regularizer introduces a prior knowledge
into the problem, effectively it states that, given two candidate solutions which
have equal values for the data term, one must choose the solution which is more
regular.

3.2.2 Dualization

Up to now, the norm which we are using in the data term is the L1-norm. For
scalar of vector functions f : Ω→ Rk, k ≥ 1, it is defined as

‖f‖1 =

∫
Ω

|f(x)|dx =

∫
Ω

Φ
(
|f(x)|2

)
dx, Φ(s) :=

√
s

6

Since the computation of (FT iI)(x) in a single pixel x involves values of I(x̄)
in several pixels x̄ (because F is singular, e.g. an averaging), the L1-norm in
(7) couples all variables in a non-trivial way, making the problem hard to solve.
In the same way, the L1-norm also couples many values of I also through the
gradient in the regularizer part.

Therefore, what we do is to decouple the system by dializing the L1-norm, in
both the data term and the regularizer. This introduces additional variables in-
tro the energy minimization, which are called dual variables. But both the data
term and regularizer are become decoupled, in the sense that the expressions
become linear in terms of the original image I. The key tool to dialyzing is the
convex conjugation2, and the fact that a convex function is equal to its convex
biconjugate:

‖f‖1 =

∫
Ω

|f(x)|dx = sup
ξ,‖ξ‖∞≤1

∫
Ω

〈f(x), ξ(x)〉dx (8)

where 〈·, ·〉 denotes the inner product. The dual variable ξ : Ω→ Rk is defined
at each pixel x ∈ Ω and is a k-vector, it has the same number k of components
at each pixel as the function f : Ω → Rk itself. For scalar-valued images, the
scalar product is a simple multiplication. The constraint ‖ξ‖∞ ≤ 1 means that
|ξ(x)| ≤ 1 must hold at each pixel x ∈ Ω. Using the replacement (8) also
has the advantage that it circumvents the non-differentiability of the L1-norm,
since the right hand side of (8) is differentiable on both f and ξ which makes the
optimization much easier. In the following, we write 〈I, ξ〉 for

∫
Ω
〈I(x), ξ(x)〉dx.

Energy (7) now becomes

E(I) =

n∑
i=1

sup
qi,‖qi‖∞≤1

µ
〈
FT iI − IiF , qi

〉
+ sup
ξ,‖ξ‖∞≤1

λ 〈∇I, ξ〉 (9)

In contrast to (7), this expression has additional dual variables qi : Ω → R for
every i and ξ : Ω→ R2. Note that we can push the scalar factors µ and λ into
the definition of the solution set for the dual variables:

E(I) =

n∑
i=1

sup
qi,‖qi‖∞≤µ

〈
FT iI − IiF , qi

〉
+ sup
ξ,‖ξ‖∞≤λ

〈∇I, ξ〉 (10)

For arbitrary operators such as F however, one can also put µ in the operator,
i.e. one can reformulate the whole problem with F̄ := µF instead of F . In the
CPU sample solution, we implemented a mixture of both versions, allowing you
to draw a portion inside the operator, and a portion in the limit of the dual
variables. In the rest of these instructions, we will stick to the later one.

3.2.3 Huber Norm

In addition, we use the Huber Norm

‖f‖ε =

∫
Ω

|f(x)|ε dx

|I(x)|ε :=

{
|f(x)|2

2ε if |f(x)| ≤ ε
|I(x)| − ε

2 if |f(x)| > ε

2http://en.wikipedia.org/wiki/Convex_conjugate

7

http://en.wikipedia.org/wiki/Convex_conjugate

This smoothes out the non-differentiability of the L1-norm at the zero. Note
that as the Huber-parameter ε approaches 0, the Huber-norm approaches the
L1-norm. We mention this here and include this in the code to stay consistent
with the paper, but in the CPU sample solution, ε is actually set to 0. The
energy now reads as

E(I) =

n∑
i=1

µ
∥∥FT iI − IiF∥∥ε + λ ‖∇I‖ε (11)

and the biconjugate formulation (you can check that, if you want)

E(I) =

n∑
i=1

sup
qi,‖qi‖∞≤µ

〈
FT iI − IiF , qi

〉
− ε

2µ

∥∥qi∥∥2
+ sup
ξ,‖ξ‖∞≤λ

〈∇I, ξ〉 − ε

2λ
‖ξ‖2

(12)

3.2.4 Optimization

By (12) the energy minimization problem is now reformulated as a saddle point
problem. The problem is convex in the primal variable I and concave in the
dual variables q and ξ. The energy E is to be minimized w.r.t. the primal
variables, and maximized w.r.t. the dual variables. This can be optimized by
computing alternatingly a gradient descent step in I with fixed q and ξ, and a
gradient ascent step in q and ξ with fixed I.
For this, note that we need the adjoint operators of F , T and ∇. The adjoint
operator of the gradient ∇ is the negative divergence −div. The update steps
look the following way:

Gradient ascent update step for the dual variables q (the ones which arise in
the data term dualization):

(qi)
k+1/3

= (qi)
k

+ τd(FT
iĪk − IiD)

(qi)
k+2/3

= argmin
p

∥∥∥p− (qi)

k+1/3
∥∥∥2

2τd
+

ε

2µ
‖p|2

=

(qi)
k

+ τd(FT
iĪk − IiD

k
)

1 + ετd
µ

(feel free to check this)

(qi)
k+1

=
(qi)

k+2/3

max

{
1,

∣∣∣(qi)k+2/3
∣∣∣

µ

} (clipping to the feasible set) (13)

We use the notation (qi)
k to denote the value of the dual variable qi at iteration

k. Notation (qi)
k+1/3 and (qi)

k+2/3 means values (qi) at two intermediate aux-
iliary steps, before computing the values (qi)

k+1 at the next iteration. Please
note that these update steps for the dual q are performed using the over-relaxed
version Īk of Ik (defined below in (16)).

8

Gradient ascent update step for the dual variables ξ (the ones which arise in
the regularizer dualization):

ξk+1/3 = ξk + τd∇Īk

ξk+2/3 = argmin
p

{∥∥p− ξk+1/3
∥∥2

2τd
+

ε

2λ
‖p|2

}

=
ξk + τd∇Īk

1 + ετd
λ

ξk+1 =
ξk+2/3

max

{
1,
|ξk+2/3|

λ

} (clipping to the feasible set) (14)

The notation ξk means the value of the dual variable ξ at iteration k. The values
at two intermediate auxiliary steps are denoted by ξk+1/3 and ξk+2/3, which are
used to compute the value ξk+1 at the actual next iteration k + 1.

Descent update of the primal variable:

Ik+1 = Ik − τp

(
−div +

n∑
i=1

T i
>
F>(qi)

k+1

)
(15)

The operator T i
>

is the adjoint operator3 to T i, and F> the adjoint operator
to F .

Over-relaxation of the primal variable for the next update of the dual variables:

Īk+1 = ωIk+1 + (1− ω) Ik, ω ∈ [1, 2] (16)

This optimization scheme has the free parameters τp, the time-step size of the
primal update, τd, the time-step size of the dual update, and ω, the over-
relaxation parameter. Use the ones provided in the CPU version. Pay attention
to the fact that the dual updates only rely on the over-relaxed version Ī of I.

Though this scheme might seem complicated at first glance, it is quite straight-
forward if you have a CPU reference implementation.
The remaining question is, of course, what the degrading operator F and the
transformation operators T i look like, and how we implement their adjoint
(transposed) versions for (15).

3.2.5 The Superresolution Model you are supposed to implement on
the GPU

We want you to implement the superresolution model of

Unger et al., DAGM 2010,
“A Convex Approach for Variational Super-Resolution.’.

on the GPU. This paper is provided as part of the material on our website.

3http://en.wikipedia.org/wiki/Adjoint_operator

9

http://en.wikipedia.org/wiki/Adjoint_operator

Transformations T i. In the case of this paper, the transformation operators
T i simply describe the backward warping performed by a given optical flow
field. This means, if the flow uij describes the flow from image Ii to image Ij ,
i.e.

Ij(x + uij(x)) = Ii(x)

this yields a warping operator Wij :

(WijIj) = Ii, (WijIj)(x) := Ij(x + uij(x))

The adjoint warping operator is a bit tricky. It is basically the bilinear backward
warping reversed (in the paper, the authors use a bicubic interpolation, but we
use bilinear interpolation). In the backward warping, at a pixel position x you
add the flow at that position and get (x+u(x)), bilinearly interpolate the image
value I2(x + u(x)) and, after computing the interpolations in all pixels, write
the result image back to I2 at x. For the adjoint warping operator W>ij you
perform a forward warping. This means, you take the image value at I1(x) and
distribute that value in I2(x+u(x)) to the four adjacent pixels belonging to the
subpixel position (x + u(x)) with their corresponding coefficients according to
bilinear interpolation. You accumulate all those values in the warped image. On
the GPU, you have to figure out how to avoid race conditions in this somewhat
random incrementation of image values.

Degrading operator F . The degrading operator F consists in our iteration
of first a Gaussian blur operator B and a subsequent downsampling operator D.
Concerning the blur operator, we want a different handling of the image bound-
aries in this case. We want to mirror the values outside the image boundary
to values inside the image. To give an example, if we have to access the image
value I(−2, y) somewhere in the convolution, we want to map it to the position
I(1, y), and on the right side of the image domain, I(w+1, y) maps to I(w−2, y)
on the other side, I(w+ 2, y) maps to I(w−3, y) etc. This way, the convolution
preserves the average gray value of the image. A simple clamping of the image
values to the boundaries does not preserve the average gray value. Mirroring
the boundaries also makes the blur operator self-adjoint, i.e. B> = B.

The downsampling operator D is not really a downsampling, because you do
not take samples of a function, but rather do a weighted average of the image.
For the details we refer to the paper.

The energy now reads as

E(Ii) =
∑
j∈Ni

sup
qj ,‖qj‖∞≤µ

〈
DBWjiI

i − IjF , q
j
〉
− ε

2µ

∥∥qj∥∥2
+ sup
ξ,‖ξ‖∞≤λ

〈
∇Ii, ξ

〉
− ε

2λ
‖ξ‖2

(17)
This means the following:
You have been given a sequence of degraded images IiF , i ∈ {1, ..., n}, and you
compute a higher-resolution image Ii for every i separately (one after another).

For every image Ii you also have the optical flows uji from other images IjF
to that image, which are computed on the higher resolution versions of these
images (obtained by trivial upsampling4) in a certain neighborhood of that

4Note that only IjF needs to be upsampled, since in the energy Ii is already assumed to
be a high-resolution image.

10

image, lets say, 8 images before and after image i in the sequence. This means
Ni would be {i− 8, . . . , i+ 8} for general i, so that |Ni| = 17, and e.g. for i = 3
one would take Ni = {1, 2, . . . , 17}.
The energy assumes the following image formation model: for each j ∈ Ni,
the degraded image IjF has been produced by backward warping the higher
resolution image Ii along the flow uji from j to i, and afterwards by blurring

and downsampling that image (IjF = DBWjiI
i). Penalizing deviations from

this model yields the data term of the energy. The regularity term is usually
very weakly weighted, i.e. λ > 0 is small. This is because what one actually
wants to recover are the high-frequency irregularities of the image. The main
purpose of the regularizer is to make the problem well-posed, i.e. to ensure that
the solution is unique.

4 Practical Details

4.1 Framework

We provide you with a framework with a complete CPU version of both the
optical flow computation and the superresolution computation. We documented
the interface but not the computation code. In our sample solution, the CPU
and GPU versions produce the same results. You might deviate from this a bit,
for example, if you actually use the linear interpolation hardware from GPU
textures, the floating point accuracy might differ from the CPU. However, as
you can see, we also perform Red-Black-SOR on the CPU, which is somewhat
counterintuitive, but ensures results equal to the ones on the GPU.

You have to implement the GPU functions corresponding to the linear operators
in the superresolution formulation, the superresolution updates, and the optical
flow updates. You also need the resampling (upscaling and downscaling) and
blurring operator for optical flow computation, so we suggest you first focus
on those. Second, focus on the optical flow computation, since you need the
results of the optical flow method as input for the superresolution method. We
provided a main file for testing the optical flow and another one for testing the
superresolution against the CPU versions.

4.2 Discretization

4.2.1 Spatial Derivatives

In the optical flow part, we use the SOR method with central differences, while
for the superresolution we use forward differences for the image gradients and
backward differences for the divergence of the dual variable ξ. To produce
correct adjoint operators (∇ and −div) with a vanishing image gradient at the
boundary, the dual variable ξ has to be 0 outside the image. You can easily

11

verify this for yourself in the one-dimensional case, i.e.

〈∇I, ξ〉 =

∫
Ω

∂

∂x
I(x)·ξ(x)dx ≈

N∑
x=1

(I(x+1)−I(x))·ξ(x) =

N∑
x=1

I(x)·
(
−(ξ(x)−ξ(x−1))

)
with ξ(0) = 0 and I(N + 1) = I(N). This is also closely related to integration
by parts theorem.

4.2.2 Temporal Derivatives

For temporal derivatives in the optical flow part, use forward differences (which
is somewhat intuitive, given the fact we are only computing the flow from one
image to the next). This means

It(x, y) ≈ I2(x, y)− I1(x, y)

12

	General Project Introduction
	Organizational Details
	Final Presentation
	General requirements
	Requirements on the technical and mathematical part
	Further notes

	Presentation Q&A
	Assessment

	Theoretical Details
	Optical Flow
	Original Quadratic Approach
	Advanced Penalty Functions
	Warping

	Superresolution
	General Variational Superresolution Model
	Dualization
	Huber Norm
	Optimization
	The Superresolution Model you are supposed to implement on the GPU

	Practical Details
	Framework
	Discretization
	Spatial Derivatives
	Temporal Derivatives

