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Abstract. We propose a convex variational framework to compute high
resolution images from a low resolution video. The image formation pro-
cess is analyzed to provide to a well designed model for warping, blurring,
downsampling and regularization. We provide a comprehensive investi-
gation of the single model components. The super-resolution problem
is modeled as a minimization problem in an unified convex framework,
which is solved by a fast primal dual algorithm. A comprehensive eval-
uation on the influence of different kinds of noise is carried out. The
proposed algorithm shows excellent recovery of information for various
real and synthetic datasets.

1 Introduction

The reconstruction of highly resolved images out of multiple smaller images is an
important problem that occurs in surveillance, remote sensing, medical imaging,
video restoration, up sampling and still image extraction. Video frames are repre-
sentations of a scene that undergo arbitrary motion from frame to frame, degra-
dation by the optical system and the digitization process. Although motion might
seem to be a problem, exactly these sub-pixel shifts caused by moving objects
or the camera, provide the necessary information utilized in super-resolution re-
construction. The super-resolution problem is difficult to solve because one has
to deal with two kinds of image degradation: First, the camera system, that
adds blur (eg. by the optical system like lenses and filters) and performs spatial
integration on the sensor (often these are not square pixels). With exact knowl-
edge of the Point Spread Function (PSF) of the camera system and sufficiently
enough samples by shifted images this degradation is invertible up to the limits
posed by Shannon [1]. Unfortunately the second group of degradation, namely
noise, cannot be undone [2], making super-resolution an ill-posed problem. Noise
occurs in different forms: Gaussian type of noise (eg. caused by sensor heating
and analog processing), Outlier noise (eg. occlusions) and systematic noise (eg.
quantization and compression).

The limitations of super-resolution were already studied by Kosarev [2] who
stated a logarithmic dependence of quality on the signal-to-noise ratio of the
input. Later, the limits on image super-resolution were analyzed by Baker and
Kanade [3]. They provided experimental results using 8bit images, showing a
degradation of image quality with increasing magnification. This experiments



2 Unger, Pock, Werlberger, Bischof

already demonstrated that the limited dynamic range causes a dramatic loss
of information. In Section 5, we will provide a deeper analysis of various types
of noise. To overcome the limitations of noise some prior information might be
used in the reconstruction process. Baker and Kanade [3] proposed a learning
based recognition approach (called ’hallucination’) to improve super-resolution
on a limited class of images. More general approaches try to utilize redundant
structures in images. Potter et al. [4] use a Non-local-Means algorithm for super-
resolution reconstruction. A similar approach is taken by Glasner et al. in [5],
where patch redundancy over various scales of a single image is used to signifi-
cantly improve zooming for pictures with redundant structures.

There is also a great number of super-resolution approaches that rely on a
more general prior [6]. Some of these approaches use Total Variation (TV) reg-
ularization as eg. the approach by Mitzel et al. [7]. Farsiu et al. [8], use bilateral
TV (that is closely related to Non-local TV) to overcome stair-casing artifacts
usually induced by TV regularization. Our approach is closely related to the
variational approach of Mitzel et al. [7]. While Mitzel et al. used L1-norms for
regularization and in the data term, we replace them in our model (see Section
3) with Huber-Norms [9]. The Huber-Norm has the advantage of smooth gray
values while preserving strong edges. Another improvement over [7] is the used
first-order primal dual algorithm in Section 4. Additionally we provide a compre-
hensive investigation of the crucial super-resolution operators used for warping,
blurring and downsampling. Another energy minimization based approach is in-
vestigated by Schoenemann [10] that combines motion layer decomposition with
super-resolution. He introduces an additional term that imposes regularity on
the geometry of the layers.

As the input images are related by some arbitrary unknown motion, the
accurate estimation of this motion is obviously very important. For small motions
this can be done implicitly eg. by Non-local methods [4] or by performing joint
space-time super-resolution as done by Shechtman [11]. There are also semi-
implicit methods eg. using steering kernels as done by Takeda et al. [12]. For
large arbitrary motion an explicit optical flow calculation is required. Fortunately
dense optical flow algorithms have become very accurate and sufficiently fast
[13]. We will do motion estimation by the variational optical flow proposed by
Werlberger et al. [14], for which GPU-binaries are available.

Contribution: The contribution of this paper is threefold: First, we extend
the variational model by Mitzel et al. [7] by the usage of the Huber-Norm and
an exact choice of the crucial linear operators (Section 3). The choice and im-
plementation of these operators as well as the discretization are described in
sufficient detail that the proposed method can easily be reimplemented. Second,
we provide a fast minimization procedure in Section 4. Therefore we adapt the
first-order primal-dual algorithm from Pock et al. [15]. Finally, we investigate the
effects of different kinds of noise on super-resolution reconstruction in Section
5. We also compare the algorithm to [7, 10], and show superior results obtained
with the proposed algorithm, demonstrating its robustness for arbitrary motion
and occlusions.
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2 Discretization

Before describing the super-resolution model we have to make some thoughts on
discretization. An image is given on a two dimensional regular Cartesian grid of
the size M ×N :

{(ih, jh) : 1 ≤ i ≤M, 1 ≤ j ≤ N} , (1)

with the indices of the discrete locations given by (i, j) and the pixel size (or
spacing) h. We define a finite dimensional vector space X = RMN with a scalar
product

〈v, w〉hX = h2
∑
i,j

vi,jwi,j , v, w ∈ X . (2)

Furthermore, we define a vector space Y = RMN × RMN , with the gradient
operator as a linear mapping ∇h : X → Y using finite differences and Neumann
boundary conditions:

(∇hv)i,j =
(
(δh+
x v)i,j , (δ

h+
y v)i,j

)T
, (3)

where

(δh+
x v)i,j =

{ vi+1,j−vi,j
h if i < M

0 if i = M
, (δh+

y v)i,j =

{ vi,j+1−vi,j
h if j < N

0 if j = N
. (4)

Given two vectors p = (px, py)T , q = (qx, qy)T ∈ Y we define the scalar product
as following:

〈p, q〉hY = h2
∑
i,j

pxi,jq
x
i,j + pyi,jq

y
i,j . (5)

Additionally we have to define a divergence operator divh : Y → X by
choosing it to be adjoint to the gradient operator in (3), and thus fulfilling

the equality
〈
∇hu,p

〉h
Y

= −
〈
u,divhp

〉h
X

. Therefore, the discrete divergence

operator is given as:

(divhp)i,j = (δh−x px)i,j + (δh−y py)i,j , (6)

with

(δh−x px)i,j =


0 if i = 0
pxi,j−p

x
i−1,j

h if 0 < i < M

−p
x
i−1,j

h if i = M

, (δh−y py)i,j =


0 if j = 0
pyi,j−p

y
i,j−1

h if 0 < j < N

−p
y
i,j−1

h if j = N
(7)

3 The Super-resolution Model

In this section the super-resolution model is defined as a convex minimization
problem, and we discuss the operators in detail. The exact minimization proce-
dure follows in Section 4.
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As input for the super-resolution algorithm, n input images f̌i ∈ X̌ of size
M̌ × Ň and pixel size ξh are given. We denote the scale factor as ξ ∈ R+. The
input images are warped, blurred and noisy samples of some continuous image
g : Ω → R. Based on the redundancy of the input images we aim to find one
higher resolved super-resolution image û ∈ X̂ of size M̂ × N̂ with pixel size h.
Note that we use the .̌ accent to indicate that a variable belongs to the coarse
(input) level with pixel size ξh and the .̂ accent to indicate everything that is
related to the fine (super-resolution) level with pixel size h.

A Convex Minimization Problem: We define the super-resolution model as
the following convex minimization problem:

min
û

{
λ
∣∣∣∣∇hû∣∣∣∣h

εu
+

n∑
i=1

∣∣∣∣DBWiû− f̌i
∣∣∣∣ξh
εd

}
, (8)

with regularization using the Huber-Norm [9] that is defined as:

||x||hε =
∑

0≤i,j≤MN

|xi,j |ε h
2 and |x|ε =

{
|x|2
2ε if |x| ≤ ε
|x| − ε

2 if |x| > ε
. (9)

While Total Variation based approaches [16] favor flat gray value regions causing
staircase artifacts, the Huber-Norm has the advantage of smoothing small gra-
dients while preserving strong edges. The linear operators D, B and W denote
downsampling, blurring and warping operators and will be explained in detail in
the following. The free parameter λ models the tradeoff between regularization
and data term.

Warping Operator W: An exact warping to align the input images is a crucial
factor for super-resolution. To allow for arbitrary motion, sub-pixel accurate
optical flow is required. There are already various dense approaches with very
high accuracy available [13]. Throughout this paper we used the GPU-based
implementation from Werlberger et al. [14]. This approach utilizes a variational
minimization problem using Huber-Norm regularization and an L1 based data
term to model the optical flow constraint. For optical flow calculation we used
bicubic upsamplings f̂i of the input images f̌i. We denote the reference image
that is used for super-resolution as f̂k with 1 ≤ k ≤ n. From the image f̂k we
calculate the optical flow to all input images. As a result we get n flow vector
fields ŵi : Ω → R2. In the super-resolution model (8) we denoted the optical

flow as a linear operator Wi : RM̂N̂ → RM̂N̂ . As Wi has a size of (M̂N̂)2,
direct storage and computation is not feasible. Therefore, we directly utilize
the flow fields ŵi to warp the super-resolution image to the input images using
bicubic interpolation. For the proposed minimization algorithm we also need

the transposed operator WT
i such that 〈Wia, b〉X =

〈
a,WT

i b
〉
X

, as detailed in

Section 4. This inverse warping can again be realized using the flow fields ŵi,
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but this time the input images are warped to the reference image. Therefore, in
each pixel of the reference, the flow is used to find the corresponding position
in the input image. The pixel values in the input image are weighted by the
coefficients of the bicubic interpolation and added up in an accumulator image.

Blurring Operator B: To account for blurring introduced by atmospheric
effects, the optical system and the sensor with preceding filters can get very
complex. More specifically one has to measure the point spread function for one
specific configuration. As the aim of this paper is to present a general super-
resolution algorithm one has to provide a generic model. Therefore the blurring
operator B is modeled by a simple Gaussian kernel. We chose the standard de-
viation σ = 1

4

√
ξ2 − 1 and 3σ for the kernel size. Again the transposed blurring

operator BT is not the same as a simple Gaussian blur as which B is imple-
mented. In turn, one has to perform the operation using an accumulator to
obtain correct results.

Downsampling Operator D: We first define

Fig. 1. Illustration of the
downsampling process that is
modeled as an area integral.

the formation of a pixel value fi,j at position
(ih, jh) and size h2 by calculating the mean of
the continuous image g : Ω → R in the re-
gion of the pixel fi,j = 1

h2

∫
∆hi,j

g(x)dx, with

the pixel region ∆h
i,j = (ih, jh) +

[
−h2 ,

h
2

)2
. The

input images and the super-resolution image are
just samplings with different pixel size h. Since
we only know the discretized input images we
have to model the downsampling process in the
discrete setting. This is done using a weighted
area integral over the region of the low resolu-
tion pixel (see Fig. 1 for an illustration):

ǔk,l =
1

µ(∆ξh
k,l)

∑
0≤i,j≤M̂N̂

µ(∆h
i,j ∩∆

ξh
k,l)ûi,j , (10)

with the Lebesgue measure µ(∆) denotes the area of the pixel region. The pro-
posed definition of the downsampling operator D has the advantage that the
scale ξ ∈ R+ and is not restricted to integer values. Again, an accumulator is
used to calculate DT .

4 A First Order Primal-Dual Algorithm

Recently, in [15] and [17], a first order primal-dual algorithm was proposed to
solve convex-concave saddle-point problems of the type:

min
x∈X

max
y∈Y
{〈Kx,y〉+G(x)− F ∗(y)} , (11)
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with a continuous linear operator K : X → Y , and G : X → [0,∞) and F ∗ :
Y → [0,∞) being convex functions. Basically, the algorithm consists of taking
simple gradient steps in the primal variables x and dual variables y. In addition
a leading point x̄ is computed to ensure convergence of the algorithm [15]. The
basic iterations of the algorithm are defined as

yn+1 = (1 + σ∂F ∗)−1(yn + σKx̄n)

xn+1 = (1 + τ∂G)−1(xn − τK∗yn+1)

x̄n+1 = 2xn+1 − xn ,

(12)

with ∂F ∗ and ∂G the subgradients of F ∗ and G. The operators (1 + σ∂F ∗)−1

and (1+τ∂G)−1 denote the usual resolvent operators. The primal and dual step
sizes τ > 0 and σ > 0 are chosen such that τσL2 ≤ 1, where L = ‖K‖ is the
norm of the linear operator K.

In order to apply the primal-dual algorithm to the proposed super-resolution
model, we have to transform the minimization problem (8) into the form of
(11). Using duality principles (in particular the Legendre-Fenchel transform), we
arrive at the following primal-dual formulation of the super-resolution model:

min
û

sup
p̂,q̌

{〈
∇hû, p̂

〉h
Y
− εu

2λh2
||p̂||2 − δ{|p̂|≤λh2}

+

n∑
i=1

(〈
q̌i,DBWiû− f̌i

〉ξh
X
− εd

2 (ξh)
2 ||q̌i||

2 − δ{|q̌i|≤(ξh)2}

)}
,

(13)
with p̂ ∈ Ŷ and q̌ ∈ X̌ denoting the dual variables. The indicator function δΣ

for the set Σ given as δΣ (x) =

{
0 if x ∈ Σ ,
∞ else .

Now, applying the basic iterations (12) to our saddle-point problem (13), we
obtain the following iterative algorithm:

p̂n+1 = Π
Bλh

2
0

(
p̂n + σh2∇hun

1 + σεu
λh2

)
,

q̌n+1
i = Π

B
(ξh)2

0

(
q̌ni + σ (ξh)

2
(DBWiu

n − fi)
1 + σεd

(ξh)2

)
,

ûn+1 = ûn − τ

(
−divhp̂n+1 + (ξh)

2
n∑
i=1

(
WT

i B
TDT q̌n+1

i

))
,

un+1 = 2ûn+1 − ûn .

(14)

The projector ΠBr0
denotes the orthogonal projection to a L2 ball with radius

r. In the 2D-case this can be computed as Π
Bλh

2
0

= p̂/max
{

1, |p̂|λh2

}
. While the

1D-case Π
B

(ξh)2

0

results in a simple clamping to the interval [− (ξh)
2
, (ξh)

2
].

Based on experiments, we are using the step sizes τ = ξ√
L2λ

and σ = 1√
τL2

.
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5 Experimental Results

The proposed algorithm (14) was implemented on the GPU using the CUDA
framework. We will prove that the chosen model genaralizes very well by us-
ing different input sources for all experiments. First we evaluated the influence
of different types of noise, namely quantization noise, Gaussian noise and salt
and pepper noise. In Fig. 2 the results are depicted for different scale factors.
The input data was generated artificially such that the exact warping, blur and
downsampling operators are known. The results are compared to the original im-
age, and the Signal-to-noise ratio (SNR) and the Structural Similarity (SSIM)
[18] were calculated. Fig. 2 demonstrates that quantization noise using an 8bit
representation causes a dramatic loss of information for large scale factors, while
using 16bit quantization the visual appearance for ξ = 16 still recovers most of
the fine details. Unfortunately even weak Gaussian noise causes strong degen-
eration. It also shows that the proposed super-resolution model can handle a
reasonable amount of outliers due to the robust Huber-Norm in the data term.

Quantization Gaussian Noise Impulse Noise

Input Input float 16bit 8bit Input σ=0.01 Input 10%

4x
29.77 dB 106.95 dB 47.59 dB 39.09 dB 29.5 dB 34.1 dB 16.59 dB 33.67 dB
0.94079 1 0.99838 0.99887 0.92747 0.96136 0.4668 0.96934

16x
24.92 dB 47.95 dB 40.21 dB 32.58 dB 24.84 dB 30.65 dB 15.62 dB 32.01 dB
0.83238 0.99834 0.99166 0.95394 0.82358 0.92639 0.50452 0.95136

64x
21.09 dB 39.98 dB 35.73 dB 30.26 dB 21.08 dB 27.46 dB 14.78 dB 24.84 dB
0.63877 0.99108 0.97322 0.91862 0.63697 0.86119 0.41485 0.87617

256x
19.88 dB 35.32 dB 32.58 dB 25.98 dB 16.52 dB 24.78 dB 13.16 dB 24.73 dB
0.55709 0.97172 0.92639 0.81105 0.37576 0.75237 0.30003 0.75077

Fig. 2. Comparison of the influence of different noise on the superresolution recon-
struction for the scales 2, 4, 8 and 16 using synthetic data. The input columns always
depict the input image that was chosen as reference image (using bicubic upsampling).
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Input Super-resolution
8 bit 12 bit

Fig. 3. Comparison of the influence of quantization using a real dataset. The bottom
row depicts contrast adapted crops of the top images.

The effect of quantization noise is also investigated for real data in Fig. 3.
We used a Prosilica GC1600 together with a Pentax 4.8mm 1:1.8 lens to capture
a 8bit and a 12bit video. Unfortunately, in this case no notable visual gain can
be seen when comparing the super-resolution results. A thorough evaluation of
different cameras is left for future investigations.

In Fig. 4, a scene with strong motion is used as input. Optical Flow was
calculated using [14]. To demonstrate the capability of using arbitrary scale
factors, we chose ξ = 2.67 as scale factor. The results demonstrate that the
proposed algorithm can easily handle strong occlusions due to the robust Huber-
Norm. It shows that we obtain good results that are comparable to the more
complex super-resolution motion layer decomposition approach of Schoenemann
[10].

Finally, we compare our algorithm to the closely related work of Mitzel et al.
[7]. In Fig. 5, super-resolution was done on a public car sequence 1. Note that we
clearly improve the sharpness and detail recovery in the super-resolution image.
Using the proposed algorithm on can easily read the cars license plate which is
not the case for the other algorithm.

6 Conclusion

We presented a variational super-resolution approach that uses a robust Huber-
Norm for regularization as well as in the data term. A fast primal-dual algorithm
was used to solve a convex saddle-point problem. We put particular emphasis
to the accurate design of the model, the used operators and discretization. The
exact choice of warping, blurring and downsampling operators was discussed,
and results demonstrate that we obtain state of the art results even for very

1 http://users.soe.ucsc.edu/ milanfar/software/sr-datasets.html



Variational Super-Resolution 9

Frame 90 Flow 90← 99 Frame 99 Flow 99→ 106 Frame 106

Super-resolution with ξ = 2.67 Bicubic

Schoenemann [10]

Proposed method

Fig. 4. Demonstration of superresolution on real data with heavy occlusions. The flow
images in the first row use Middlebury color coding.

16 input images Super-resolution ξ = 3 Bicubic

... ...

Mitzel et al. [7]

Proposed method

Fig. 5. Comparison to the closely related work of Mitzel et al. [7] using super-resolution
to recover a license plate. (Contrast adapted for crops)

difficult scenes. The proposed approach can handle large occlusions as well as
arbitrary scale factors. An extensive evaluation of the influence of noise was
carried out. It showed that in theory a higher dynamic range can significantly
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improve the recovered results. Though for real data, sensor noise is the limiting
factor. We hope this will trigger further research on the practical implications
of bit depth on superresolution. In future work we will also study more powerful
regularization terms (e.g. wavelets).
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