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The Bayes Filter (Rep.)
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Graphical Representation (Rep.)

We can describe the overall process using a

e This incorporates the following Markov assumptions:
p(Zt ‘ L0O:t, Ul:t, Zl:t) — p(zt | ZCt) (measurement)

p(azt | L0:t—1, Ul:t, Zl:t) - p(xt | $t—1,ut) (state)
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Definition

e | A Probabilistic Graphical Model is a diagrammatic
representation of a probability distribution.

e In @ Graphical Model, random variables are
represented as nodes, and statistical dependencies are

represented using edges between the nodes.
o 1he resulting graph can have the following properties:
« Cyclic / acyclic
« Directed / undirected

o 1 he simplest graphs are Directed Acyclig Graphs
(DAQG).
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Simple Example

o Given: 3 random variables a , b , and
o Joint probjp(a, b, c) = p(cla, b)p(a,b) = p(c|a,b)p(bla)p(a)

y p(b | a)
p(a) : Random
variables can be
discrete or
continuous
p(c|a,b) c

o A Graphical Model based on a DAG is called a
Bayesian Network
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Simple Example

e In general: K random variables x1,%2,...,Txk
e JOINnt prob:

p(z1,...,2k) = p(Tk|T1,. .., TK-1) ... p(z2|T1)p(21)
e Ihis leads to a fully connected graph.

o Note: The ordering of the nodes in such a fully
connected graph is arbitrary. They all represent the
joint probability distribution:

p(alb, c)p(blc)p(c)
p(bla, c)p(alc)p(c)

p(a,b,c)

p(a,b,c)

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Bayesian Networks

o Statistical independence can be represented by the
absence of edges. This makes the computation
efficient.

p(x1)p(x2)p(x3)p(x4|21, T2, 23)
p(xs|zy, x3)p(re|rs)p(T7|24, 25)

p(xy,...,z7)

Intuitively: only 1 and x3
have an influence on z5
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Bayesian Networks

o We can now define a one-to-one mapping from
graphical models to probabilistic formulations:

GGeneral Factorization

K
p(x) = | | p(zk|pay,)
k=1

where

pa, & @ncestors of,,

and
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Elements of Graphical Models

e In case of a series of random variables with equal
dependencies, we can subsume them using a
plate:

N
p(t,w) =p(w) | | p(tnw)

n=1
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Elements of Graphical Models (2)

o We distinguish between input variables and explicit

hyperparameters:
N
p(t, w|x, a, 0%) = p(w|a) H p(tn|W, zpn, 0?).
n=1
i Ln i ¥
W
OO
L
N
 —
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Elements of Graphical Models (3)

o We distinguish between observed variables and
hidden variables:

N
(deterministic para- p(wlt) o p(w) H p(ty|w)
n=1 _
meters omitted)
[ ZTp v
4 Y
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Regression as a Graphical Model

Regression: Prediction of a new target value ;

pE, t,w | #,%, a, 0%) =

Ln Y

- N
- T ptta | 20y w,0%) | pw | @)p(El, w, 0%)
n=1

Here: conditioning on all

O OW deterministic parameters
Ly,
N

i Using this, we can obtain
the
O'Q. O;\ e p(ﬂfE\,X,t,O{,UQ) X ]p(%\,t,w\’x\,x,a,az)dw
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Two Special Cases

o We consider two special cases:

. All random variables are discrete; i.e. Each x

s represented by values ,,, ., Wwhere
0.5000

K 0.3750
. — 1  0.2500
Z“ J 0.1250
=1 0 M1 M2

o All random variables are Gaussian

0.5
0.45 F
0.4

zi ~ N (. piyo?) 52|

0.25 F

0.2
O.15 F

: : 2 oz _. O . - 3
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Discrete Variables: Example

o TWO dependent variables: K2 - 1 parameters [Here: K = 2

T T2 p(z2 | 1)

1 1 0.25 }K 1)
1| p(x1) 1 2 0.75
1 0.2 }K—l ; 1 X }K_I”K(K—l)
2 2 2 0.9 |

0.8
X1 X9
O O K-1+K(K-1)=K*-1

o INndependent joint distribution: 2(K- 1) parameters

XO Xb K-1+K—-1=2(K—1)
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Discrete Variables: General Case

In a general joint distribution with M variables we need
to store KM -1 parameters

If the distribution can be described by this graph:

X1 X9 XM

We have only K-1 + (M -1) K(K -1) parameters.
This graph is called a with M nodes.
The number of parameters grows only
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Gaussian Variables

Assume all random variables are Gaussian and we

define
p(ﬂfz' | Pai) =N (ﬂfi; Z Wi T + bz',’Uz')

Jepa,

Then the joint probability p(x) is a multivariate Gaussian
where

e Mean and covariance can be calculated recursively

e The fully connected graph corresponds to a Gaussian
with a general symmetric covariance matrix

* The non-connected graph corresponds to a diagonal
covariance matrix
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Independence (Rep.)

Definition 1.4: Two random variables x andy are

T p(x, y) = p(x)p(y)
For independent random variables x and y~ we have:

_p@y) _ plply) _
Pl y) = p(y)  p(y) =)

Notation: Ay |0

Independence does not imply conditional independence.
The same is true for the opposite case.
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Conditional Independence (Rep.)

Definition 1.5: Two random variables x andy are
given a third random
variable , iff:

p(z,y|z)=px|2)py| 2)

This is equivalent to:

p(z|z)=p(x|y,z) and
p(y|z)=py|xz2)

Notation: rll ylz
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Conditional Independence: Example 1

o This graph represents the
c probabillity distribution:

p(a,b, c) = p(alc)p(blc)p(c)
e Marginalizing out c on

N both sides gives

a b

p(a,b) = p(ale)p(ble)p(c)

Thus: , and; arenotindependent: , y | ¢
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Conditional Independence: Example 1

o Now, we condition on,. (it is assumed to be known):

C

p(a,b,c)
p(c)
g ¢ = p(ale)p(blc)

p(a, b‘C) —

Thus: « and, are conditionally independent given . :a 1Lb|¢

We say that the node at .. is a on the
path between « andb
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Conditional Independence: Example 2

, This graph represents the

b -CO O distribution:

p(a, b, c) = p(a)p(c|a)p(blc)

Again, we marglnallze over .

Zp cla)p(bl|c) = Zp cla)p(ble, a)

And we obtain: a’M- b ‘ 0
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Conditional Independence: Example 2

e As before, now we condition onec¢ :

o—e—C " K

|
s
~~
S

O
—
>
~~
A

O
—r

And we obtain: a 1l b|c

We say that the node at cis a
on the path between ¢ and .
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Conditional Independence: Example 3

Now consider this graph: p(a,b,c) = p(a)p(b)p(cla, b)
using:
v b
= S Palbople|b)
2 plel o) =2 ST

we obtain:
p(a,b) = p(a)p(b)

And the result is: o 1L b0
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Conditional Independence: Example 3

e Again, we condition on.

p(a, b‘c) —

This results In: all blc

We say that the node at _.is a
on the path between ,and ;.
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To Summarize

o When does the graph represent (conditional)
independence?

« Tail-to-tail case: if we condition on the tail-to-tail node
« Head-to-tail case: if we cond. on the head-to-tail node

« Head-to-head case: if we do not condition on the head-
to-head node (and neither on any of its descendants)

o In general, this leads to the notion of D-separation for
directed graphical models.
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D-Separation

.Say: A, B, and C are non-intersecting subsets
of nodes in a directed graph.

A path from A to B is blocked by C if it
contains a node such that either

a)the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or

b)the arrows meet head-to-head at the node, and neither
the node, nor any of its descendants, are in the set C.

If all paths from A to B are blogkeg A is said to
be d-separated from B by C. Notation:
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D-Separation

D-Separation is a
property of graphs
and not of

probability
distributions




D-Separation: Example

—~dsep(a, b|c) dsep(a, b|f)
We condition on a descendant We condition on a tail-to-tail

of e, I.e. it does not block the  node on the only path from a
path from a to b. to b, I.e f blocks the path.
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I-Map

Definition 4.1: A graph G is called an for a
distribution p if every D-separation of G corresponds
to a conditional independence relation satisfied by p:

VA,B,C :dsep(A,B,C)= A1l B|C

Example: The fully connected graph is an |-map for any
distribution, as there are no D-separations in that
graph.
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D-Map

Definition 4.2: A graph G is called an for a
distribution p if for every conditional independence
relation satisfied by p there is a D-separation in G :

VA,B,C : A 1. B|C = dsep(A, B,C)

Example: The graph without any edges is a D-map for
any distribution, as all pairs of subsets of nodes are
D-separated in that graph.
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Perfect Map

Definition 4.3: A graph G is called a for a
distribution p if it is a D-map and an |I-map of p.

VA,B,C: A 1l B|C < dsep(A, B,C)

A perfect map uniquely defines a probability distribution.
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The Markov Blanket

e Consider a distribution of a node x 1 conditioned on
all other nodes:

p(X1,...,X0r)

/p(Xl, “ . ,X]\/[)dxi
Hp (xk|pay,)

/Hp Xk |pag )dx;

— (XZ | XM; )

P(Xi|X{j2iy)

Factors independent of x;

.l t hf.}a‘i at cancel between numerator
Xi - all parents, chiiaren and denominator.

and co-parents of x;.
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Summary

« Graphical models represent joint probability
distributions using nodes for the random variables
and edges to express (conditional) (in)dependence

« A prob. dist. can always be represented using a fully
connected graph, but this is inefficient

o In a directed acyclic graph, conditional indepen-
dence is determined using D-separation

« A perfect map implies a one-to-one mapping
between c.I. relations and D-separations

« The Markov blanket is the minimal set of observed
nodes to obtain conditional independence
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Graphical Representation (Rep.)

We can describe the overall process using a

 This incorporates the following Markov assumptions:
p(zt | LO:ty Wty Zl:t) — p(Zt | $t) (Mmeasurement)

p(ﬂi't | L0:t—1, U1:¢, Z1:t) — p(fll‘t | :Et_l,ut) (state)
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Graphical Representation

We can describe the overall process using a Markov
chain of latent variables:

;1\ x1+l v
Discrete
Variables

 This incorporates the following Markov assumptions:

p(zt | L0t Zl:t) — p(zt | :Et) (measurement)

p(xt | o:t—1, 21:4) = (x| wp—y ) (State)

Machine Learning for Dr. Rudolph Triebel
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Example

 Place recognition for mobile robots

« 3 different states: corridor, room, doorway

« Problem: misclassifications

 |dea: use information from previous time step

BN Corridor B Room Doorway
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Formulation as HMM
1.Discrete random variables

* Observation variables: {z,}, n=1..N

» State variables (unobservable): {x,},n=1..N

* Number of states K: x,e{1..K}

2.Transition model p(x; |x,.;)

Model Parameters
0

* Markov assumption (x; only depends on x;

* Represented as a KxK transition matri

* Initial probability: p(x,) repr. as@ng, @

3.0bservation model p(z,|x;) with parameter

* Observation only depends on the current state
« Example: output of a “local” place classifier
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The Trellis Representation

time

(=1 .\ '/. ......
2 ..“..“. ......
LN

n- n-1
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Application Example (1)

» Given an observation sequence z,,z,,z;. ..

« Assume that the model parameters
0 =(A, w, @) are known

« What is the probability that the given observation
seqguence Is actually observed under this model,
l.e. p(Z| 6)?

- |If we are given several different models, we can
choose the one with highest probability

- EXpressed as a supervised learning problem,
this can be interpreted as the inference step
(classification step)
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Application Example (2)

» Given an observation sequence z,,z,,z;...

- Assume that the model parameters
0 =(4, &, @) are known

* What is the state sequence x,,x,x;... that
explains best the given observation sequence?

* In the case of place recognition: which is the
sequence of truly visited places that explains
best the sequence of obtained place labels
(classifications)?
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Application Example (3)

» Given an observation sequence z,,z,,z;...
« What are the optimal model parameters
0 =(A, 7, ¢)?

* This can be interpreted as the
training step

* Is in general the most difficult problem
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Summary: 3 Operations on HMMs

1. Compute data likelihood p(Z|0) from a known model
« Can be computed with the forward-backward algorithm

2. Compute optimal state sequence with a known model
« (Can be computed with the Viterbi-Algorithm

1. Learn model parameters for an observation sequence

 (Can be computed using Expectation-Maximization (or
Baum-Welch)
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1. Computing the Data Likelihood
* Assume: given a state sequence x,,x,,x;...

* Compute p(Z]X, 0) = Hp(zn\xn, 0)
» The probability of this state sequence is
P(X]9) = p(x9) P(X;[X9) P(X2IX)). .

/ \

T A
* Thus, we have p(Z,X| 6)= p(Z|X, 0) p(X]|0)

* We need p(Z] 0)= LIp(Z.x1 0), but this is
intractable
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The Forward-Backward Algorithm

* Define a(x,)= p(z,,25,...,Z2,.X,)
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The Forward-Backward Algorithm

* Define &(x,)= p(z1,25,-.-,Z,.X,)
 This can be recursively computed:

0(%,)= Pz, %) 24 0(X,.1) PG, )
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The Forward-Backward Algorithm

* Define &(x,)= p(z1,25,-.-,Z,.X,)

 This can be recursively computed:

0(x,)= P(z,x,) 2 alx, ) p(x,
 Then we have:

p(Z] )= 2 a(xy)

Machine Learning for

xn—])

Solution to first
problem!
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The Forward-Backward Algorithm

* Define &(x,)= p(z1,25,-.-,Z,.X,)
 This can be recursively computed:

0(X,)= PZal%,) 20 0%, 1) PO, )

 Then we have:

Solution to first
problem!

p(Z] 0)= 2 0(xy)

» Similarly, we define B(x,)=p(z,+ /.24 - -,Zn%,,)
 This can also be recursively computed:

B(x > Z B(xn+1) p(zn+1|xnﬂ> (X, 11X,)
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The Forward-Backward Algorithm

» this can be used to computey computed:
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2. Computing the Most Likely States
» Goal: find a state sequence x,,x,,x;... that

maximizes the probability p(X,Z|0)

* Define 0(X,)= maX p(X;,X2....XZ 1,225 - -+Z;)

XiyeeeXp.
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2. Computing the Most Likely States
- Goal: find a state sequence x;,X,,X5... that

maximizes the probability p(X,Z|0)

* Define 0(X,)= maxX p(x;,X,...sX.2 1,225 - .12, )

 This can be recursively computed:
6(Xn)= p(zn‘xn) T_Tax [S(Xn-1) p(Xn‘Xn-1)]
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2. Computing the Most Likely States
- Goal: find a state sequence x,,X,,X5... that

maximizes the probability p(X,Z|0)

* Define 0(x,)= max p(xX;,X5,....XZ 1,22, .»Z,)

 This can be recursively computed:
0(X,)= p(z,/x,) max [0(X,-1) PXplXn-7)]
» But we also need the argmax:
P (x,)= argmax [0(X,,_;) P(X,Xp-1)]
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The Viterbi algorithm

e [Initialize:
® 0(xp)= Pxo) PEo | Xo)
*P(xp)= 0

« Compute recursive)!ry for n=1...N:
*0(X,)= P(Znlxy) max[0(X,1) P(XylXs-1)]

° \.|)(Xn)= argmax [6(Xn-1) p(Xn‘Xn-1)]

 On termination:

XN

*p(Z,X|6) = max o(xy)

*x, = argmax d(xy)
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3. Learning the Model Parameters

- Given an observation sequence z,,z,,z;...

* Find optimal model parameters 6

* We need to maximize the likelihood p(Z|0)
« Can not be solved in closed form

» |[terative algorithm:
Expectation Maximization (EM) or for the case
of HMMs: Baum-Welch algorithm
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Expectation maximisation

« Objective: Find the model parameters knowing
the observations: w,A,(

* Result:
* Train the HMM to recognize sequences of input
* Train the HMM to generate sequences of input
 Technique: Expectation Maximisation

o E: Find the best state sequence given the
parameters

* M. Find the parameters using the state sequence
* Maximisation of the log-likelinood:
argmax ; , . — log (P ?Zl. 7, ACd ))
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The Baum-Welsh algorithm

* E-Step (assuming we know w,A,d, i.e. Bold)
« Define the posterior probability of being in state
| at step k:

- Define y(x,)= p(x,|2)
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The Baum-Welsh algorithm

* E-Step (assuming we know m,A,¢, i.e. Bold)

« Define the posterior probability of being in state
| at step k:

- Define y(x,,)= p(x,|2)
* |t follows that y(x,)= a(x,) B(x,) / p(Z)
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The Baum-Welsh algorithm

* E-Step (assuming we know m,A,¢, i.e. Bold)

« Define the posterior probability of being in state
| at step k:

- Define y(x,)= p(x,|2)
* |t follows that y(x,)= a(x,) B(x,) / p(Z)
* Define &(x,,.1,X,)= P(X,.1,Xnl2)
* |t follows that &(x,_;,x,)=

X (X 1)P@A XA RXA1Xn-1) B(X,) / P(Z)
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The Baum-Welsh algorithm

« Maximizing Q also maximizes the likelihood:

p(Z]0) = p(Z|6°'d)
- M-Step:
"= Y0=KY 2 y(,=)
here, we need forward and backward step!
‘Aij= Z E(Xn-1=i’ Xn=j) / Z kz E(Xn-1=iv ank)
« With these new values, Q is recomputed

 This is done until the likelihood does not
increase anymore (convergence)
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The Baum-Welsh algorithm - summary
* Start with an initial estimate of 0=(11,A,®)
e.g. uniformly and k-means for

* Compute Q(0,0609) (E-Step)
« Maximize Q (M-step)
* [terate E and M until convergence

 [n each iteration one full application of the
forward-backward algorithm is performed

» Result gives a local optimum

 For other local optima, the algorithm needs to
be started again with new initialization
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The Scaling problem

« Probability of sequences

HP(X ):@1

<1

* Probabillities are very small
* The product of the terms soon is very small

- Usually: convert to log-space works
- But: we have sums of products!

« Solution: Rescale/Normalise the probability
during the computation, e.qg.:

O((Xn): O((Xn) / p(ZhZZv- . -vZn)
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Summary

- HMMs are a way to model sequential data
» They assume discrete states

« Three possible operations can be performed
with HMMs:

e Data likelihood, given a model and an observation

* Most likely state sequence, given a model and an
observation

e Optimal Model parameters, given an observation
» Appropriate scaling solves numerical problems

- HMMs are widely used, e.g. in speech
recognition
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