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(Bayes)

The Bayes Filter (Rep.)

(Markov)

(Tot. prob.)

(Markov)

(Markov)
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• This incorporates the following Markov assumptions:

Graphical Representation (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)
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Definition

• A Probabilistic Graphical Model is a diagrammatic 
representation of a probability distribution.

• In a Graphical Model, random variables are 
represented as nodes, and statistical dependencies are 
represented using edges between the nodes.

• The resulting graph can have the following properties:

• Cyclic / acyclic

• Directed / undirected

• The simplest graphs are Directed Acyclig Graphs 
(DAG).
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Simple Example

• Given: 3 random variables    ,    , and 

• Joint prob:

• A Graphical Model based on a DAG is called a 
Bayesian Network

Random 
variables can be 

discrete or 
continuous
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Simple Example

• In general:       random variables

• Joint prob:

• This leads to a fully connected graph.

• Note: The ordering of the nodes in such a fully 
connected graph is arbitrary. They all represent the 
joint probability distribution:

…
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Bayesian Networks

• Statistical independence can be represented by the 
absence of edges. This makes the computation 
efficient.

•                                          

•   Intuitively: only      and 

•    have an influence on 
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Bayesian Networks

•We can now define a one-to-one mapping from 
graphical models to probabilistic formulations:

General Factorization

where

and

ancestors of
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Elements of Graphical Models 
• In case of a series of random variables with equal 

dependencies, we can subsume them using a 
plate:

Plate
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Elements of Graphical Models (2) 

• We distinguish between input variables and explicit 
hyperparameters:
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Elements of Graphical Models (3) 

• We distinguish between observed variables and 
hidden variables:

•                                                                                                                      
(deterministic  para-                     
                meters omitted)
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Regression as a Graphical Model

Here: conditioning on all 
deterministic parameters

Regression: Prediction of a new target value 

Using this, we can obtain 
the Predictive distribution: 
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Two Special Cases

• We consider two special cases:

• All random variables are discrete; i.e. Each xi 

is represented by values                        where
 

• All random variables are Gaussian

0
0.1250
0.2500
0.3750
0.5000
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Discrete Variables: Example

• Two dependent variables: K2 - 1 parameters

• Independent joint distribution: 2(K – 1) parameters

1 0.2

2 0.8

1 1 0.25

1 2 0.75

2 1 0.1

2 2 0.9

Here: K = 2
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Discrete Variables: General Case

In a general joint distribution with M variables we need 
to store KM -1 parameters

If the distribution can be described by this graph:

We have only K -1 + (M -1) K(K -1) parameters. 

This graph is called a Markov chain with M  nodes.

The number of parameters grows only linearly.
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Gaussian Variables

Assume all random variables are Gaussian and we 
define

Then the joint probability p(x) is a multivariate Gaussian 
where

• Mean and covariance can be calculated recursively

• The fully connected graph corresponds to a Gaussian 
with a general symmetric covariance matrix

• The non-connected graph corresponds to a diagonal 
covariance matrix
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Definition 1.4: Two random variables       and      are 
independent iff:  

 

 

For independent random variables       and      we have: 

 

 

Independence (Rep.)

Notation:

Independence does not imply conditional independence.

The same is true for the opposite case.
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Conditional Independence (Rep.)

Definition 1.5: Two random variables       and      are 
conditional independent given a third random 
variable      iff:  

 

 

This is equivalent to:

and

Notation:
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Conditional Independence: Example 1

• This graph represents the 
probability distribution:

• Marginalizing out c on 

• both sides gives

Thus:      and     are not independent:
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Conditional Independence: Example 1

• Now, we condition on    ( it is assumed to be known): 

Thus:        and      are conditionally independent given     :

We say that the node at    is a tail-to-tail node on the 
path between     and  

20



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Conditional Independence: Example 2

This graph represents the 
distribution:

Again, we marginalize over    :

And we obtain:
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Conditional Independence: Example 2

• As before, now we condition on    : 

And we obtain:

We say that the node at    is a head-to-tail node 
on the path between     and   .

22



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Conditional Independence: Example 3

Now consider this graph:

using:

we obtain:

And the result is:
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Conditional Independence: Example 3

• Again, we condition on 

This results in:

We say that the node at    is a head-to-head node 
on the path between     and   .
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To Summarize

• When does the graph represent (conditional) 
independence?

• Tail-to-tail case: if we condition on the tail-to-tail node

• Head-to-tail case: if we cond. on the head-to-tail node

• Head-to-head case: if we do not condition on the head-
to-head node (and neither on any of its descendants)

• In general, this leads to the notion of D-separation for 
directed graphical models.
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D-Separation

•Say:    A, B, and C are non-intersecting subsets 
of nodes in a directed graph.

•A path from A to B is blocked by C       if it 
contains a node such that either

a)the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or

b)the arrows meet head-to-head at the node, and neither 
the node, nor any of its descendants, are in the set C.

•If all paths from A to B are blocked, A is said to 
be d-separated from B by C. Notation:
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D-Separation

•Say:    A, B, and C are non-intersecting subsets 
of nodes in a directed graph.

•A path from A to B is blocked if it contains a 
node such that either

a)the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or

b)the arrows meet head-to-head at the node, and neither 
the node, nor any of its descendants, are in the set C.

•If all paths from A to B are blocked, A is said to 
be d-separated from B by C. Notation:

D-Separation is a 
property of graphs 

and not of 
probability 

distributions
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D-Separation: Example

We condition on a descendant 
of e, i.e. it does not block the 
path from a to b.

We condition on a tail-to-tail 
node on the only path from a 
to b, i.e f blocks the path.
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I-Map

Definition 4.1: A graph G is called an I-map for a 
distribution p if every D-separation of G corresponds 
to a conditional independence relation satisfied by p:

 

 
Example:  The fully connected graph is an I-map for any 

distribution, as there are no D-separations in that 
graph.
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D-Map

Definition 4.2: A graph G is called an D-map for a 
distribution p if for every conditional independence 
relation satisfied by p there is a D-separation in G :

 

 
Example:  The graph without any edges is a D-map for 

any distribution, as all pairs of subsets of nodes are 
D-separated in that graph. 
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Perfect Map

Definition 4.3: A graph G is called a perfect map for a 
distribution p if it is a D-map and an I-map of p.

 

 

A perfect map uniquely defines a probability distribution.
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The Markov Blanket

• Consider a distribution of a node x_i conditioned on 
all other nodes:

Factors independent of xi 

cancel between numerator 
and denominator.

Markov blanket         at 
xi : all parents, children 

and co-parents of xi.   
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Summary

• Graphical models represent joint probability 
distributions using nodes for the random variables 
and edges to express (conditional) (in)dependence

• A prob. dist. can always be represented using a fully 
connected graph, but this is inefficient

• In a directed acyclic graph, conditional indepen-
dence is determined using D-separation

• A perfect map implies a one-to-one mapping 
between c.i. relations and D-separations

• The Markov blanket is the minimal set of observed 
nodes to obtain conditional independence
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• This incorporates the following Markov assumptions:

Graphical Representation (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)
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• This incorporates the following Markov assumptions:

Graphical Representation

We can describe the overall process using a Markov 
chain of latent variables:

(measurement)

(state)

Discrete 
Variables

Notation 
differs from 

Bishop!
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Example

• Place recognition for mobile robots

• 3 different states: corridor, room, doorway

• Problem: misclassifications

• Idea: use information from previous time step
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1.Discrete random variables 

• Observation variables: {zn}, n = 1..N 
• State variables (unobservable): {xn}, n = 1..N
• Number of states K: xnє{1..K}

2.Transition model p(xi |xi-1)
• Markov assumption (xi only depends on xi-1)

• Represented as a K×K transition matrix A
• Initial probability: p(x0) repr. as  π1, π2, π3

3.Observation model p(zi|xi) with parameters φ
• Observation only depends on the current state

• Example: output of a “local” place classifier

Formulation as HMM

Model Parameters 

θ
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The Trellis Representation

A33 A33

A11 A11k=1

k=2

k=3

time

n-2 n-1 n
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• Given an observation sequence z1,z2,z3…
• Assume that the model parameters 

θ =(A, π, φ) are known

• What is the probability that the given observation 
sequence is actually observed under this model, 

i.e. p(Z| θ)?
• If we are given several different models, we can 

choose the one with highest probability

• Expressed as a supervised learning problem, 
this can be interpreted as the inference step 
(classification step)

Application Example (1)
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• Given an observation sequence z1,z2,z3…
• Assume that the model parameters 

θ =(A, π, φ) are known

• What is the state sequence x1,x2,x3…  that 
explains best the given observation sequence?

• In the case of place recognition: which is the 
sequence of truly visited places that explains 
best the sequence of obtained place labels 
(classifications)?

Application Example (2)
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• Given an observation sequence z1,z2,z3…
• What are the optimal model parameters 

θ =(A, π, φ)?
• This can be interpreted as the 

training step

• Is in general the most difficult problem

Application Example (3)

42



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

1. Compute data likelihood p(Z|θ) from a known model
• Can be computed with the forward-backward algorithm

2. Compute optimal state sequence with a known model
• Can be computed with the Viterbi-Algorithm

1. Learn model parameters for an observation sequence
• Can be computed using Expectation-Maximization (or 

Baum-Welch)

Summary: 3 Operations on HMMs

43



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

• Assume: given a state sequence x1,x2,x3… 

• Compute p(Z|X, θ) = Пp(zn|xn, θ) 
• The probability of this state sequence is

 p(X|θ) = p(x0) p(x1|x0) p(x2|x1)…

• Thus, we have p(Z,X| θ)= p(Z|X, θ) p(X|θ)

• We need p(Z| θ)= Пp(Z,X| θ), but this is 
intractable

1. Computing the Data Likelihood

n=1

N

Aπ

all X
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• Define α(xn)= p(z1,z2,…,zn,xn)

The Forward-Backward Algorithm
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• Define α(xn)= p(z1,z2,…,zn,xn)

• This can be recursively computed:

 α(xn)= p(zn|xn) Σ α(xn-1) p(xn|xn-1)

The Forward-Backward Algorithm

xn-1 
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• Define α(xn)= p(z1,z2,…,zn,xn)

• This can be recursively computed:

 α(xn)= p(zn|xn) Σ α(xn-1) p(xn|xn-1)
• Then we have:

   p(Z| θ)= Σ α(xN)

The Forward-Backward Algorithm

xn-1 

xN 

Solution to first 
problem!
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• Define α(xn)= p(z1,z2,…,zn,xn)

• This can be recursively computed:

 α(xn)= p(zn|xn) Σ α(xn-1) p(xn|xn-1)
• Then we have:

   p(Z| θ)= Σ α(xN)

• Similarly, we define β(xn)= p(zn+1,zn+2,…,zN|xn)
• This can also be recursively computed:

 β(xn)= Σ β(xn+1) p(zn+1|xn+1) p(xn+1|xn)

The Forward-Backward Algorithm

xn-1 

xN 

Solution to first 
problem!

xn+1 
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• this can be used to computey computed:

 

The Forward-Backward Algorithm
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• Goal: find a state sequence x1,x2,x3… that 

maximizes the probability p(X,Z|θ)

• Define δ(xn)= max p(x1,x2,…,xn,z1,z2,…,zn)

2. Computing the Most Likely States

x1,…,xn-1 
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• Goal: find a state sequence x1,x2,x3… that 

maximizes the probability p(X,Z|θ)

• Define δ(xn)= max p(x1,x2,…,xn,z1,z2,…,zn)

• This can be recursively computed:

 δ(xn)= p(zn|xn)  max [δ(xn-1) p(xn|xn-1)]

2. Computing the Most Likely States

x1,…,xn-1 

xn-1 
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• Goal: find a state sequence x1,x2,x3… that 

maximizes the probability p(X,Z|θ)

• Define δ(xn)= max p(x1,x2,…,xn,z1,z2,…,zn)

• This can be recursively computed:

 δ(xn)= p(zn|xn)  max [δ(xn-1) p(xn|xn-1)]

• But we also need the argmax:

ψ(xn)= argmax [δ(xn-1) p(xn|xn-1)]

2. Computing the Most Likely States

x1,…,xn-1 

xn-1 

xn-1 
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• Initialize:

• δ(x0)= p(x0) p(z0 | x0)

•ψ(x0)= 0

• Compute recursively for n=1…N:

•δ(xn)= p(zn|xn)  max [δ(xn-1) p(xn|xn-1)]

•ψ(xn)= argmax [δ(xn-1) p(xn|xn-1)]

• On termination:

•p(Z,X|θ) = max δ(xN)

•xN = argmax δ(xN)

The Viterbi algorithm

xn-1 

xn-1 

*
xN 

xN 

* *
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• Given an observation sequence z1,z2,z3…

• Find optimal model parameters θ
• We need to maximize the likelihood p(Z|θ)

• Can not be solved in closed form

• Iterative algorithm: 
Expectation Maximization (EM) or for the case 
of HMMs: Baum-Welch algorithm

3. Learning the Model Parameters
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• Objective: Find the model parameters knowing 
the observations: π,A,φ

• Result: 

•Train the HMM to recognize sequences of input

•Train the HMM to generate sequences of input

• Technique: Expectation Maximisation

•E: Find the best state sequence given the 
parameters

•M: Find the parameters using the state sequence

•Maximisation of the log-likelihood:

Expectation maximisation
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• E-Step (assuming we know π,A,φ, i.e. θold)

• Define the posterior probability of being in state 
i at step k:

• Define γ(xn)= p(xn|Z)

The Baum-Welsh algorithm
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• E-Step (assuming we know π,A,φ, i.e. θold)

• Define the posterior probability of being in state 
i at step k:

• Define γ(xn)= p(xn|Z)

• It follows that  γ(xn)= α(xn) β(xn) / p(Z)

The Baum-Welsh algorithm
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• E-Step (assuming we know π,A,φ, i.e. θold)

• Define the posterior probability of being in state 
i at step k:

• Define γ(xn)= p(xn|Z)

• It follows that  γ(xn)= α(xn) β(xn) / p(Z)

• Define ξ(xn-1 ,xn)= p(xn-1 ,xn|Z)

• It follows that  ξ(xn-1 ,xn)= 

α(xn-1)p(zn|xn)p(xn|xn-1)β(xn) / p(Z)

The Baum-Welsh algorithm

X 
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• Maximizing Q also maximizes the likelihood:

p(Z|θ) ≥ p(Z|θold)

• M-Step: 

•πk= γ(x1=k)/ Σ γ(x1=j) 

here, we need forward and backward step!

•Aij= Σ ξ(xn-1=i, xn=j) / Σ Σ ξ(xn-1=i, xn=k) 

• With these new values, Q is recomputed

• This is done until the likelihood does not 
increase anymore (convergence)

The Baum-Welsh algorithm

j 

n n k 
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• Start with an initial estimate of θ=(π,A,φ)

e.g. uniformly and k-means for φ
• Compute Q(θ,θold) (E-Step)

• Maximize Q (M-step)

• Iterate E and M until convergence 

• In each iteration one full application of the 
forward-backward algorithm is performed

• Result gives a local optimum

• For other local optima, the algorithm needs to 
be started again with new initialization

The Baum-Welsh algorithm - summary
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• Probability of sequences

•Probabilities are very small

•The product of the terms soon is very small 

• Usually: convert to log-space works

• But: we have sums of products!

• Solution: Rescale/Normalise the probability 
during the computation, e.g.:

  α(xn)= α(xn) / p(z1,z2,…,zn) 

The Scaling problem

<1

^ 
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• HMMs are a way to model sequential data

• They assume discrete states

• Three possible operations can be performed 
with HMMs:

•Data likelihood, given a model and an observation

•Most likely state sequence, given a model and an 
observation

•Optimal Model parameters, given an observation

• Appropriate scaling solves numerical problems

• HMMs are widely used, e.g. in speech 
recognition 

Summary
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