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Repetition: Bayesian Networks

Directed graphical models 
can be used to represent 
probability distributions

This is useful to do 
inference and to generate 
samples from the 
distribution efficiently
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Repetition: D-Separation
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• D-separation is a property of graphs that can be 
easily determined

• An I-map assigns every d-separation a c.i. rel

• A D-map assigns every c.i. rel a d-separation

• Every Bayes net determines a unique prob. dist. 



p(a) = 0.9 p(b) = 0.9

p(¬c | ¬b) = 0.81
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In-depth: The Head-to-Head Node 
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Example: 

a: Battery charged (0 or 1)

b: Fuel tank full (0 or 1)

c: Fuel gauge says full (0 or 1)

We can compute

and

and obtain

similarly:  

“a explains c away”

a b p(c)

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

p(¬c) = 0.315

p(¬b | ¬c) ⇡ 0.257

p(¬b | ¬c,¬a) ⇡ 0.111
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Repetition: D-Separation
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Directed vs. Undirected Graphs

Using D-separation we can identify conditional 
independencies in directed graphical models, but:

• Is there a simpler, more intuitive way to express 
conditional independence in a graph?

• Can we find a representation for cases where an 
„ordering“ of the random variables is inappropriate 
(e.g. the pixels in a camera image)?

Yes, we can: by removing the directions of the 
edges we obtain an Undirected Graphical Model, 

also known as a Markov Random Field
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xi xi
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Example: Camera Image

• directions are counter-intuitive for images

• Markov blanket is not just the direct neighbors
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Markov Random Fields

All paths from A to B go 

through C, i.e. C blocks all 
paths.

Markov 
Blanket

We only need to condition 
on the direct neighbors of 

x to get c.i., because these 
already block every path 

from x to any other node.
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Factorization of MRFs

Any two nodes xi and xj that are not connected in an 
MRF are conditionally independent given all other nodes:

In turn: each factor contains only nodes that are 
connected

This motivates the consideration 
of cliques in the graph:

•A clique is a fully connected subgraph.

•A maximal clique can not be extended
with another node without loosing the
property of full connectivity.

Clique

Maximal Clique
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p(xi, xj | x\{i,j}) = p(xi | x\{i,j})p(xj | x\{i,j})



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Factorization of MRFs

• In general, a Markov Random Field is factorized as

•where C is the set of all (maximal) cliques and ΦC  is a 

positive function of a given clique xC of nodes, called 

the clique potential. Z is called the partition function.

• Theorem (Hammersley/Clifford): Any undirected model 

with associated clique potentials ΦC  is a perfect map 

for the probability distribution defined by Equation 
(4.1).

•As a conclusion, all probability distributions that can be 
factorized as in (4.1), can be represented as an MRF.
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Converting Directed to Undirected Graphs (1)

In this case: Z=1
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x1 x1

x2 x2

x3
x3

x4 x4

p(x) = p(x1)p(x2)p(x2)p(x4 | x1, x2, x3)
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Converting Directed to Undirected Graphs (2)

In general: conditional distributions in the directed graph 
are mapped to cliques in the undirected graph

However: the variables are not conditionally independent 
given the head-to-head node

Therefore: Connect all parents of head-to-head nodes with 
each other (moralization)
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x1 x1

x2 x2

x3
x3

x4 x4

p(x) = p(x1)p(x2)p(x2)p(x4 | x1, x2, x3)
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Converting Directed to Undirected Graphs (2)

Problem: This process can remove conditional 
independence relations (inefficient)

Generally: There is no one-to-one mapping between the 
distributions represented by directed and by undirected 
graphs.
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p(x) = �(x1, x2, x3, x4)
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Representability

•As for DAGs, we can define an I-map, a D-map 
and a perfect map for MRFs.

•The set of all distributions for which a DAG 
exists that is a perfect map is different from 
that for MRFs. 

Distributions 
with a DAG as 
perfect map

Distributions 
with an MRF as 

perfect map

All distributions
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Directed vs. Undirected Graphs

Both distributions can not be represented in the other 
framework (directed/undirected) with all conditional 
independence relations.
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Using Graphical Models

We can use a graphical model to do inference:

• Some nodes in the graph are observed, for others 
we want to find the posterior distribution

• Also, computing the local marginal distribution p(xn) 
at any node xn can be done using inference.

Question: How can inference be done with a 
graphical model?  

We will see that when exploiting conditional 
independences we can do efficient inference. 
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Inference on a Chain

The joint probability is given by

The marginal at  x3 is

In the general case with N nodes we have

and
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Inference on a Chain

•This would mean KN computations! A more efficient 
way is obtained by rearranging:

Vectors of size K
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Inference on a Chain

In general, we have
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Inference on a Chain

The messages µα and µβ can be computed 

recursively:

Computation of  µα starts at the first node and 

computation of  µβ starts at the last node.
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Inference on a Chain

•The first values of µα and µβ are:

•The partition function can be computed at any node:

•Overall, we have O(NK2) operations to compute the 
marginal 
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Inference on a Chain

To compute local marginals:

•Compute and store all forward messages,             .

•Compute and store all backward messages,             

•Compute Z once at a node xm:

•Compute

for all variables required.
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree PolytreeUndirected 

Tree

It is then known as the sum-product algorithm. 
A special case of this is belief propagation. 
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Undirected 
Tree

An undirected tree is defined 
as a graph that has exactly one 
path between any two nodes
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree

25

A directed tree has 
only one node 
without parents and 
all other nodes 
have exactly one 
parent

Conversion from 
a directed to an 
undirected tree is 
no problem, 
because no links 
are inserted

The same is true for the 
conversion back to a 
directed tree
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Polytree
Polytrees can contain nodes with 
several parents, therefore 
moralization can remove 
independence relations
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f(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs.

• A representation that generalizes directed and 
undirected models is the factor graph.

Directed graph Factor graph
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs.

• A representation that generalizes directed and 
undirected models is the factor graph.

Undirected graph Factor graph
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fb
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Factor Graphs

Factor graphs 

• can contain multiple factors 
for the same  nodes

• are more general than 
undirected graphs

• are bipartite, i.e. they consist 
of two kinds of nodes and all 
edges connect nodes of 
different kind

29
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Factor Graphs

• Directed trees convert to 
tree-structured factor graphs

• The same holds for 
undirected trees

• Also: directed polytrees 
convert to tree-structured 
factor graphs

• And: Loops in a directed 
graph can be removed by 
converting to a factor graph

30
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The Sum-Product Algorithm

Assumptions: 

• all variables are discrete

• the factor graph has a tree structure

The factor graph represents the joint distribution 
as a product of factor nodes:

The marginal distribution at a given node x is

31
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The Sum-Product Algorithm

For a given node x the joint 
can be written as 
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Product of all 
factors associated 

with  fs

p(x) =
Y

s2ne(x)
F

s

(x,X
s

)

Thus, we have

Key insight: Sum and product can be exchanged!

“Messages from 

factors to node x”
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The Sum-Product Algorithm

The factors in the messages 
can be factorized further:
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The messages can then be computed as

“Messages from 
nodes to factors”

Fs(x,Xs) = fs(x, x1, . . . , xM )G1(x1, Xs1) . . . GM (xM , XsM )
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The Sum-Product Algorithm

The factors G of the 
neighboring nodes can 
again be factorized further:
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This results in the exact same situation as above! 
We can now recursively apply the derived rules: 

=
Y

l2ne(xm)\fs

µ

fl!xm(x
m

)
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The Sum-Product Algorithm
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Summary marginalization:

1.Consider the node x as a root note

2.Initialize the recursion at the leaf nodes as:
                          (var)  or                          (fac)

3.Propagate the messages from the leaves to the 

root x
4.Propagate the messages back from the root to 

the leaves

5.We can get the marginals at every node in the 
graph by multiplying all incoming messages 

µ

f!x

(x) = 1 µ

x!f

(x) = f(x)
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The Max-Sum Algorithm

Sum-product is used to find the marginal 
distributions at every node, but:

How can we find the setting of all variables that 
maximizes the joint probability? And what is the 
value of that maximal probability?

Idea: use sum-product to find all marginals and 

then report the value for each node x that 

maximizes the marginal p(x)
However: this does not give the overall 
maximum of the joint probability
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The Max-Sum Algorithm

Observation: the max-operator is distributive, just 
like the multiplication used in sum-product: 

Idea: use max instead of sum as above and 
exchange it with the product

Chain example:

Message passing can be used as above!
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max(ab, ac) = amax(b, c) if a � 0

max

x
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The Max-Sum Algorithm

To find the maximum value of p(x), we start again 
at the leaves and propagate to the root.

Two problems:

• no summation, but many multiplications; this 
leads to numerical instability (very small values)

• when propagating back, multiple configurations 

of x can maximize p(x), leading to wrong 
assignments of the overall maximum

Solution to the first:

Transform everything into log-space and use sums
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The Max-Sum Algorithm

Solution to the second problem:

Keep track of the arg max in the forward step, 
i.e. store at each node which value was 
responsible for the maximum:

Then, in the back-tracking step we can recover 
the arg max by recursive substitution of:

This is the Viterbi-Algorithm for HMMs!
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Other Inference Algorithms

Junction Tree Algorithm:

• Provides exact inference on general graphs.

• Works by turning the initial graph into a junction 
tree and then running a sum-product-like algorithm

• A junction tree is obtained from an undirected 
model by triangulation and mapping cliques to 
nodes and connections of cliques to edges

• It is the maximal spanning tree of cliques

Problem: Intractable on graphs with large cliques.

Cost grows exponentially with the number of 
variables in the larges clique (“tree width”).
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Other Inference Algorithms

Loopy Belief Propagation:

• Performs Sum-Product on general graphs, 
particularly when they have loops

• Propagation has to be done several times, until a 
convergence criterion is met

• No guarantee of convergence and no global 
optimum

• Messages have to be scheduled

• Initially, unit messages passed across all edges 

• Approximate, but tractable for large graph
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Conditional Random Fields

• A special case of MRFs is known as Conditional 
Random Field (CRF).

• CRFs are used for classification where labels are 

represented as discrete random variables y and 

features as continuous random variables x
• A CRF represents the conditional probability

where w are parameters learned from training data.
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Conditional Random Fields

Derivation of the formula for CRFs:

In the training phase, we compute parameters w that 
maximize the posterior: 

where (x*,y*) is the training data and p(w) is a Gaussian 
prior. In the inference phase we maximize
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Conditional Random Fields

Note: the definition of xi,j and yi,j is different 
from the one in C.M. Bishop (pg.389)!

Typical example: 
observed variables 

xi,j are intensity 

values of pixels in 
an image and 

hidden variables yi,j 

are object labels
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CRF Training

We minimize the negative log-posterior:

Computing the likelihood is intractable, as we have to 

compute the partition function for each w. We can 
approximate the likelihood using pseudo-likelihood:

where
Markov blanket Ci: All cliques containing yi
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Pseudo Likelihood
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Pseudo Likelihood

Pseudo-likelihood is computed only on the Markov 

blanket of yi and its corresp. feature nodes.
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Potential Functions

•The only requirement for the potential functions is 
that they are positive. We achieve that with:

where f is a compatibility function that is large if the 

labels yC fit well to the features xC.

•This is called the log-linear model.

•The function f can be, e.g. a local classifier
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CRF Training and Inference

Training:

• Using pseudo-likelihood, training is efficient. We have 
to minimize:

• This is a convex function that can be minimized using 
gradient descent

Inference:

• Only approximatively, e.g. using loopy belief 
propagation

Log-pseudo-likelihood Gaussian prior
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Summary

• Undirected Graphical Models represent conditional 
independence more intuitively using graph 
separation

• Their factorization is done based on potential 
functions The normalizer is called the partition 
function, which in general is intractable to compute

• Inference in graphical models can be done 
efficiently using the sum-product algorithm 
(message passing).

• Another inference algorithm is loopy belief 
propagation, which is approximate, but tractable

• Conditional Random Fields are a special kind of 
MRFs and can be used for classification
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