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Repetition: Regression

We start with a set of basis functions

The goal is to fit a model into the data

To do this, we need to find an error function, e.g.:

To find the optimal parameters, we derived E with 

respect to w and set the derivative to zero.
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Some Questions

1.Can we do the same for classification?
As a special case we consider two classes:

2.Can we use a different (better?) error function?

3.Can we learn the basis functions together with 
the model parameters?

4.Can we do the learning sequentially, i.e. one 
basis function after another?

Answer to all questions: Yes, using Boosting!
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The Loss Function

Definition: a real-valued function               , 

where t is a target value and y is a model, is 
called a loss function. 

Examples:

01-loss: 

squared error loss:

exponential loss: 
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L(t, y(x))

L01(t, y(x)) =

⇢
0 if t = y(x)
1 else

Lsqe(t, y(x)) = (t� y(x))2

L
exp

(t, y(x)) = exp(�ty(x))
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Loss Functions

• 01-loss is not differentiable

• squared error loss has only one optimum
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Sequential Fitting of Basis Functions

Idea: We start with a basis function         :

Then, at iteration m, we add a new basis 
function           to the model:

Two questions need to be answered:

1.How do we find a good new basis function?

2.How can we determine a good value for wm?

Idea: Minimize the exponential loss function
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Minimizing the Exponential Loss

Aim: find wm  and     so that

where 

7

�m

L(t, y) = exp(�ty)

(wm,�m) = argmin
w,�

NX

i=1

L(ti, ym�1(xi) + w�(xi))



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Minimizing the Exponential Loss

Aim: find wm  and     so that

where 

Solution: 
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Minimizing the Exponential Loss

Aim: find wm  and     so that

where 

Solution: 
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Minimizing the Exponential Loss

Aim: find wm  and     so that

where 

Solution: 
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The AdaBoost Algorithm

1.For                   :

2.For 

Fit a classifier (“basis function”)       that minimizes 

Compute                                           and

Update the weights:   

3.Use the resulting classifier: 
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The “Basis Functions”

• Can be any classifier that can deal with weighted 
data

• Most importantly: if these “base classifiers” 
provide a training error that is at most as bad as 
a random classifier would give (i.e. it is a weak 
classifier), then AdaBoost can return an 
arbitrarily small training error (i.e. AdaBoost is a 
strong classifier)

• Many possibilities for weak classifiers exist, e.g.:

•Decision stumps

•Decision trees 

12
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Decision Stumps

Decision Stumps are a kind of very simple weak 
classifiers.

Goal: Find an axis-aligned hyperplane
that minimizes the class. error

This can be done for each feature (i.e. 
for each dimension in feature space)

It can be shown that the classif. error is 
always better than 0.5 (random guessing)

Idea: apply many weak classifiers, where each is 
trained on the misclassified examples of the 
previous.
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Classification Example
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Classification Example
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Classification Example
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Classification Example
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Classification Example
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Classification Example
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Decision Trees

• A more general version of decision stumps are 
decision trees:

• At every node, a decision
is made

• Dan be used for classification and for regression 
(Classification And Regression Trees CART)
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Decision Trees for Classification

• Stores the distribution over class labels in each 
leaf (number of positives and negatives)

• With these, we can class label probabilities, e.g. 
                           if we have a red ellipse
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Growing a Decision Tree

• Finding the optimal partition of the data is an 
NP-complete problem!

• Instead: use a greedy strategy:

function fitTree(node,  , depth):

1. node.prediction = class label distribution

2. 

3. if not worth splitting then return node

4. node.test

5. node.left = fitTree(node,    , depth +1) 

6. node.right = fitTree(node,    , depth +1) 
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Growing a Decision Tree

• The Split-function finds an optimal feature and an 
optimal value for that feature

• For classification, it finds a split that minimizes 
some cost function, e.g. misclassification

• A decision stump is a decision tree with depth 1

• Stopping criteria for growing the tree are:

•reduction of cost too small?

•maximum depth reached?

•is the distribution in the sub-trees homogenous?

•is the number of samples in the sub-trees too small?

23



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Tree Pruning

• If the tree grows too large, the algorithm overfits

• Simply stopping to grow can lead to situations 
where the tree is not expressive enough

• Idea: Build first full tree and then prune it

• Pruning can be done using cross-validation
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Random Forests

• To reduce the variance of the classification 
estimate, we can train several trees on 
randomly sampled subsets of the data

• However, this can result in correlated classifiers, 
limiting the reduction in variance

• Idea: chose data subset and variable (feature) 
subset randomly

• The resulting algorithm is known as Random 
Forests

• Random Forests have very good accuracy and 
are widely used, e.g. body pose recognition
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Back to Boosting

• AdaBoost has been shown to perform very well, 
especially when using decision trees as weak 
classifiers

• However: the exponential loss weighs 
misclassified examples very high!
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Using the Log-Loss

• The log-loss is defined as:

• It penalizes misclassifications only linearly
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The LogitBoost Algorithm

1.For                   :

2.For 

Compute the working response 

Compute the weights

Find       that minimizes                

Update                                      and   

3.Use the resulting classifier: 
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Weighted Least-Squares Regression

• Instead of a weak classifier, LogitBoost uses 
“weighted least-squares regression”

• This is very similar to standard least-squares 
regression:

• This results in a matrix                  where  

• The solution is 
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GentleBoost

• Numerically more stable than LogitBoost

• Tends to perform better than AdaBoost and 
LogitBoost 

30



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Application of AdaBoost: Face Detection

• The biggest impact of AdaBoost was made in 
face detection

• Idea: extract features (“Haar-like features”) and 
train AdaBoost, use a cascade of classifiers

• Features can be computed very efficiently

• Weak classifiers can be decision stumps or 
decision trees

• As inference in AdaBoost is fast, the face 
detector can run in real-time!
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• Defined as difference of 
rectangular integral area:

• The sum of the pixels which lie 
within the white rectangles are 
subtracted from the sum of pixels 
in the grey rectangles.

 

• One feature defined as:

• Feature type: A,B,C or D

• Feature position and size

Haar-like Features
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• Defined as :

• Integral on rectangle D can 
be computed in 4 access to 
Iint:

• Very efficient way to compute 
features

The integral image
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• A weak classifier has 3 attributes:

•A feature fj (type, size and position)

•A threshold θj

•A comparison operator opj = ‘<‘ or ‘>’

• The resulting weak classifier is:

• x is a 24x24 pixels window in the image

Weak Classifiers Used
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Two First Classifiers Selected by AdaBoost

A classifier with only this two features can be trained to recognise 
100% of the faces, with 40% of false positives
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• scale = 24x24

• Do {

•For each position in the image {

•Try classifying the part of the image starting at this 

position, with the current scale, using the classifier 

selected by AdaBoost

}

•Scale = Scale x 1.5

} until maximum scale

The Inference Algorithm
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• Basic idea:

•It is easy to detect that something is not a face

•Tune(boost) classifier to be very reliable at saying 

NO (i.e. very low false negative)

•Stop evaluating the

cascade of classifier 

if one classifier says NO

Another Improvement: the Cascade

37



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

• Faster processing

•Quick elimination of useless windows

• Each  individual classifier is trained to deal only 

with the example that the previous ones could 

not process

•Very specialised 

• The deeper in the cascade, the more complex 

(the more features) in the classifiers.

Advantage of the Cascade
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Results (1)
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Results (2)
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• Boosting is a method to use a weak classifier 

and turn it into a strong one (arbitrarily small 

training error!)

• AdaBoost minimizes the exponential loss

• To be more robust against outliers, we can use 

LogitBoost or GentleBoost

• Weak learners can be decision stumps or 

decision trees

• Face detection can be solved with Boosting

Summary
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