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Motivation

Many problems can be expressed using a dual 
formulation. Example (linear regression):

                                            where   

Thus, we can express J as

Resolving for a we obtain:          su             substituting:                        

2

an = � 1

�
(wT�(xn)� tn)

K = ��T

y(x) = w

T�(x) = a

T��(x) = k(x)T (K + �IN )�1
t



y(x) = k(x)T (K + �IN )�1
t

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Motivation

where: 

Thus, y is expressed only in terms of dot products 
between different pairs of        , or in terms of the 
kernel function  
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Motivation

Now we have to invert a matrix of size            ,

before it was             where            , but:

By expressing everything with the kernel 
function, we can deal with very high-dimensional 
or even infinite-dimensional feature spaces!

Idea: Don’t use features at all but simply define a 
similarity function expressed as the kernel!
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y(x) = k(x)T (K + �IN )�1
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Constructing Kernels

The straightforward way to define a kernel function is to 
first find a basis function        and to define:

This means, k is an inner product in some space    , i.e:

1.Symmetry:

2.Linearity:

3.Positive definite:                       , equal if 

Can we find conditions for k under which there is a 
(possibly infinite dimensional) basis function into    , 

where k is an inner product? 
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Constructing Kernels

It turns out that if k is 

1.symmetric, i.e.                                 and

2.positive definite, i.e. 

is positive definite, then there exists a mapping       

into a feature space     so that k can be expressed 
as an inner product in    .

This means, we don’t need to find         explicitly! 

We can directly work with k 
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A Simple Example

Define a kernel function as

This can be written as:

It can be shown that this holds in general for 

7

k(xi,xj) = (xT
i xj)

2

(xi1xj1 + xi2xj2)
2 = x

2
i1x

2
j1 + 2x2

i1xj1x
2
i2xj2 + x

2
i2x

2
j2

xi,xj 2 R2

= �(xi)
T�(xj)

= (x2
i1, x

2
i2,

p
2xi1xi2)(x

2
j1, x

2
j2,

p
2xj1xj2)

T

k(xi,xj) = (xT
i xj)

d



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Visualization of the Example

Original decision 
boundary is an ellipse

Decision boundary 
becomes a hyperplane

8
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Constructing Kernels
Finding valid kernels from scratch is hard, but:

A number of rules exist to create a new valid kernel k 

from given kernels k1 and k2. For example:

9
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Examples of Valid Kernels

• Polynomial Kernel:

• Gaussian Kernel: 

• Kernel for sets:

• Matern kernel:
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Smoothing Kernels

A smoothing kernel κ is a function of one 
argument that satisfies the following properties:

From this it follows that every symmetric pdf is 
a smoothing kernel.

We can control the bandwidth h of κ:

We can build a kernel from a smoothing kernel:
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Some Smoothing Kernels

• Kernels can be smooth and non-smooth

• Kernels can have compact and non-compact 
support
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Application Examples

Kernel Methods can be applied for many different 
problems, e.g.:

• Density estimation (unsupervised learning)

• Regression

• Principal Component Analysis (PCA)

• Classification

Most important Kernel Methods are

• Support Vector Machines

• Gaussian Processes

13
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Density Estimation

Problem: Given input data (no labels), find a 
probabilistic model

Possible solution: K-means clustering, i.e. find an 
assignment from data points to K clusters iteratively 
where K is given 1. Initial estimate of cluster 

means, assume Gaussian 
noise

14
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Density Estimation

2. Assign each data point to the 
most likely cluster

15

Problem: Given input data (no labels), find a 
probabilistic model

Possible solution: K-means clustering, i.e. find an 
assignment from data points to K clusters iteratively 
where K is given
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Density Estimation

3. Recompute the mean values 
of each cluster
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Problem: Given input data (no labels), find a 
probabilistic model

Possible solution: K-means clustering, i.e. find an 
assignment from data points to K clusters iteratively 
where K is given
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Density Estimation

4. Reassign the data points to 
the clusters
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Problem: Given input data (no labels), find a 
probabilistic model

Possible solution: K-means clustering, i.e. find an 
assignment from data points to K clusters iteratively 
where K is given
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Density Estimation

5. Iterate until convergence
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Problem: Given input data (no labels), find a 
probabilistic model

Possible solution: K-means clustering, i.e. find an 
assignment from data points to K clusters iteratively 
where K is given
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Density Estimation

6. Convergence! The most 
likely clustering has been 

found.
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Problem: Given input data (no labels), find a 
probabilistic model

Possible solution: K-means clustering, i.e. find an 
assignment from data points to K clusters iteratively 
where K is given
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K-Medoids

• We can define the cluster centers to be actual 
data points instead of means of data points

• The new centroids are those that minimize the 
sum of distances to all other cluster members

Algorithm k-medoids:

1.Initialize centroids with random subset of size K

2.repeat until convergence:

This can be kernelized, as it depends only on d!

20
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k
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Kernel Density Estimation (KDE)

If we don’t want to specify K, we can use one 
cluster center per data point

The model does not have to be Gaussian: 
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Example: Kernel Regression

we can represent the joint using KDE:

which results in:

This is also called the Nadaraya-Watson model.

22

y(x) = E[t | x] =
Z
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R
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Kernel Regression

• Example of the Nadaraya-Watson model with 
Gaussian kernel

• In this case, if true dist. is Gaussian then the 
optimal bandwidth is: 
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• Given: data set 

• Project data onto a subspace of dimension M 
so that the variance is maximized 
(“decorrelation”)

• For now: assume M is equal to 1

• Thus: the subspace can be described by a D-
dimensional unit vector     , i.e.:

• Each data point is projected onto the subspace 
using the dot product: 

Example: Principal Component Analysis

24
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Visualization:
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Principal Component Analysis

25
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Principal Component Analysis

Goal: Maximize            s.t.  

Using a Lagrange multiplier:

Setting the derivative wrt.     to 0 we obtain: 

Thus:      must be an eigenvector of S. 
Multiplying with      from left gives:

Thus:      is largest if      is the eigenvector of the 

largest eigenvalue of S   
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Principal Component Analysis

We can continue to find the best one-
dimensional subspace that is orthogonal to 

If we do this M times we obtain:

                are the eigenvectors of the M largest 

eigenvalues of S:
To project the data onto the M-dimensional 
subspace we use the dot-product:
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Reconstruction using PCA

• We can interpret the vectors                 as a 

basis if M = D 
• A reconstruction of a data point x into an M-

dimensional subspace (M<D) can be written:

• Goal is to minimize the squared error:

• This results in:

These are the coefficients of the eigenvectors

28

u1, . . . ,uM

x̃n =
MX

i=1

zniui +
DX

i=M+1

biui

J =
1

N

X

n=1

kxn � x̃nk2

zni = x

T
nui bi = x̄

T
ui



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Reconstruction using PCA

Plugging in, we have:
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3. Back-project
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Application of PCA: Face Recognition

Database
Image to identify

Identification

30
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Approach:

•Convert the image into a nm vector by stacking the 
columns:

•A small image is 100x100 -> a 10000 element vector, 
i.e. a point in a 10000 dimension space

•Then compute covariance matrix and eigenvectors

•Select number of dimensions in subspace

•Find nearest neighbor in subspace for a new image

Application of PCA: Face Recognition

31
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• 30% of faces used for testing, 70% for learning.

Results of Face Recognition
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How many eigenfaces are required?

Plot: normalised cumulative sum of the eigenvalues. 

About 55 eigenfaces are required to represent 80% of the 
information

33



�(xn)

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Can We Use Kernels in PCA?

• What if data is distributed along non-linear 
principal components?

• Idea: Use non-linear kernel to map into a space 
where PCA can be done

34
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Kernel PCA

Here, assume that the mean of the data is zero: 

Then, in standard PCA we have the eigenvalue 
problem:

Now, we use a non-linear transformation

and we assume             . We define C as  

                                    , with

Goal: find eigenvalues without using features!
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Kernel PCA

Plugging in:

This means, there are values       so that                         . 
With this we have:

Multiplying both sides by           gives: 

where                                       . This is our expression in 
terms of the kernel function!
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The problem can be cast as finding eigenvectors 

of the kernel matrix K:

With this, we can find the projection of the image 

of x onto a given principal component as:

Again, this is expressed in terms of the kernel 
function.  
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Kernel PCA
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Kernel PCA: Example
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Example: Classification

• We have seen kernel methods for density 
estimation, PCA and regression

• For classification there are two major kernel 
methods: Support Vector Machines (SVMs) and 
Gaussian Processes

• SVMs are probably the most used classification 
algorithm

• Main idea: use kernelisation to map into a high-
dimensional feature space, where a linear 
separation between the classes can be found 
(“hyper-plane”) 
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Support Vector Machines

Support Vector Machines learn a linear discriminant 
function (“hyper-planes”):

Assumptions for now: Data is linearly separable, 
Binary classification (                                ).

“Maximum Margin”: find the decision boundary that 
maximizes the distance to the closest data point

parameters of the 
hyperplane (normal vector)

feature 
function

 data 
point

Bias parameter
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Maximum Margin

margin

linear decision 
boundary

Points with 
minimal distance

“Support 
Vectors”

41



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Maximum Margin

• The distance of a point      to the decision hyperplane is

• This distance is independent of the scale of      and 

• Maximum margin is found by

• Rescaling: We can choose α so that
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Rescaling
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Rescaling
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Maximum Margin

For all data points we have the constraint

This means we have to maximize: 

       s.th.  

which is equivalent to

      s.th.
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Maximum Margin

                         s.th.

This is a constrained optimization problem. 
It can be solved with a technique called quadratic 
programming.
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Dual Formulation

For the constrained minimization we can introduce 

Lagrange multipliers  an:

Setting the derivatives of this wrt.      and b to 0 yields:

If we plug these constraints back into                     :

min
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Dual Formulation

subject to the constraints

This is called the dual formulation of the constrained 
optimization problem. The function k is called the kernel 
function and is defined as:

The simplest example of a kernel function is given for

Φ= I. It is also known as the linear kernel.
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The Kernel Trick

• Other kernels are possible, e.g. the polynomial:

Kernel Trick for SVMs: If we find an optimal solution 
to the dual form of our constrained optimization 
problem, then we can replace the kernel by any other 
valid kernel and obtain again an optimal solution.

• Consequence: Using a non-linear feature transform Φ 
we obtain non-linear decision boundaries.
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Observations and Remarks

• The kernel function is evaluated for each pair of 
training data points during training

• It can be shown that for every training data point it 
holds either              or                 . In the latter case, 
they are support vectors.

• For classifying a new feature vector     we evaluate:

We only need to compute that for the support vectors
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Multiple Classes

We can generalize the binary classification 
problem for the case of multiple classes.

This can be done with:

•one-to-many classification 

•Defining a single objective function for all 
classes

•Organizing pairwise classifiers in a directed acyclic 
graph (DAGSVM) 

51



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Extension: Non-separable problems

margin

52



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Slack Variables

• The slack variable      is defined as follows:

• For all points on the correct side: 

• For all other points: 

• This means that points with                    are correct 
classified, but inside the margin, points with      
are misclassified.   

• In the optimization, we modify the constraints:

• and                               
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Summary 

• Kernel methods are used to solve problems by 
implicitly mapping the data into a (high-dimensional) 
feature space

• The feature function itself is not used, instead the 
algorithm is expressed in terms of the kernel

• Applications are manifold, including density 
estimation, regression, PCA and classification

• An important class of kernelized classification 
algorithms are Support Vector Machines

• They learn a linear discriminative function, which is 
called a hyper-plane

• Learning in SVMs can be done efficiently

54


