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Repetition: Regularized Regression

Before, we solved for w using the pseudoinverse.

But: we can kernelize this problem as well!

First step: Matrix inversion lemma
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The Matrix Inversion Lemma
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The Matrix Inversion Lemma

Corollary:
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The Matrix Inversion Lemma

Corollary:

now we set:

and we obtain:
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The Matrix Inversion Lemma

Corollary:

now we set:

and we obtain:
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Kernelized Regression

Thus, we have:

by defining:

we get: 

(same result as last lecture)

This means that the predicted output is a linear 
combination of the training outputs, where the 
coefficients depend on the similarities to the 
training input.
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Motivation

• We have found a way to predict function values 

of y for new input points x
• As we used regularized regression, this is 

equivalent to finding the predictive distribution 

by marginalizing out the parameters w
• Can we find a closed form for that distribution?

• How can we model the uncertainty of our 
prediction?

• Can we use that for classification?
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Gaussian Marginals and Conditionals

Before we start, we need some formulae:

Assume we have two variables     and     that are 
jointly Gaussian distributed, i.e. 

with 

The the conditional distribution
where                                           

and 

The marginal is
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Gaussian Marginals and Conditionals

Main idea of the proof for the conditional (using 
inverse of block matrices):

The lower line corresponds to a quadratic form 
that is only dependent on         , i.e. the rest can 
be identified with the conditional Normal 
distribution               .  

(for details see, e.g. Bishop or Murhpy)
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Definition

Definition: A Gaussian process is a collection of 
random variables, any finite number of which 
have a joint Gaussian distribution.

The number of random variables can be infinite!

This means: a GP is a Gaussian distribution over 
functions!

To specify a GP we need:

• mean function:  

• covariance function: 
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m(x) = E[y(x)]

k(x1,x2) = E[y(x1)�m(x1)y(x2)�m(x2)]
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Example

• green line: sinusoidal data source

• blue circles: data points with Gaussian noise

• red line: mean function of the Gaussian process

• shaded red area: 2σ confidence interval
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How Can We Handle Infinity?

Idea: split the (infinite) number of random 
variables into a finite and an infinite subset. 

From the marginalization property we get:

This means we can use finite vectors.
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A Simple Example

In Bayesian linear regression, we had
with prior probability                     . This means:

Any number of function values
is jointly Gaussian with zero mean. 

The covariance function of this process is 

In general, any valid kernel function can be used.
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y(x) = �(x)Tw

w ⇠ N (0,⌃p)

E[y(x)] = �(x)TE[w] = 0

E[y(x1)y(x2))] = �(x1)
TE[ww

T ]�(x2) = �(x1)
T⌃p�(x2)

y(x1), . . . , y(xN )

k(x1,x2) = �(x1)
T⌃p�(x2)
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The Covariance Function

The most used covariance function (kernel) is:

It is known as “squared exponential”, “radial basis 
function” or “Gaussian kernel”.

Other possibilities exist, e.g. the exponential 
kernel:

This is used in the “Ornstein-Uhlenbeck” process.
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signal variance

k(xp,xq) = �2
f exp(�
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2l2
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2
) + �2

n�pq

length scale noise variance

k(xp,xq) = exp(�✓|xp � xq|)
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Sampling from a GP

Just as we can sample from a Gaussian 
distribution, we can also generate samples from 
a GP. Every sample will then be a function!

Process:

1.Choose a number of input points

2.Compute the covariance matrix K where

3.Generate a random Gaussian vector from 

4.Plot the values                  versus
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Sampling from a GP

Squared exponential kernel
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Exponential kernel
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Prediction with a Gaussian Process

Most often we are more interested in predicting 
new function values for given input data.

We have: 

training data

test input

And we want test outputs

The joint probability is

and we need to compute                       .    
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Prediction with a Gaussian Process

In the case of only one test point      we have

Now we compute the conditional distribution

where

This defines the predictive distribution.
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Example

Functions sampled from 
a Gaussian Process prior
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The predictive distribution is itself a Gaussian process.

It represents the posterior after observing the data.

The covariance is low in the vicinity of data points.
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Varying the Hyperparameters

• 20 data samples

• GP prediction with 
different kernel
hyper parameters
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Varying the Hyperparameters

The squared exponential covariance function can 
be generalized to

where M can be:

•                 : this is equal to the above case

•                                     : every feature dimension 
has its own length scale parameter

•                                               : here Λ has less than 

D columns
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Varying the Hyperparameters
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Implementation

• Cholesky decomposition is numerically stable

• Can be used to compute inverse efficiently
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Algorithm 1: GP regression

Data: training data (X,y), test data x⇤
Input: Hyper parameters �2

f , l, �
2
n

Kij  k(xi,xj)
L cholesky(K + �2

yI)
↵ LT \(L\y)
E[f⇤] k

T
⇤ ↵

v L\k⇤
var[f⇤] k(x⇤,x⇤)� v

T
v

log p(y | X) � 1
2y

T↵�
P

i logLii � N
2 log(2⇡)

Training Phase

Test Phase
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Estimating the Hyperparameters

To find optimal hyper parameters we need the 
marginal likelihood:

This expression implicitly depends on the hyper 

parameters, but y and X are given from the 
training data. It can be computed in closed form, 
as all terms are Gaussians. 

We take the logarithm, compute the derivative 

and set it to 0. This is the training step.
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p(y | X) =

Z
p(y | f , X)p(f | X)df
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Estimating the Hyperparameters

The log marginal likelihood is 
not necessarily concave, i.e. it 
can have local maxima.

The local maxima can 
correspond to sub-optimal 
solutions.
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Automatic Relevance Determination

• We have seen how the covariance function can 

be generalized using a matrix M
• If M is diagonal this results in the kernel function 

• We can interpret the     as weights for each 
feature dimension

• Thus, if the length scale              of an input 
dimension is large, the input is less relevant

• During training this is done autmatically
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k(x,x

0
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Automatic Relevance Determination

During the optimization process to learn the 
hyper-parameters, the reciprocal length scale for 
one parameter decreases, i.e.:

This hyper parameter is not very relevant!

28

3-dimensional 
data, parameters
                as they 
evolve during 
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Gaussian Processes For Classification

In regression we have          , in binary 
classification we have  

To use a GP for classification, we can apply a 
sigmoid function to the posterior obtained from 
the GP and compute the class probability as:

If the sigmoid function is symmetric:
then we have                            .

A typical type of sigmoid function is the logistic 
sigmoid: 
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y 2 R
y 2 {�1; 1}

p(y = +1 | x) = �(f(x))

�(�z) = 1� �(z)

p(y | x) = �(yf(x))

�(z) =
1

1 + exp(�z)
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Application of the Sigmoid Function

Function sampled from 
a Gaussian Process

31

Sigmoid function applied to 
the GP function

Another symmetric sigmoid function is the 
cumulative Gaussian:

�(z) =

Z z

�1
N (x | 0, 1)dx
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Visualization of Sigmoid Functions

The cumulative Gaussian is slightly steeper than 
the logistic sigmoid
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The Latent Variables

In regression, we directly estimated f as

and values of f where observed in the training 

data. Now only labels +1 or -1 are observed and 

f  is treated as a set of latent variables.

A major advantage of the Gaussian process 

classifier over other methods is that it 

marginalizes over all latent functions rather 

than maximizing some model parameters.
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f(x) ⇠ GP(m(x), k(x,x0))
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Class Prediction with a GP

The aim is to compute the predictive distribution

34

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

�(f⇤)
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Class Prediction with a GP

The aim is to compute the predictive distribution

we marginalize over the latent variables from the 
training data:
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

predictive distribution of the 
latent variable (from regression)
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Class Prediction with a GP

The aim is to compute the predictive distribution

we marginalize over the latent variables from the 
training data:

we need the posterior over the latent variables:
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

p(f | X,y) =
p(y | f)p(f | X)

p(y | X)

likelihood 
(sigmoid)

prior

normalizer
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A Simple Example

• Red: Two-class training data

• Green: mean function of

• Light blue: sigmoid of the mean function 
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But There Is A Problem...

• The likelihood term is not a Gaussian!

• This means, we can not compute the posterior 
in closed form.

• There are several different solutions in the 
literature, e.g.:

•Laplace approximation

•Expectation Propagation

•Variational methods
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p(f | X,y) =
p(y | f)p(f | X)

p(y | X)



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Laplace Approximation

where

and 

To compute    an iterative approach using 
Newton’s method has to be used.

The Hessian matrix A can be computed as

where                                  is a diagonal matrix 
which depends on the sigmoid function.
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p(f | X,y) ⇡ q(f | X,y) = N (f | f̂ , A�1)

ˆf = argmax

f
p(f | X,y)

A = �rr log p(f | X,y)|f=f̂

second-order 
Taylor expansion

f̂

A = K�1 +W

W = �rr log p(y | f)
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Laplace Approximation

• Yellow: a non-Gaussian posterior

• Red: a Gaussian approximation, the mean is the 
mode of the posterior, the variance is the 
negative second derivative at the mode
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Now that we have                 we can compute: 

From the regression case we have: 

where

This reminds us of a property of Gaussians that 
we saw earlier!

p(f | X,y)
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Predictions

41

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

⌃⇤ = k(x⇤,x⇤)� k

T
⇤ K

�1
k⇤

p(f⇤ | X,x⇤, f) = N (f⇤ | µ⇤,⌃⇤)

µ⇤ = kT
⇤ K

�1f

Linear in f
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Gaussian Properties (Rep.)

If we are given this:

                  I.

                  II.

Then it follows (properties of Gaussians):

     III.

     IV.

where
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p(x) = N (x | µ,⌃1)

p(y | x) = N (y | Ax+ b,⌃2)

p(y) = N (y | Aµ+ b,⌃2 +A⌃1A
T )

p(x | y) = N (x | ⌃(AT⌃�1
2 (y � b) + ⌃�1

1 y),⌃)

⌃ = (⌃�1
1 +AT⌃�1

s A)�1
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Applying this to Laplace

It remains to compute 

Depending on the kind of sigmoid function we

• can compute this in closed form (cumulative 
Gaussian sigmoid)

• have to use sampling methods or analytical 
approximations (logistic sigmoid)
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E[f⇤ | X,y,x⇤] = k(x⇤)
TK�1

f̂

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤
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A Simple Example

• Two-class problem (training data in red and blue)

• Green line: optimal decision boundary

• Black line: GP classifier decision boundary

• Right: posterior probability
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Summary

• Gaussian Processes are Normal distributions 
over functions

• To specify a GP we need a covariance function 
(kernel) and a mean function

• For regression we can compute the predictive 
distribution in closed form

• For classification, we use a sigmoid and have to 
approximate the latent posterior

• More on Gaussian Processes:
http://videolectures.net/epsrcws08_rasmussen_lgp/
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