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Motivation

e Often the introduction of latent (unobserved)
random variables into a model can help to express
complex (marginal) distributions

e A very common example are mixture models, In
particular Gaussian mixture models (GMM)

* Mixture models can be used for clustering
(unsupervised learning) and to express more
complex probability distributions

* As we will see, the parameters of mixture models
can be estimated using maximum-likelihood
estimation such as expectation-maximization
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K-means Clustering (Rep.)

* Given: data set {xi,.--,xn~}, number of clusters K
e Goal: find cluster centers {u,,...,u} so that

N K
J=) > rukllxn —

n=1 k=1
iIs minimal, where r,, = 1 if x,,is assigned to p;

e |dea: compute r,; and p, iteratively

e Start with some values for the cluster centers

* Find optimal assignments r,x

* Update cluster centers using these assignments

e Repeat until assignments or centers don’t change
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K-means Clustering

Initialize cluster means:  {g4q,..., tx}

KXRRK—XK XX
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K-means Clustering

Find optimal assignments:

1 if k= argmin; %), — Mj”
I'nk =
0 otherwise
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K-means Clustering

Find new optimal means: 0J

KARRKNK KK X
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K-means Clustering

Find new optimal assignments:

1 if k= argmin; %), — Mj”
Tk — .
0 otherwise

KARRKNK KK X
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K-means Clustering

Iterate these steps until means and
assignments do not change any more
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2D Example

0

0

e Real data set e Magenta line is “decision
e Random initialization boundary”
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The Cost Function
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*® After every step the cost function J is minimized
e Blue steps: update assignments

* Red steps: update means

e Convergence after 4 rounds
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K-Means: Additional Remarks

* There is an online version of K-means (vs. batch
until now)

* After each addition of x,, the nearest center ¢, is
updated:

i = R (x — pR )

* The K-medoid variant (see also lecture on kernels):
* Replace the Euclidean distance by a general measure

V.
] — Z Zrnkv Xnal"’k
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Mixtures of Gaussians

* Assume that the data consists of K clusters
e The data within each cluster is Gaussian

® For any data point x we introduce a K-dimensional
binary random variable z SO that:

Zp 2k = DN (x| gy, Se)
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A Simple Example

| ] | t

05| 05

e Mixture of three Gaussians with mixing coefficients
o | eft: all three Gaussians as contour plot

* Right: samples from the mixture model, the red
component has the most samples
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Parameter Estimation

* From a given set of training data {xi,...,xy} we
want to find parameters (71, x, 1y g 21, .K)

N K
p(X17°'°7XN|7T1 ..... K?l’l’l ..... K?zl ..... K):HZT‘-RN(X’R|“k7zk)

or, applying the logarithm:

N K
log p(X |, p, X)) = > log ¥ melN (X | py, Si)
k=1

n=1

e However: this Is not as easy as maximum-
likelihood for single Gaussians!
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Problems with MLE for Gaussian Mixtures

®* Assume that for one £ the mean p.is exactly at a
data point x,

* For simplicity: assume that %, = o271
* Then: 1
V 2#0,?

* This means that the overall log-likelihood can be
maximized arbitrarily by letting . — 0 (overfitting)

e Another problem is the identifiability:
e The order of the Gaussians is not fixed, therefore:

N(Xn | Xnvgl%]) —

®* There are K! equivalent solutions to the MLE problem
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Overfitting with MLE for Gaussian Mixtures
‘ N

p(x)

& &

X

* One Gaussian fits exactly to one data point

e [t has a very small variance, i.e. contributes
strongly to the overall likelihood

e |n standard MLE, there is no way to avoid this!
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Expectation-Maximization

* EM is an elegant and powerful method for MLE
problems with latent variables

e Main idea: model parameters and latent variables
are estimated iteratively, where average over the
latent variables (expectation)

e A typical example application of EM is the
Gaussian Mixture model (GMM)

e However, EM has many other applications
e First, we consider EM for GMMs
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Expectation-Maximization for GMM

e First, we define the responsibilities:

V(2nk) = P(2nk = 1| x5)
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Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = P(2nk = 1| x5)

- THCN(XTL ‘ Hi > Zk)
T K
Zj:l miN (xy, | 7% )

* Next, we derive the log-likelihood wrt. to

Olog p(X | 7, u, )

!
=0
Oy,
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Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = P(2nk = 1| x5)

- WkN(X’fl ‘ Hi > Zk)
T K
Zj:1 miN (xy, | 7% )

* Next, we derive the log-likelihood wrt. to
Olog p(X | 7, p, X3)
Oy,

and we obtain: B S A (2nk)Xn
Hi = N
S:n—l W(an)

|
=0
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Expectation-Maximization for GMM

e \We can do the same for the covariances:

Ologp(X | 7, p, X)

!
=0
0>}

and we obtain:
y:fj—l Y(Znk) (Xn — ) (Xn — Nk:)T
;:7]7\,[—1 ¥ (2nk)
* Finally, we derive wrt. the mixing coefficients 7y :
Olog p(X | 7, p, %)
071

i =

K

|

— 0 where: E T = 1
k=1
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Expectation-Maximization for GMM

e \We can do the same for the covariances:

Ologp(X | 7, p, X)

!
=0
0>}

and we obtain:
y:fj—l Y(Znk) (Xn — ) (Xn — Nk:)T
;:7]7\,[—1 ¥ (2nk)
* Finally, we derive wrt. the mixing coefficients 7y :
Olog p(X | 7, p, %)
071

i =

K
=0 where: S m=1
| N k=1
and the resultis:  m, = = v(zu)

n=1
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Algorithm Summary

1. Initialize means ., covariance matrices >, and
mixing coefficients

2. Compute the initial log-likelihood logp(X | m, pu, X)
3. E-Step. Compute the responsibilities:
n , 2

Zj:l miN (%7, | 7% )

4. M-Step. Update the parameters:

N N new new N
new _ anl ’}/(an)Xn Erklew _ anl /}/(an)(xn — l’l’ke )(Xn T /«l’ke 7T]1;lew — i Z ,Y(Z k)
Y1 V(zak) >t (k) N

)T

5.Compute log-likelihood; if not converged go to 3.
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The Same Example Again

(§]

2t 2t

Machine Learning for Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Observations

e Compared to K-means, points can now belong to
both clusters (soft assignment)

¢ |n addition to the cluster center, a covariance Is
estimated by EM

* |nitialization is the same as used for K-means
* Number of iterations needed for EM is much higher
* Also: each cycle requires much more computation

e Therefore: start with K-means and run EM on the
result of K-means (covariances can be initialized to
the sample covariances of K-means)

* EM only finds a local maximum of the likelihood!
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A More General View of EM

®* Assume for a moment that we observe X and the
binary latent variables Z. The likelihood is then:

Remember:
K
Zni € 10,1}, Zan =1

k=1

p(X,Z | 7,1, %) = || p(zn | m)p(xn | 20, 1, )

n=1

where p(zp | ) Tk and
| H y
K
000 | 1) = T[N o | g S)°
k=1 e .

which leads to the log-formulation:

logp(X, Z | m,p,2) =Y > zur(logmi +log N (x| pay, X))
n=1 k=1

Machine Learning for Dr. Rudolph Triebel

Computer Vision Computer Vision Group



The Complete-Data Log-Likelihood

N K

logp(X, Z |, p, %) = >: >:an(10g7% + log N (%0 | pg, X))
n=1 k=1

e This Iis called the complete-data log-likelihood

e Advantage: solving for the parameters (7, py, >x)
IS much simpler, as the log Is inside the sum!

* We could switch the sums and then for every

mixture component £ only look at the points that
are associated with that component.

* This leads to simple closed-form solutions for the
parameters

®* However: the latent variables Z are not observed!

Dr. Rudolph Triebel
Computer Vision Group



The Main ldea of EM

* |nstead of maximizing the joint log-likelihood, we
maximize its expectation under the latent variable
distribution:

e
2

iz llogp(X, Z | m, 1, B)] = 2 znk] (log m +log N (x| gy, En))
k

i\
[

n

where the latent variable distribution per point is:

P(Xn | Zn, 0)p(z, | 6)
p(xn | 6)

— Hllil(ﬂlN(Xn ‘ I,l,ljzl))znl
Zjl'{zl ﬂ-jN(Xn | 223 Zj)

p(Zn ‘ Xnag) — 0 = (777/1’7 Z)

Dr. Rudolph Triebel
Computer Vision Group



The Main ldea of EM

The expected value of the latent variables is:

L 2nk] = Y(2nk)
plugging in we obtain:
N K
> Y(znk)(log T + log N (%, | s, Xk))

y

Czlogp(X, Z | 7, p, X

(
»—\(

We compute this |terat|vely:

1. Initialize i =0, (7}, u},>})

2. Compute E|z,x] = v(znk)

3. Find parameters(=;t, ui™, 271 that maximize this

4. Increase i; If not converged, goto 2.
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The Theory Behind EM

e \We have seen that EM maximizes the expected
complete-data log-likelihood, but:

e Actually, we need to maximize the log-marginal
logp(X | 8) =log > p(X,Z|6)
4

* |t turns out that the log-marginal is maximized
implicitly!
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The Theory Behind EM

e \We have seen that EM maximizes the expected
complete-data log-likelihood, but:

e Actually, we need to maximize the log-marginal
logp(X | 8) =log > p(X,Z|6)
4

* |t turns out that the log-marginal is maximized
implicitly!

logp(X | 0) = L(q,0) + KL(q||p)

B o P2 0)
E(q,H)—EZ:q(Z)l A ] 7
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Visualization

L(q,0) Inp(X|6)

e The KL-divergence is positive or O
* Thus, the log-likelihnood is at least as large as L or:
*[ is alower bound of the log-likelihood
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What Happens in the E-Step?

KL(¢q||p) =0

L(q, 'Y In p(X[0°'9)

®* The log-likelihood is independent of ¢
* Thus: L is maximized iff KL is minimal
e Thisisthecaseiff ¢(Z)=p(Z | X,0)
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What Happens in the M-Step?

L(qg.0"™) Inp(X|0™")

®In the M—step we keep ¢ fixed and find new 6
L(q, Zp (Z | X,0°%)logp(X,Z | 6 Zq )log ¢(Z

e \\We maX|m|ze the first term, the second IS mdep.

e This implicitly makes KL non-zero

* The log-likelihood is maximized even more!
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Visualization in Parameter-Space

Inp(X|4)

L(q.0)

0(_,1.1 rew

* In the E-step we compute the concave lower
bound for given old parameters 6°'¢ (blue curve)

* |n the M-step, we maximize this lower bound and
obtain new parameters 9"V

* This is repeated (green curve) until convergence
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Variants of EM

* |nstead of maximizing the log-likelihood, we can
use EM to maximize a posterior when a prior is

given (MAP instead of MLE) = less overfitting

* |n Generalized EM, the M-step only increases the
lower bound instead of maximization (useful if
standard M-step is intractable)

e Similarly, the E-step can be generalized in that the
optimization wrt. g is not complete

e Furthermore, there are incremental versions of EM,
where data points are given sequentially and the
parameters are updated after each data point.
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Example 1: Learn a Sensor Model

- A Radar range finder on a metallic target will
returns 3 types of measurement:

* The distance to target
* The distance to the wall behind the target
* A completely random value
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Example 1: Learn a Sensor Model

« Which point corresponds to from which model?
- What are the different model parameters?
- Solution: Expectation-Maximization

<20

0

)
"
=1
e
]
e

10,1351, 355237
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Example 2: Environment Classification

oy
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« From each image, the robot extracts -
features: => points in NnD space

- K-means only finds the cluster &
centers, not their extent and shape
« The centers and covariances can ®
be obtained with EM - |,
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Example 3: Plane Fitting in 3D

* Has been done Iin this paper
e Given a set of 3D points, fit planes into the data

e |dea: Model parameters 0 are normal vectors and
distance to origin for a set of planes

e Gaussian noise model: p(z | 0) = N(d(z,0) | 0,0)

point-to-plane noise
distance variance

* Introduce latent correspondence
variables C;; and maximize the expected log-lik.:

U[logp(Z,C | 0)

e Maximization can be done in closed form
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http://edlab-www.cs.umass.edu/cs589/2010-lectures/thrun.3D-EM.pdf
http://edlab-www.cs.umass.edu/cs589/2010-lectures/thrun.3D-EM.pdf
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Summary

- K-means is an iterative method for clustering

- Mixture models can be formalized using latent
(unobserved) variables

- A very common example are Gaussian mixture
models (GMMSs)

- To estimate the parameters of a GMM we can
use expectation-maximization (EM)

- In general EM can be interpreted as maximizing
a lower bound to the complete-data loglikelihood

- EM Is guaranteed to converge, but it may run
into local maxima
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