

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

10a. Markov Chain Monte Carlo

Markov Chain Monte Carlo

- In high-dimensional spaces, rejection sampling and importance sampling are very inefficient
- An alternative is Markov Chain Monte Carlo (MCMC)
- It keeps a record of the current state and the proposal depends on that state
- Most common algorithms are the Metropolis-Hastings algorithm and Gibbs Sampling

Markov Chains Revisited

A Markov Chain is a distribution over discretestate random variables x_1, \ldots, x_M so that

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_T) = p(\mathbf{x}_1)p(\mathbf{x}_2 \mid \mathbf{x}_1) \cdots = p(\mathbf{x}_1) \prod_{t=2} p(\mathbf{x}_t \mid \mathbf{x}_{t-1})$$

The graphical model of a Markov chain is this:

We will denote $p(\mathbf{x}_t | \mathbf{x}_{t-1})$ as a row vector π_t A Markov chain can also be visualized as a **state transition diagram.**

T

The State Transition Diagram

The Stationary Distribution

The probability to reach state k is $\pi_{k,t} = \sum_{i=1}^{K} \pi_{i,t-1}A_{ik}$ Or, in matrix notation: $\pi_t = \pi_{t-1}A$

We say that π_t is **stationary** if $\pi_t = \pi_{t-1}$

- To find the stationary distribution we need to solve the eigenvector problem $A^T \mathbf{v} = \mathbf{v}$.
- The stationary distribution is then $\pi = \mathbf{v}^T$ where \mathbf{v} is the eigenvector for which the eigenvalue is 1.
- This eigenvector needs to be normalized so that it is a valid distribution.

Existence of a Stationary Distribution

- A Markov chain can have many stationary distributions
- Necessary for having a unique stationary distribution: we can reach every state from any other state in finite steps (the chain is **regular**)
- A transition distribution π_t satisfies the property of **detailed balance** if $\pi_i A_{ij} = \pi_j A_{ji}$
- The chain is then said to be **reversible**

Reversible Chain: Example

Existence of a Stationary Distribution

Theorem: If a Markov chain with transition matrix A is regular and satisfies detailed balance wrt. the distribution π , then π is a stationary distribution of the chain.

Proof:

$$\sum_{i=1}^{K} \pi_i A_{ij} = \sum_{i=1}^{K} \pi_j A_{ji} = \pi_j \sum_{i=1}^{K} A_{ji} = \pi_j \qquad \forall j$$
it follows

it follows $\pi = \pi A$.

This is only a sufficient condition, however it is not necessary.

Sampling with a Markov Chain

The main idea of MCMC is to sample state transitions based on a **proposal distribution** q.

- The most widely used algorithm is the Metropolis-Hastings (MH) algorithm.
- In MH, the decision whether to stay in a given state is based on a given probability.
- If the proposal distribution is $q(\mathbf{x}' \mid \mathbf{x})$, then we stay in state \mathbf{x}' with probability

$$\min\left(1, \frac{\tilde{p}(x')q(x \mid x')}{\tilde{p}(x)q(x' \mid x)}\right)$$

Unnormalized target distribution

The Metropolis-Hastings Algorithm

- Initialize x^0
- for s = 0, 1, 2, ...
 - define $x = x^s$
 - sample $x' \sim q(x' \mid x)$
 - compute acceptance probability

$$\alpha = \frac{\tilde{p}(x')q(x \mid x')}{\tilde{p}(x)q(x' \mid x)}$$

• compute $r = \min(1, \alpha)$ • sample $u \sim U(0, 1)$

set new sample to

$$x^{s+1} = \begin{cases} x' & \text{if } u < r \\ x^s & \text{if } u \ge r \end{cases}$$

Why Does This Work?

We have to prove that the transition probability of the MH algorithm satisfies detailed balance wrt the target distribution.

Theorem: If $p_{MH}(\mathbf{x}' \mid \mathbf{x})$ is the transition probability of the MH algorithm, then

$$p(\mathbf{x})p_{MH}(\mathbf{x}' \mid \mathbf{x}) = p(\mathbf{x}')p_{MH}(\mathbf{x} \mid \mathbf{x}')$$

Proof:

Why Does This Work?

We have to prove that the transition probability of the MH algorithm satisfies detailed balance wrt the target distribution.

Theorem: If $p_{MH}(\mathbf{x}' \mid \mathbf{x})$ is the transition probability of the MH algorithm, then

$$p(\mathbf{x})p_{MH}(\mathbf{x}' \mid \mathbf{x}) = p(\mathbf{x}')p_{MH}(\mathbf{x} \mid \mathbf{x}')$$

Note: All formulations are valid for discrete and for continuous variables!

Choosing the Proposal

- A proposal distribution is valid if it gives a nonzero probability of moving to the states that have a non-zero probability in the target.
- A good proposal is the Gaussian, because it has a non-zero probability for all states.
- However: the variance of the Gaussian is important!
 - with low variance, the sampler does not explore sufficiently, e.g. it is fixed to a particular mode
 - with too high variance, the proposal is rejected too often, the samples are a bad approximation

Example

Target is a mixture of 2 1D Gaussians.

Proposal is a Gaussian with different variances.

Gibbs Sampling

• Initialize $\{z_i : i = 1, ..., M\}$ • For $\tau = 1, ..., T$ • Sample $z_1^{(\tau+1)} \sim p(z_1 \mid z_2^{(\tau)}, ..., z_M^{(\tau)})$ • Sample $z_2^{(\tau+1)} \sim p(z_2 \mid z_1^{(\tau+1)}, ..., z_M^{(\tau)})$ • ... • Sample $z_M^{(\tau+1)} \sim p(z_M \mid z_1^{(\tau+1)}, ..., z_{M-1}^{(\tau+1)})$

Idea: sample from the full conditional This can be obtained, e.g. from the Markov blanket in graphical models.

Gibbs Sampling: Example

• Use an MRF on a binary image with edge potentials $\psi(x_s, x_t) = \exp(Jx_s x_t)$ ("Ising model") and node potentials $\psi(x_t) = \mathcal{N}(y_t \mid x_t, \sigma^2)$

Gibbs Sampling: Example

- Use an MRF on a binary image with edge potentials $\psi(x_s, x_t) = \exp(Jx_s x_t)$ ("Ising model") and node potentials $\psi(x_t) = \mathcal{N}(y_t \mid x_t, \sigma^2)$
- Sample each pixel in turn

After 1 sample

After 5 samples

mean after 15 sweeps of Gibbs

Average after 15 samples

Gibbs Sampling for GMMs

• Again, we start with the full joint distribution: $p(X, Z, \mu, \Sigma, \pi) = p(X \mid Z, \mu, \Sigma)p(Z \mid \pi)p(\pi) \prod_{k=1}^{K} p(\mu_k)p(\Sigma_k)$ (semi-conjugate prior)

It can be shown that the full conditionals are:

$$p(z_{i} = k \mid \mathbf{x}_{i}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \pi_{k} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

$$p(\boldsymbol{\pi} \mid \mathbf{z}) = \operatorname{Dir}(\{\alpha_{k} + \sum_{i=1}^{N} z_{ik}\}_{k=1}^{K})$$

$$p(\boldsymbol{\mu}_{k} \mid \boldsymbol{\Sigma}_{k}, Z, X) = \mathcal{N}(\boldsymbol{\mu}_{k} \mid \mathbf{m}_{k}, V_{k}) \quad \text{(linear-Gaussian)}$$

$$p(\boldsymbol{\Sigma}_{k} \mid \boldsymbol{\mu}_{k}, Z, X) = \mathcal{IW}(\boldsymbol{\Sigma}_{k} \mid S_{k}, \boldsymbol{\nu}_{k})$$

Gibbs Sampling for GMMs

- First, we initialize all variables
- Then we iterate over sampling from each conditional in turn
- In the end, we look at μ_k and Σ_k

How Often Do We Have To Sample?

- Here: after 50 sample rounds the values don't change any more
- In general, the **mixing time** τ_{ϵ} is related to the **eigen gap** $\gamma = \lambda_1 \lambda_2$ of the transition matrix:

$$\tau_{\epsilon} \le O(\frac{1}{\gamma}\log\frac{n}{\epsilon})$$

Gibbs Sampling is a Special Case of MH

The proposal distribution in Gibbs sampling is

$$q(\mathbf{x}' \mid \mathbf{x}) = p(x'_i \mid \mathbf{x}_{-i}) \mathbb{I}(\mathbf{x}'_{-i} = \mathbf{x}_{-i})$$

• This leads to an acceptance rate of:

$$\alpha = \frac{p(\mathbf{x}')q(\mathbf{x} \mid \mathbf{x}')}{p(\mathbf{x})q(\mathbf{x}' \mid \mathbf{x})} = \frac{p(x'_i \mid \mathbf{x}'_{-i})p(\mathbf{x}'_{-i})p(x_i \mid \mathbf{x}'_{-i})}{p(x_i \mid \mathbf{x}_{-i})p(\mathbf{x}_{-i})p(x'_i \mid \mathbf{x}_{-i})} = 1$$

 Although the acceptance is 100%, Gibbs sampling does not converge faster, as it only updates one variable at a time.

Summary

- Markov Chain Monte Carlo is a family of sampling algorithms that can sample from arbitrary distributions by moving in state space
- Most used methods are the Metropolis-Hastings (MH) and the Gibbs sampling method
- MH uses a proposal distribution and accepts a proposed state randomly
- Gibbs sampling does not use a proposal distribution, but samples from the full conditionals

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

11. Evaluation and Model Selection

Evaluation of Learning Methods

Very often, machine learning tries to find parameters of a model for a given data set. **But:** Which parameters give a good model? Intuitively, a good model behaves well on new, **unseen** data. This motivates the distinction of Training data: used to generate different models Validation data: used to adjust the model parameters so that their performance is optimal **Test data:** used to evaluate the models with the optimized parameters

Loss Function

A common way to evaluate a learning algorithm (e.g. regression, classification) is to define a loss function:

- In the case of regression, a common choice is the squared loss $L(\mathbf{w}, x, t) = (y(x, \mathbf{w}) t)^2$
- In classification, where y(x, w) and t are natural numbers, we use the 0/1-loss:

$$L(\mathbf{w}, x, t) = \begin{cases} 1 & \text{if } y(x, \mathbf{w}) \neq t \\ 0 & \text{otherwise} \end{cases}$$

Some Loss Functions

- Its minimum is the posterior mean $\mathbb{E}[y \mid \mathbf{x}]$
- Absolute loss is less sensitive to outliers
- Its minimum is the median of the posterior

e.a. labelina

Model Selection

Model selection is used to find model parameters to optimize the classification result.

Possible methods:

- Minimizing the training error
- Hold-out testing
- Cross-validation
- Leave-one-out rule

Evaluation is done using an appropriate loss function.

Minimizing the Training Error

The training error is defined as:

$$E_T(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N L(\mathbf{w}, x_i, t_i)$$

Where (x_i, t_i) are all input/target value pairs from the training data set.

Problem: A model that minimizes the training error does not (necessarily) generalize well. It only behaves well on the data it was trained with.

Example: Polynomial regression with high model complexity (see above)

Hold-out Testing

Hold-out testing splits the data set up into

- A validation data set S_V of size K
- A smaller training data set S_T of size N K

The model parameters are then selected so that the error 1

$$E_H(\mathbf{w}) = \frac{1}{K} \sum_{(x,t)\in\mathcal{S}_V} L(\mathbf{w}, x, t)$$

is minimized.

Problems: How big should be *K* ? Which elements should be chosen for evaluation?

Also: Iteration of the model design may lead to overfitting on the validation data

Hold-out Testing

Cross Validation

Idea of cross validation: Perform hold-out testing times on different evaluation (sub-)sets.

Validation subsets: $S_V^1, \ldots, S_V^M, \qquad M = \frac{N}{K}$ Error function:

$$E_C(\mathbf{w}) = \frac{1}{K} \frac{1}{M} \sum_{i=1}^{M} \sum_{(x,t)\in\mathcal{S}_V^i} L(\mathbf{w}, x, t)$$

Minimizing this error function gives good results, but requires huge computational efforts. The training must be done $\,\mathrm{M}\,$ times.

 $\frac{N}{K}$

Cross-Validation

Cross-Validation

Cross-Validation

Leave-one-out Rule

Idea: do cross-validation with ${\rm K}{=}1$

$$E_L(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N \sum_{\mathcal{S}_T \setminus x_i} L(\mathbf{w}, x, t)$$

- Yields similarly good results compared to crossvalidation
- Still requires to do the training N times
- Useful if the data set is particularly scarce

Leave-one-out Rule

Leave-one-out Rule

BIC and AIC

Observation: There is a trade-off between the obtained data likelihood (i.e. the quality of the fit) and the complexity M of the model.

Idea: Define a score function that balances both.

Two common examples are:

$$\ln p(\mathbf{t} \mid \mathbf{w}, \mathbf{x}) - M$$
 "Akaike Information
Criterion"
$$\ln p(\mathbf{t} \mid \mathbf{w}, \mathbf{x}) - \frac{1}{2}M \ln N$$
 "Bayesian Information
Criterion"

But: These criteria tend to favor too simple models.

Classifier Evaluation

Different methods to evaluate a classifier

- True-positive / false-positive rates
- Precision-recall diagram
- Receiving operator characteristics (ROC curves)
- Loss function

The evaluation of a classifier is needed to find the best classification parameters (e.g. for the kernel function)

Classifier Evaluation

Number of all data points: $N_P + N_N$	Classification result = -1	Classification result = 1
Correct label = -1	$\frac{T^{-}}{N_{N}}$ "True negative rate"	$\frac{F^+}{N_N}$ "False positive rate"
Correct label = 1	$\frac{F^{-}}{N_{P}}$ "False negative rate"	$\frac{T^+}{N_P}$ "True positive rate"

 N_P Number of positive examples

 N_N Number of negative examples

Machine Learning for Computer Vision Dr. Rudolph Triebel Computer Vision Group

Classifier Evaluation

Terminology

• We define the precision as $\operatorname{prec} = \frac{T^+}{T^+ + F^+}$

intuitively: probability that the real label is positive in case the classifier returns "positive"

• The recall is defined as $\operatorname{rec} = \frac{T^+}{T^+ + F^-}$

intuitively: probability that a "positive" labeled data point is detected as "positive" by the classifier.

Precision-Recall Curves

Usually, precision and recall are plotted into the same graph.

The optimal classifier parameters are obtained where precision equals recall (break-even-point).

Receiver Operating Characteristics

Receiving Operating Characteristics (ROC) curves plot the true positive rate vs. the false positive rate.

To find a good classifier we can search for a point where the slope is 1.

Loss Function

Another method to evaluate a classifier is defined by evaluating its loss function. The simplest loss function is the **0/1-loss**:

$$L(g, \mathbf{x}, y) = \begin{cases} 1 & \text{if } g(\mathbf{x}) \neq y \\ 0 & \text{otherwise} \end{cases}$$

Where g is a classifier, \mathbf{x} is a feature vector and is the known class label of f.

Important: The pair (x, y) should be taken from y_n evaluation data set that is different from the training set.

