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Markov Chain Monte Carlo

• In high-dimensional spaces, rejection sampling 
and importance sampling are very inefficient

• An alternative is Markov Chain Monte Carlo 
(MCMC)

• It keeps a record of the current state and the 
proposal depends on that state

• Most common algorithms are the Metropolis-
Hastings algorithm and Gibbs Sampling
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Markov Chains Revisited

A Markov Chain is a distribution over discrete-
state random variables                 so that

The graphical model of a Markov chain is this: 

 

We will denote                  as a row vector  

A Markov chain can also be visualized as a state 
transition diagram.
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The State Transition Diagram
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The Stationary Distribution

The probability to reach state k is
Or, in matrix notation:

We say that      is stationary if 

To find the stationary distribution we need to 
solve the eigenvector problem              .

The stationary distribution is then            where   
is the eigenvector for which the eigenvalue is 1.

This eigenvector needs to be normalized so that 
it is a valid distribution.  
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Existence of a Stationary Distribution

• A Markov chain can have many stationary 
distributions

• Necessary for having a unique stationary 
distribution: we can reach every state from any 
other state in finite steps (the chain is regular)

• A transition distribution    satisfies the property 
of detailed balance if

• The chain is then said to be reversible 

6

1 2 3 4

0.9

0.9
0.5 0.5

1.00.10.1

⇡t

⇡iAij = ⇡jAji



⇡1

⇡3 ⇡1A13 + · · ·

⇡3A31 + · · ·

Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Reversible Chain: Example
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Existence of a Stationary Distribution

Theorem: If a Markov chain with transition matrix 

A is regular and satisfies detailed balance wrt. 
the distribution   , then    is a stationary 
distribution of the chain.

Proof: 

it follows              .

This is only a sufficient condition, however it is 
not necessary.
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Sampling with a Markov Chain 

The main idea of MCMC is to sample state 
transitions based on a proposal distribution q.

The most widely used algorithm is the 
Metropolis-Hastings (MH) algorithm.

In MH, the decision whether to stay in a given 
state is based on a given probability.

If the proposal distribution is            , then we 
stay in state     with probability   

9

q(x0 | x)
x

0

min

✓
1,

p̃(x0)q(x | x0)

p̃(x)q(x0 | x)

◆

Unnormalized 
target distribution



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

The Metropolis-Hastings Algorithm

• Initialize

• for

•define

•sample

•compute acceptance probability

•compute 

•sample

•set new sample to
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Why Does This Work?

We have to prove that the transition probability of 
the MH algorithm satisfies detailed balance wrt 
the target distribution.

Theorem: If                   is the transition 
probability of the MH algorithm, then  

Proof:
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Why Does This Work?

We have to prove that the transition probability of 
the MH algorithm satisfies detailed balance wrt 
the target distribution.

Theorem: If                   is the transition 
probability of the MH algorithm, then  

Note: All formulations are valid for discrete 
and for continuous variables!
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Choosing the Proposal

• A proposal distribution is valid if it gives a non-
zero probability of moving to the states that 
have a non-zero probability in the target.

• A good proposal is the Gaussian, because it 
has a non-zero probability for all states.

• However: the variance of the Gaussian is 
important!

•with low variance, the sampler does not explore 
sufficiently, e.g. it is fixed to a particular mode

•with too high variance, the proposal is rejected too 
often, the samples are a bad approximation
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Example

Target is a mixture of 2 
1D Gaussians.

Proposal is a Gaussian 
with different variances.
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Gibbs Sampling

• Initialize

• For 

•Sample

•Sample

•...

•Sample 

Idea: sample from the full conditional

This can be obtained, e.g. from the Markov 
blanket in graphical models.
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Gibbs Sampling: Example

• Use an MRF on a binary image with edge 
potentials                                   (“Ising model”) 
and node potentials
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Gibbs Sampling: Example

• Use an MRF on a binary image with edge 
potentials                                   (“Ising model”) 
and node potentials

• Sample each pixel in turn 
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Gibbs Sampling for GMMs

• Again, we start with the full joint distribution:

(semi-conjugate prior)

• It can be shown that the full conditionals are:
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Gibbs Sampling for GMMs

• First, we initialize all variables

• Then we iterate over sampling from each 
conditional in turn

• In the end, we look at      and  
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How Often Do We Have To Sample?

• Here: after 50 sample rounds the values don’t 
change any more

• In general, the mixing time     is related to the 
eigen gap                  of the transition matrix:
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Gibbs Sampling is a Special Case of MH

• The proposal distribution in Gibbs sampling is

• This leads to an acceptance rate of:

• Although the acceptance is 100%, Gibbs 
sampling does not converge faster, as it only 
updates one variable at a time.
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Summary

• Markov Chain Monte Carlo is a family of sampling 
algorithms that can sample from arbitrary 
distributions by moving in state space

• Most used methods are the Metropolis-Hastings 
(MH) and  the Gibbs sampling method

• MH uses a proposal distribution and accepts a 
proposed state randomly

• Gibbs sampling does not use a proposal 
distribution, but samples from the full conditionals
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Evaluation of Learning Methods

Very often, machine learning tries to find 
parameters of a model for a given data set. 

But: Which parameters give a good model?

Intuitively, a good model behaves well on new, 
unseen data. This motivates the distinction of

Training data: used to generate different models

Validation data: used to adjust the model 
parameters so that their performance is optimal

Test data: used to evaluate the models with the 
optimized parameters 
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Loss Function

A common way to evaluate a learning algorithm (e.g. 
regression, classification) is to define a loss function:

• In the case of regression, a common choice is the 
squared loss

• In classification, where               and t are natural 
numbers, we use the 0/1-loss:
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Some Loss Functions 

• Quadratic loss is useful for continuous parameters

• Its minimum is the posterior mean

• Absolute loss is less sensitive to outliers

• Its minimum is the median of the posterior

26

−2 −1 0 1 2
0

1

2
|x|0.2

−2 −1 0 1 2
0

1

2
|x|1.0

−2 −1 0 1 2
0

1

2
|x|2.0

a = “action”, 
e.g. labeling 

E[y | x]



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Model Selection

Model selection is used to find model parameters to 
optimize the classification result.

Possible methods:

• Minimizing the training error

• Hold-out testing

• Cross-validation

• Leave-one-out rule

Evaluation is done using an appropriate  loss function. 
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Minimizing the Training Error

The training error is defined as:

Where             are all input/target value pairs from the 
training data set.

Problem: A model that minimizes the training error 
does not (necessarily) generalize well. It only behaves 
well on the data it was trained with.

Example:  Polynomial regression with high model 
complexity (see above)
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Hold-out Testing

Hold-out testing splits the data set up into

• A validation data set       of size 

• A smaller training data set       of size 

The model parameters are then selected so that the 
error

     is minimized.

Problems: How big should be     ? Which elements 
should be chosen for evaluation?

Also: Iteration of the model design may lead to 
overfitting on the validation data

29



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Hold-out Testing

Training set Validation set 
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Cross Validation

Idea of cross validation: Perform hold-out testing  
times on different evaluation (sub-)sets.

Validation subsets:

Error function: 

Minimizing this error function gives good results, but 
requires huge computational efforts. The training must 
be done      times. 

31



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Cross-Validation

Training set Validation set 
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Cross-Validation

Training set 
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Cross-Validation

Training set 
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Leave-one-out Rule

Idea: do cross-validation with

• Yields similarly good results compared to cross-
validation

• Still requires to do the training     times

• Useful if the data set is particularly scarce
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Leave-one-out Rule

Training set Validation set 
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Leave-one-out Rule

Training set Validation set 
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BIC and AIC

Observation: There is a trade-off between the 
obtained data likelihood (i.e. the quality of the fit) and 
the complexity M of the model.

Idea:  Define a score function that balances both.

Two common examples are:

But: These criteria tend to favor too simple models.

“Akaike Information 
Criterion”

“Bayesian Information 
Criterion”
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Classifier Evaluation

Different methods to evaluate a classifier

• True-positive / false-positive rates

• Precision-recall diagram

• Receiving operator characteristics (ROC curves)

• Loss function

The evaluation of a classifier is needed to 
find the best classification parameters 

(e.g. for the kernel function)
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Classifier Evaluation

Number of positive examples

Number of all 
data points: 

Classification 
result = -1

Classification 
result = 1

Correct 
label = -1 “True 

negative rate”
“False 

positive rate”

Correct 
label = 1 “False 

negative rate”
“True positive 

rate”

Number of negative examples
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Classifier Evaluation

Terminology

• We define the precision as

intuitively: probability that the real label is positive in 
case the classifier returns “positive” 

• The recall is defined as

intuitively: probability that a “positive” labeled data 
point is detected as “positive” by the classifier.
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Precision-Recall Curves

Usually, precision and recall are plotted into the same 
graph.

The optimal classifier parameters are obtained where 
precision equals recall (break-even-point).

42

           



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Receiver Operating Characteristics

Receiving Operating Characteristics (ROC) curves plot 
the true positive rate vs. the false positive rate.

To find a good classifier we can search for a point 
where the slope is 1.
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Loss Function

Another method to evaluate a classifier is defined by 
evaluating its loss function. The simplest loss 
function is the 0/1-loss:

Where    is a classifier,     is a feature vector and    is 
the known class label of    .

Important: The pair           should be taken from an 
evaluation data set that is different from the 
training set.
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