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Motivation

e Supervised learning is good for interaction with
humans, but labels from a supervisor are hard to
obtain

e Clustering is unsupervised learning, i.e. it tries to
lear only from the data

* Main idea: find a similarity measure and group
similar data objects together

e Clustering is a very old research field, many
approaches have been suggested

* Main problem in most methods: how to find a
good number of clusters
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Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior
(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-IW)

@_, Q In this model, we use:

® p= (1, Hp)
) r@ * Y =(3,...,3xK)
o (U, 2k) = O
Simplification for now:
X e Assume Y, are known
e Thus: 0 = M
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Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior
(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-IW)

@_. Q Given this model, we can

create new samples:

1.Sample =, 6, from priors
& r@ 2.Sample corresp. z;
3.Sample data point x;
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Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior

(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-IW)
An equivalent formulation  (a)—(w) (X
of this model is this: '
1.Sample =, 6, from priors ‘

2.Sample params é- from:
p(0; | ,0y) Zwka (04,0 @
3.Sample data point x;
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Clustering using Mixture Models

What is the difference in that model?
e there is one parameter 0,for each observation x;

e intuitively: we first sample the location of the
cluster and then the data that corresponds to it

In general, we use the notation:
(@—@ &

T~ Dlr(El)
0, ~ H(\) “Base distribution”

0; ~ G(m, Hk) where

7T Hk Zﬂ'ké Hk,
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The Dirichlet Process

e So far, we assumed that K is known
* To extend that to infinity, we use a trick:

Definition: A Dirichlet process (DP) is a distribution
over probability measures G, i.e. G(6) > 0 and

/G(e)de — 1. If for any partition (71, ...,Tk) it holds:

(G(TY),...,G(Tk)) ~ Dir(aH(TY),...,aH(Tk))
then G is sampled from a Dirichlet process.
Notation: G ~ DP(a, H)

where o Is the concentration parameter
and H Is the base measure
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One Step Backwards...

e The Dirichlet distribution is defined as:

Do) ZK
: o7y o —1
D — k on = Q
11 = oy Tar) WY =t
K
0<pur <1 E i =1

k=1
* |t is the conjugate prior for

the multinomial distribution

* There, the parameter can
be interpreted as the effective 0,
number of observations for
every State The simplex for K=3
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Some Examples

a=(2,2,2) a = (20,2,2)

* a9 controls the strength
of the distribution
(“peakedness”)

e ;. control the location
of the peak

a = (0.1,0.1,0.1)
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Intuitive Interpretation

e Every sample from a Dirichlet distribution is a
vector of K positive values that sum up to 1, i.e.
the sample itself is a finite distribution

e Accordingly, a sample from a Dirichlet process is
an infinite (but still discrete!) distribution

AN Base distribution
: \ — (here Gaussian)

/ | /Infinitely many
N~ samples (sum up to 1)

\
0.05 |- \ .
7 N
—- WL s o~
0 = 1 1 o Ll Lol 1 L 1 [—
-3 -2 -1 0 1 2 3
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Construction of a Dirichlet Process

* The Dirichlet process is only defined implicitly, i.e.
we can test whether a given probability measure is
sampled from a DP, but we can not yet construct
one.

* A DP can be constructed using the “stick-
breaking” analogy:

* imagine a stick of length 1

®* we select a random number f between 0 and 1 from a
Beta-distribution

®we break the stick at m = B * length-of-stick
e Wwe repeat this infinitely often
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The Stick-Breaking Construction

0.5 0.4

| [31 | I_Bl ] 0.4 0.3
7T 0.3
1 BZ 1_B2 o 0.2
7T 0.1 0.1
’ B 1-3
3 3 N
3 B4 1_B4 a=5 =35
—— 0.4 0.2
T
4
5 0.3 0.15
WL
TC5 ® 0.2 0.1
o
[ 0.1 0.05
0 0
0 10 20 30 0 10 20 30

e formally, we have o o
Br ~ Beta(l,a)  m =8k | [ —8) =81 =) m)
[=1 [=1

e now we define

G(6) =) m0(0r,0) 6, ~H then: G~ DP(a, H)
k=1
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The Chinese Restaurant Process
e Consider a restaurant with infinitely many tables

e Everytime a new customer comes in, he sits at an
occupied table with probability proportional to
the number of people sitting at that table, but he
may choose to sit on a new table with decreasing
probability as more customers enter the room.
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The Chinese Restaurant Process

* [t can be shown that the probability for a new
customer is

K
_ _ 1 _
— . H) = H )(0..6
p(ONni1=01|01.n,0,H) —— (oz (0) + ;:1 N0 (0, ))

* This means that currently occupied tables are
more likely to get new customers (rich get richer)

* The number of occupied tables grows
logarithmically with the number of customers
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The DP for Mixture Modeling

e Using the stick-breaking construction, we see that
we can extend the mixture model clustering to the
situation where K goes to infinity

* The algorithm can be implemented using Gibbs
sampling

iter# 50 iter# 100
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Affinity Propagation

e Often, we are only given a similarity matrix for
the data points

* The idea of Affinity Propagation is to determine
cluster centers (“exemplars”) that explain other
data points in an optimal way

e This Iis similar to k-medoids, but the algorithm is
more robust agianst local minima

e |[dea: each data point must choose another data
point as its exemplar; some points will choose
themselves as exemplar

* The number of clusters is then found automatically
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Affinity Propagation

® Input: similarity values s(1,))

® Initialize the responsibllities r(1,j), and the
availabilities a(i,)) to O
e do until convergence:

* recompute the responsibilities:

r(i,j) = s(i,j) — g,lg;st{a(i,j’) +5(i,5)}

* recompute the availabilities:
a(@j)mm{o,r(j,m > max{o,m",j)}}

i" ¢{i,j}
* the j that maximizes r(i,j) + a(i,j) is the exemplar of i
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Affinity Propagation

* |[ntuitively:

® responsibility measures how much i thinks that ;
would be a good exemplar

® availability measures how strongly j things it should
be an exemplar for i

* The algorithm can be shown to be equivalent to
max-product loopy belief propagation

e Convergence is not guaranteed, but with
“*damping” oscillations can be avoided

* The number of clusters can be controlled by the
“self-similarity”
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Aff|n|ty Propagatlon

INITIALIZATION
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ITERATION #3
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ITERATION #6
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non-exemplar

exemplar

e Colours: how much each point wants to be an exemplar

e Edge strengths: how much a point wants to belong to a
cluster
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Spectral Clustering

e Consider an undirected graph that connects all
data points

* The edge weights are the similarities (“closeness”)

* We define the weighted degree d; of a hode as the
sum of all outgoing edges

N
v di =) wy
j=1
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Spectral Clustering

* The Graph Laplacian is defined as:

L=D-W
* This matrix has the following properties:
*the 1 vector is eigenvector with eigenvector O
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Spectral Clustering

* The Graph Laplacian is defined as:
L=D-W
* This matrix has the following properties:

*the 1 vector is eigenvector with eigenvector O
e the matrix is symmetric and positive semi-definite
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Spectral Clustering

* The Graph Laplacian is defined as:
L=D-W
* This matrix has the following properties:

*the 1 vector is eigenvector with eigenvector O
e the matrix is symmetric and positive semi-definite

o \With these properties we can show:

Theorem: The set of eigenvectors of L with
eigenvalue 0 is spanned by the indicator vectors

1a,,...,14,, Wwhere A are the K connected
components of the graph.
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The Algorithm

* |nput: Similarity matrix W
e ComputeL=D-W

e Compute the eigenvectors that correspond to the
K smallest eigenvalues

e Stack these vectors as rows in a matrix U
e Treat each row of U as a K-dim data point
e Cluster the N rows with K-means clustering

* The indices of the rows that correspond to the
resulting clusters are those of the original data
points.
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An Example

k—-means clustering spectral cI ster'ng

o ET T 3-,,,5-%
2k p?‘:: RRRpYY- VO X 7] pfi:: e
> ' T ”{l s'

>._0 : 3 ’ g ‘7.;. >._01_ T ‘

g
{M iy
s e §

..'*.:'.!i-"

e Spectral clustering can handle complex problems
such as this one

» The complexity of the algorithm is O(N’), because
it has to solve an eigenvector problem

e But there are efficient variants of the algorithm
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Further Remarks

e To account for nodes that are highly connected,
we can use a normalized version of the graph
Laplacian

e Two different methods exist:
* Lyw =D 'L=I-D'W
¢ Lyym =D 2LD 2 =1—-D WD 2

* These have similar eigenspaces than the original
Laplacian L

e Clustering results tend to be better than with the
unnormalized Laplacian
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Another Small Example

Histogram of the sample
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Hierarchical Clustering

e Often, we want to have nested clusters instead of
a “flat” clustering

* Two possible methods:

* “bottom-up” or agglomerative clustering
* “top-down” or divisive clustering

* Both methods take a dissimilarity matrix as input
e Bottom-up grows merges points to clusters
e Top-down splits clusters into sub-clusters

e Both are heuristics, there is no clear objective
function

e They always produce a clustering (also for noise)
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Agglomerative Clustering

e Start with N clusters, each contains exactly one
data point

* At each step, merge the two most similar groups
e Repeat until there Is a single group

5 2.57
45} : 2 \

.
3.5 2_
L N A “Dendrogram”
25¢ 5

13 150
1.5¢ ' 4

A

0.5F

00 1 2 3 éll 5 6 7 8 1
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Linkage

* |n agglomerative clustering, it is important to
define a distance measure between two clusters

e There are three different methods:

e Single linkage: considers the two closest elements
from both clusters and uses their distance

e Complete linkage: considers the two farthest
elements from both clusters

* Average linkage: uses the average distance between
pairs of points from both clusters

* Depending on the application, one linkage should
be preferred over the other
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Single Linkage

* The distance is based on dsi. (G, H) = 'eénif%Hdi’i/

* The resulting dendrogram is a minimum spanning
tree, I.e. it minimizes the sum of the edge weights

e Thus: we can compute the clustering in O(N’) time

single link

0.3

0.25F

0.2

0.15F

0.1

0.05F
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Complete Linkage

* The distance is based on dcr.(G, H) = .Egla;}éHdi,i/

e Complete linkage fulfills the compactness
property, i.e. all points in a group should be
similar to each other

* Tends to produce clusters with smaller diameter

complete link

ﬁ VL e
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Average Linkage

. . 1 — —
* The distance is based on du. (G, H) = —— ) d; i
cGieH

* |s a good compromise between single and
complete linkage

e However: sensitive to changes on the meas. scale

average link
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Divisive Clustering

e Start with all data in a single cluster

* Recursively divide each cluster into two child
clusters

* Problem: optimal split is hard to find

e |dea: use the cluster with the largest diameter and
use K-means with K =2

e Or: use minimum-spanning tree and cut links with
the largest dissimalirity

* |n general two advantages:

e Can be faster
* More globally informed (not myopic as bottom-up)
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Choosing the Number of Clusters

* As in general, choosing the number of clusters is
hard

* \When a dendrogram is available, a gap can be
detected in the lengths of the links

* This represents the dissimilarity between merged
groups

e However: In real data this can be hard to detect

* There are Bayesian technigues to address this
problem (Bayesian hierarchical clustering)
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Evaluation of Clustering Algorithms

e Clustering is unsupervised: evaluation of the
output is hard, because no ground truth is given

* |[ntuitively, points in a cluster should be similar and
points in different clusters dissimilar

e However, better methods use external information,
such as labels or a reference clustering

* Then we can compare clusterings with the labels
using different metrics, e.g.
® purity
* rand index
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Purity

* Define N;; the number of objects in cluster i that
are in class | -

* Define N, — > N;; number of objects in cluster |
j=1

Nij .

* Pij = 3y Pi = Maxpi; “Purity”

e overall purity __ a8) (582) (B4
zi: sz Purity = 0.71

* Purity ranges from 0 (bad) to 1 (good)

e But: a clustering with each object in its own
cluster has a purity of 1
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Mutual Information

®* et Uand V be two clusterings

* Define the probability that a randomly chosen
point belongs to cluster «;, iIn Uand to v, In V

\uiﬂvj|

N
* Also: The prob that apointisinu;, py(i) =

va(ZJ)
-3 S vl pu v ()

1=1 5=1

pUV(iaj) —

|UZ‘

* This can be normalized to account for many small
clusters with low entropy
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Summary

e Several Clustering methods:

* Dirichlet process mixture model does not require the
number of clusters to be known; full Bayesian

o Affinity Propagation: iterative approach where
exemplars are determined as cluster centers

e Spectral clustering uses the graph Laplacian and
performs an eigenvector analysis

* Hierarchical approaches can be bottom-up or top-
down

e Evaluation methods for Clustering are hard to find
e Some are based on purity or mutual information
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