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Motivation

• Supervised learning is good for interaction with 
humans, but labels from a supervisor are hard to 
obtain

• Clustering is unsupervised learning, i.e. it tries to 
lear only from the data

• Main idea: find a similarity measure and group 
similar data objects together

• Clustering is a very old research field, many 
approaches have been suggested

• Main problem in most methods: how to find a 
good number of clusters
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Clustering using Mixture Models

• The full posterior of the Gaussian Mixture Model is
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p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)

data likelihood 
(Gaussian)

correspondence 
prob. (Multinomial)

mixture prior 
(Dirichlet)

parameter prior 
(Gauss-IW)

xi

In this model, we use:
•     
•     
•     
Simplification for now:
• Assume     are known
• Thus:

µ = (µ1, . . . ,µK)

⌃ = (⌃1, . . . ,⌃K)
(µk,⌃k) = ✓k

⌃k

✓k = µk
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Clustering using Mixture Models

• The full posterior of the Gaussian Mixture Model is

4

p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)

data likelihood 
(Gaussian)

correspondence 
prob. (Multinomial)

mixture prior 
(Dirichlet)

parameter prior 
(Gauss-IW)

xi

Given this model, we can 
create new samples:
1.Sample        from priors
2.Sample corresp.
3.Sample data point

⇡,✓k

zi
xi
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Clustering using Mixture Models

• The full posterior of the Gaussian Mixture Model is
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p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)

data likelihood 
(Gaussian)

correspondence 
prob. (Multinomial)

mixture prior 
(Dirichlet)

parameter prior 
(Gauss-IW)

xi

An equivalent formulation 
of this model is this:
1.Sample        from priors
2.Sample params     from:

3.Sample data point

⇡,✓k

xi

✓̄i

p(✓̄i | ⇡,✓k) =
KX

k=1

⇡k�(✓k, ✓̄i)
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Clustering using Mixture Models

What is the difference in that model?

• there is one parameter    for each observation 

• intuitively: we first sample the location of the 
cluster and then the data that corresponds to it

In general, we use the notation:

                             where
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xi

✓̄i xi

⇡ ⇠ Dir(
↵

K
1)

“Base distribution”✓k ⇠ H(�)

✓̄i ⇠ G(⇡,✓k)

However: We need to know K
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The Dirichlet Process

• So far, we assumed that K is known

• To extend that to infinity, we use a trick:

Definition: A Dirichlet process (DP) is a distribution 

over probability measures G, i.e.               and 

                 . If for any partition                    it holds: 

then G is sampled from a Dirichlet process.

Notation: 

where      is the concentration parameter
and      is the base measure
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G(✓) � 0Z
G(✓)d✓ = 1 (T1, . . . , TK)

(G(T1), . . . , G(TK)) ⇠ Dir(↵H(T1), . . . ,↵H(TK))

G ⇠ DP(↵, H)

↵

H
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One Step Backwards...

• The Dirichlet distribution is defined as:

• It is the conjugate prior for 
the multinomial distribution

• There, the parameter        can 
be interpreted as the effective
number of observations for 
every state
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Dir(µ | ↵) =
�(↵0)

�(↵1) · · ·�(↵K)

KY

k=1

µ↵k�1
k

↵0 =
KX

k=1

↵k

0  µk  1
KX

k=1

µk = 1

The simplex for K=3



•     controls the strength 
of the distribution 
(“peakedness”)

•      control the location 
of the peak
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Some Examples
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Intuitive Interpretation

• Every sample from a Dirichlet distribution is a 
vector of K positive values that sum up to 1, i.e. 
the sample itself is a finite distribution

• Accordingly, a sample from a Dirichlet process is 
an infinite (but still discrete!) distribution
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Construction of a Dirichlet Process

• The Dirichlet process is only defined implicitly, i.e. 
we can test whether a given probability measure is 
sampled from a DP, but we can not yet construct 
one.

• A DP can be constructed using the “stick-
breaking” analogy:

• imagine a stick of length 1

•we select a random number β between 0 and 1 from a 
Beta-distribution

•we break the stick at π = β * length-of-stick

•we repeat this infinitely often

11
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The Stick-Breaking Construction

• formally, we have

• now we define
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The Chinese Restaurant Process

• Consider a restaurant with infinitely many tables

• Everytime a new customer comes in, he sits at an 
occupied table with probability proportional to 
the number of people sitting at that table, but he 
may choose to sit on a new table with decreasing  
probability as more customers enter the room.

13
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The Chinese Restaurant Process

• It can be shown that the probability for a new 
customer is

• This means that currently occupied tables are 
more likely to get new customers (rich get richer)

• The number of occupied tables grows 
logarithmically with the number of customers
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p(✓̄N+1 = ✓ | ✓̄1:N ,↵, H) =
1

↵+N

 
↵H(✓) +

KX

k=1

Nk�(✓̄k,✓)

!
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The DP for Mixture Modeling

• Using the stick-breaking construction, we see that 
we can extend the mixture model clustering to the 
situation where K goes to infinity

• The algorithm can be implemented using Gibbs 
sampling
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Affinity Propagation

• Often, we are only given a similarity matrix for 
the data points

• The idea of Affinity Propagation is to determine 
cluster centers (“exemplars”) that explain other 
data points in an optimal way

• This is similar to k-medoids, but the algorithm is 
more robust agianst local minima

• Idea: each data point must choose another data 
point as its exemplar; some points will choose 
themselves as exemplar

• The number of clusters is then found automatically

16
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Affinity Propagation

• Input: similarity values s(i,j)  
• Initialize the responsibilities r(i,j), and the 

availabilities a(i,j) to 0

• do until convergence:

• recompute the responsibilities:

• recompute the availabilities:

• the j that maximizes r(i,j) + a(i,j) is the exemplar of i

17

r(i, j) = s(i, j)�max

j0 6=j
{a(i, j0) + s(i, j0)}

a(i, j) = min

8
<

:0, r(j, j) +
X

i0 /2{i,j}

max{0, r(i0, j)}

9
=

;
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Affinity Propagation

• Intuitively:

• responsibility measures how much i thinks that j 
would be a good exemplar

•availability measures how strongly j things it should 

be an exemplar for i
• The algorithm can be shown to be equivalent to 

max-product loopy belief propagation

• Convergence is not guaranteed, but with 
“damping” oscillations can be avoided

• The number of clusters can be controlled by the 
“self-similarity”

18
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Affinity Propagation

• Colours: how much each point wants to be an exemplar

• Edge strengths: how much a point wants to belong to a 
cluster 
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Fig 1, Frey & Dueck
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Spectral Clustering

• Consider an undirected graph that connects all 
data points

• The edge weights are the similarities (“closeness”)

• We define the weighted degree    of a node as the 
sum of all outgoing edges

20

W =

di
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Spectral Clustering

• The Graph Laplacian is defined as:

• This matrix has the following properties:

• the 1 vector is eigenvector with eigenvector 0

21

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as:

• This matrix has the following properties:

• the 1 vector is eigenvector with eigenvector 0

• the matrix is symmetric and positive semi-definite

22

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as:

• This matrix has the following properties:

• the 1 vector is eigenvector with eigenvector 0

• the matrix is symmetric and positive semi-definite

• With these properties we can show:

Theorem: The set of eigenvectors of L with 
eigenvalue 0 is spanned by the indicator vectors 

                  , where       are the K connected 
components of the graph.

23

L = D �W

1A1 , . . . ,1AK Ak
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The Algorithm

• Input: Similarity matrix W

• Compute L = D - W

• Compute the eigenvectors that correspond to the 
K smallest eigenvalues

• Stack these vectors as rows in a matrix U

• Treat each row of U as a K-dim data point

• Cluster the N rows with K-means clustering

• The indices of the rows that correspond to the 
resulting clusters are those of the original data 
points.
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An Example

• Spectral clustering can handle complex problems 
such as this one

• The complexity of the algorithm is O(N ), because 
it has to solve an eigenvector problem

• But there are efficient variants of the algorithm

25
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Further Remarks

• To account for nodes that are highly connected, 
we can use a normalized version of the graph 
Laplacian

• Two different methods exist:

•   

•   

• These have similar eigenspaces than the original 
Laplacian L

• Clustering results tend to be better than with the 
unnormalized Laplacian

26

Lrw = D�1L = I �D�1W

Lsym = D� 1
2LD� 1

2 = I �D� 1
2WD� 1

2
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Another Small Example

27



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Hierarchical Clustering

• Often, we want to have nested clusters instead of 
a “flat” clustering

• Two possible methods:

•“bottom-up” or agglomerative clustering

•“top-down” or divisive clustering

• Both methods take a dissimilarity matrix as input

• Bottom-up grows merges points to clusters

• Top-down splits clusters into sub-clusters

• Both are heuristics, there is no clear objective 
function

• They always produce a clustering (also for noise) 

28
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Agglomerative Clustering

• Start with N clusters, each contains exactly one 
data point

• At each step, merge the two most similar groups

• Repeat until there is a single group

29
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Linkage

• In agglomerative clustering, it is important to 
define a distance measure between two clusters

• There are three different methods:

•Single linkage: considers the two closest elements 
from both clusters and uses their distance

•Complete linkage: considers the two farthest 
elements from both clusters

•Average linkage: uses the average distance between 
pairs of points from both clusters

• Depending on the application, one linkage should 
be preferred over the other

30



Dr. Rudolph Triebel
Computer Vision Group

Machine Learning for 
Computer Vision

Single Linkage

• The distance is based on

• The resulting dendrogram is a minimum spanning 
tree, i.e. it minimizes the sum of the edge weights

• Thus: we can compute the clustering in O(N ) time
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Complete Linkage

• The distance is based on

• Complete linkage fulfills the compactness 
property, i.e. all points in a group should be 
similar to each other

• Tends to produce clusters with smaller diameter
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Average Linkage

• The distance is based on

• Is a good compromise between single and 
complete linkage

• However: sensitive to changes on the meas. scale
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Divisive Clustering

• Start with all data in a single cluster

• Recursively divide each cluster into two child 
clusters

• Problem: optimal split is hard to find

• Idea: use the cluster with the largest diameter and 
use K-means with K = 2

• Or: use minimum-spanning tree and cut links with 
the largest dissimalirity

• In general two advantages:

•Can be faster

•More globally informed (not myopic as bottom-up)

34
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Choosing the Number of Clusters

• As in general, choosing the number of clusters is 
hard

• When a dendrogram is available, a gap can be 
detected in the lengths of the links

• This represents the dissimilarity between merged 
groups

• However: in real data this can be hard to detect

• There are Bayesian techniques to address this 
problem (Bayesian hierarchical clustering)
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Evaluation of Clustering Algorithms

• Clustering is unsupervised: evaluation of the 
output is hard, because no ground truth is given

• Intuitively, points in a cluster should be similar and 
points in different clusters dissimilar

• However, better methods use external information, 
such as labels or a reference clustering

• Then we can compare clusterings with the labels 
using different metrics, e.g. 

•purity

• rand index

36
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Purity

• Define       the number of objects in cluster i that 
are in class j

• Define                     number of objects in cluster i

•                                          “Purity”

• overall purity

• Purity ranges from 0 (bad) to 1 (good)

• But: a clustering with each object in its own 
cluster has a purity of 1

37
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Mutual Information

• Let U and V be two clusterings

• Define the probability that a randomly chosen 

point belongs to cluster     in U and to     in V

• Also: The prob. that a point is in

• This can be normalized to account for many small 
clusters with low entropy 
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ui vj

pUV (i, j) =
|ui \ vj |

N

ui pU (i) =
|ui|
N
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Summary

• Several Clustering methods:

•Dirichlet process mixture model does not require the 
number of clusters to be known; full Bayesian

•Affinity Propagation: iterative approach where 
exemplars are determined as cluster centers

•Spectral clustering uses the graph Laplacian and 
performs an eigenvector analysis

•Hierarchical approaches can be bottom-up or top-
down

• Evaluation methods for Clustering are hard to find

• Some are based on purity or mutual information
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