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Shape Optimization

Shape optimization is a field of mathematics that is focused on
formulating the estimation of geometric structures by means of
optimization methods.

Among the major challenges in this context is the question how
to mathematically represent shape. The choice of
representation entails a number of consequences, in particular
regarding the question of how efficiently one can store
geometric structures and how efficiently one can compute
optimal geometry.

There exist numerous representations of shape which can
loosely be grouped into two classes:

• Explicit representations: The points of a surface are
represented explicitly (directly), either as a set of points, a
polyhedron or a parameterized surface.

• Implicit representations: The surface is represented
implicity by specifying the parts of ambient space that are
inside and outside a given surface.
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Explicit Shape Representations

An explicit representations of a closed curve C ⊂ R2 is a
mapping C : S1 → R2 from the circle S1 to the plane R2.
Examples are polygons or – more generally – spline curves:

C(s) =
N∑

i=1

pi Bi (s),

where p1, . . . ,pN ∈ R2 denote control points and
B1, . . . ,BN : S1 → R2 denote a set of spline basis functions:

basis functions spline & control points
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Implicit Shape Representations

One example of an implicit representation is the indicator
function of the surface S, which is a function u : V → {0,1}
defined on the surrounding volume V ⊂ R3 that takes on the
values 1 inside the surface and 0 outside the surface:

u(x) =

1, if x ∈ int(S)

0, if x ∈ ext(S)

Another example is the signed distance function φ : V → R
which assigns all points in the surrounding volume the (signed)
distance from the surface S:

φ(x) =

+d(x ,S), if x ∈ int(S)

−d(x ,S), if x ∈ ext(S)

Depending on the application it may be useful to know for
every voxel how far it is from the surface. Signed distance
functions can be computed in polynomial time. MatLab: bwdist.
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Explicit Versus Implicit Representations

In general, compared to explicit rerpresentations the implicit
representations have the following strengths and weaknesses:

- Implicit representations typically require more memory in
order to represent a geometric structure at a specific
resolution. Rather than storing a few points along the
curve or surface, one needs to store an occupancy value
for each volume element.

- Moving or updating an implicit representation is typically
slower: rather than move a few control points, one needs
to update the occupancy of all volume elements.

+ Methods based on implicit representations do not depend
on a choice of parameterization.

+ Implicit representations allow to represent objects of
arbitrary topology (i.e. the number of holes is arbitrary).

+ With respect to an implicit representation many shape
optimization challenges can be formulated as convex
optimization problems and can then be optimized globally.
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Multiview Reconstruction as Shape Optimization

How can we cast multiple view reconstruction as a shape
optimization problem? To this end, we will assume that the
camera orientations are given.
Rather than estimate the correspondence between all pairs of
pixels in either image we will simply ask:

How likely is a given voxel x on the object surface S?

If the voxel x ∈ V of the given volume V ⊂ R3 was on the
surface then (up to visibility issues) the projection of that voxel
into each image should give rise to the same color (or local
texture). Thus we can assign to each voxel x ∈ V a so-called
photoconsistency function

ρ : V → [0,1],

which takes on low values (near 0) if the projected voxels give
rise to the same color (or local texture) and high values (near
1) otherwise.
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A Weighted Minimal Surface Approach

The reconstruction from multiple views can now be formulated
as a reconstruction of the maximally photoconsistent surface,
i.e. a surface Sopt with an overall minimal photoconsistency
score:

Sopt = arg min
S

∫
S

ρ(s)ds. (1)

This seminal formulation was proposed among others by
Faugeras, Keriven (1998). Many good reconstructions from
multiple views were computed using such formulations,
typically by locally minimizing this energy starting from a
meaningful initial guess of the surface S.

In principle, one could also revert to the implicit representation
with the indicator function u introduced above and solve the
problem optimally using convex relaxation and thresholding.

However, the above energy has a central drawback:

The global minimizer of (1) is the empty set.

It has zero cost while all surfaces have a non-negative energy.
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Imposing Silhouette Consistency

Assume that we additionally have the silhouette Si of the
observed 3D object outlined in every image i = 1, . . . ,n. Then
we can formulate the reconstruction problem as a constrained
optimization problem (Cremers, Kolev, PAMI 2012):

min
S

∫
S

ρ(s)ds, such that πi (S) = Si ∀i = 1, . . . ,n.

Written in the indicator function u : V → {0,1} of the surface S
this reads:

min
u:V→{0,1}

∫
V
ρ(x)|∇u(x)| dx

s. t.
∫

Rij

u(x) dRij ≥ 1, if j ∈ Si∫
Rij

u(x) dRij = 0, if j /∈ Si ,

where Rij denotes the visual ray through pixel j of image i .
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Imposing Silhoutte Consistency

Top view of the geometry and respective visual rays.

Any ray passing through the silhoutte must intersect the object
in at least one voxel.

Any ray passing outside the silhouette may not intersect the
object in any pixel.
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Convex Relaxation and Thresholding

By relaxing the binarity constraint on u and allowing
intermediate values between 0 and 1 for the function u, the
overall optimization problem becomes convex.

Proposition

The set

D :=

u : V → [0,1]

∣∣∣∣∣
∫

Rij
u(x) dRij ≥ 1 if j ∈ Si ∀i , j∫

Rij
u(x) dRij = 0 if j /∈ Si ∀i , j


of silhouette consistent functions is convex.

Proof.

For a proof we refer to Kolev, Cremers, ECCV 2008.

Thus we can compute solutions to the silhouette constrained
reconstruction problem by solving the relaxed convex problem
and subsequently thresholding the computed solution.
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Reconstructing Complex Geometry

three out of 33 input images of resolution 1024× 768
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Reconstructing Complex Geometry

Estimated multiview reconstruction
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Reconstruction from a Handheld Camera

2/28 images Estimated multiview reconstruction
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From Internet Photo Collections...

Flickr images for search term “Notre Dame”

Snavely, Seitz, Szeliski, “Modeling the world from Internet
photo collections,” IJCV 2008.
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...to Sparse Reconstructions

Snavely, Seitz, Szeliski, “Modeling the world from Internet
photo collections,” IJCV 2008.
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Rome in 3D

Author: N. Snavely


Rome2.avi
Media File (video/avi)
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Dubrovnik in 3D

Author: N. Snavely


Dubrovnik.avi
Media File (video/avi)



Variational Multiview
Reconstruction

Prof. Daniel Cremers

Variational Multiview
Reconstruction

Multiview
Reconstruction for
Internet
Photocollections

Realtime Structure and
Motion

Realtime Dense
Geometry

Autonomous
Quadrocopters

updated July 3, 2013 19/26

Realtime Structure and Motion: PTAM

Klein & Murray, “Parallel Tracking and Mapping for Small AR
Workspaces,” ISMAR 2007.
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Realtime Structure and Motion: PTAM

Author: G. Klein


PTAM1.avi
Media File (video/avi)
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Structure and Motion for Virtual Reality

Author: G. Klein


PTAM2.avi
Media File (video/avi)
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Dense Geometry from a Handheld Camera
Let gi ∈ SE(3) be the rigid body motion from the first camera to
the i-th camera, and let Ii : Ω→ R be the i-th image. A dense
depth map h : Ω→ R can be computed by solving the
optimization problem:

min
h

n∑
i=2

∫
Ω

∣∣I1(x)− Ii
(
πgi (hx)

)∣∣ dx + λ

∫
Ω

|∇h|dx ,

where x is represented in homogeneous coordinates and hx is
the 3D point.

Like in optical flow estimation, the unknown depth map should
be such that for all pixels x ∈ Ω, the transformation into the
other images Ii should give rise to the same color as in the
reference image I1.

This cost function can be minimized in realtime by
coarse-to-fine linearization solved in parallel on a GPU.

Stuehmer, Gumhold, Cremers, “Realtime Dense Geometry
from a Handheld Camera,” DAGM 2010.
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Dense Geometry from a Handheld Camera

Stuehmer, Gumhold, Cremers, “Realtime Dense Geometry
from a Handheld Camera,” DAGM 2010.
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Dense Geometry from a Handheld Camera

Stuehmer, Gumhold, Cremers, “Realtime Dense Geometry
from a Handheld Camera,” DAGM 2010.


erdbeerpflanze_input_mpeg2video.avi
Media File (video/avi)
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Dense Geometry from a Handheld Camera

Stuehmer, Gumhold, Cremers, “Realtime Dense Geometry
from a Handheld Camera,” DAGM 2010.


erdbeerpflanze_output_mpeg2video.avi
Media File (video/avi)
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Visual Navigation of Autonomous Quadrocopters

Engel, Sturm, Cremers, “Camera-based Navigation of a
Low-Cost Quadrocopter,” IROS 2012.


quadcopter_mpeg2video.mpg
Media File (video/mpeg)
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