Multiple View Geometry: Exercise Sheet 5

Prof. Dr. Daniel Cremers, Julia Bergbauer, TU Munich

http://vision.in.tum.de/teaching/ss2013/mvg2013

Exercise: June 17th, 2013

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. The essential matrix $E=\hat{T} R$ has the singular value decomposition $E=U \Sigma V^{T}$. Let $R_{Z}\left(\pm \frac{\pi}{2}\right)$ be the rotation by $\pm \frac{\pi}{2}$ around the z-axis.

Show the following properties:
(a) $\hat{T} \in \operatorname{so}(3) \quad$ (i.e. \hat{T} is a skew-symmetric matrix)
(b) $R \in \mathrm{SO}(3)$ (i.e. R is a rotation matrix)

Hint: Use the equalities: $\quad \hat{T}=U R_{Z}\left(\pm \frac{\pi}{2}\right) \Sigma U^{\top} \quad$ and $\quad R=U R_{Z}\left(\pm \frac{\pi}{2}\right)^{\top} V^{\top}$.
2. Consider the matrices $E=\hat{T} R$ and $H=R+T u^{\top}$ with $R \in \mathbb{R}^{3 \times 3}$ and $T, u \in \mathbb{R}^{3}$.

Show that the following holds:
(a) $E=\hat{T} H$
(b) $H^{\top} E+E^{\top} H=0$
3. Let $F \in \mathbb{R}^{3 \times 3}$ be the fundamental matrix for the cameras C_{1} and C_{2}. Show that the following holds for the epipoles e_{1} and e_{2} :

$$
F e_{1}=0 \quad \text { and } \quad e_{2}^{\top} F=0
$$

Part II: Practical Exercises

This exercise is to be solved during the tutorial.
... I will complete this practical exercise during the weekend.

