

Multiple View Geometry: Exercise Sheet 5

Prof. Dr. Daniel Cremers, Julia Bergbauer, TU Munich
http://vision.in.tum.de/teaching/ss2013/mvg2013

Exercise: June 17th, 2013

Part I: Theory

The following exercises should be **solved at home**. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. The essential matrix $E = \hat{T}R$ has the singular value decomposition $E = U\Sigma V^T$. Let $R_Z(\pm \frac{\pi}{2})$ be the rotation by $\pm \frac{\pi}{2}$ around the z-axis.

Show the following properties:

- (a) $\hat{T} \in so(3)$ (i.e. \hat{T} is a skew-symmetric matrix)
- (b) $R \in SO(3)$ (i.e. R is a rotation matrix)

Hint: Use the equalities: $\hat{T} = UR_Z \left(\pm \frac{\pi}{2}\right) \Sigma U^{\top}$ and $R = UR_Z \left(\pm \frac{\pi}{2}\right)^{\top} V^{\top}$.

- 2. Consider the matrices $E = \hat{T}R$ and $H = R + Tu^{\top}$ with $R \in \mathbb{R}^{3 \times 3}$ and $T, u \in \mathbb{R}^3$. Show that the following holds:
 - (a) $E = \hat{T}H$
 - (b) $H^{\top}E + E^{\top}H = 0$
- 3. Let $F \in \mathbb{R}^{3\times 3}$ be the fundamental matrix for the cameras C_1 and C_2 . Show that the following holds for the epipoles e_1 and e_2 :

$$Fe_1 = 0$$
 and $e_2^\top F = 0$

Part II: Practical Exercises

This exercise is to be solved **during the tutorial**.

... I will complete this practical exercise during the weekend.