Multiple View Geometry: Solution Exercise Sheet 6

Prof. Dr. Daniel Cremers, Julia Bergbauer, TU Munich

http://vision.in.tum.de/teaching/ss2013/mvg2013

Part I: Theory

1.

 $e_2^{\top} F = 0$ (Exercise Sheet 5, Nr. 3) $\Rightarrow F^{\top} e_2 = 0$ $\Rightarrow (\hat{T}R)^{\top} e_2 = 0$ $\Rightarrow R^{\top} \hat{T}^{\top} e_2 = 0$

 $\Rightarrow R^{\top}(-T \times e_2) = 0$ (because \hat{T} is skew-symmetric) $\Rightarrow -T \times e_2 = 0$

 $\Rightarrow e_2 \sim T$

 $Fe_1 = 0$ $\Rightarrow \hat{T}Re_1 = 0$ $\Rightarrow T \times Re_1 = 0$ $\Rightarrow T \sim Re_1$ $\Rightarrow e_1 \sim R^{\top}T$

 $\Rightarrow e_1 \sim R^{\top} e_2$

2. (a) l is coimage of L, and therefore l is normal vector to the plane that is determined by the camera position and L.

$$\Rightarrow \begin{array}{l} l^T x_1 = 0 \\ l^T x_2 = 0. \end{array}$$
$$\Rightarrow l \sim x_1 \times x_2 = \hat{x_1} x_2.$$

 l_1 and l_2 are normal vectors to the planes through camera position and L_1 , L_2 respectively.

$$\Rightarrow \begin{array}{l} l_1^T x = 0 \\ l_2^T x = 0 \end{array}$$
$$\Rightarrow x \sim l_1 \times l_2 = \hat{l_1} l_2.$$

(b) i. $l_1 \sim \hat{x}u$: x is in the preimage of L_1 . $\Rightarrow l_1^\top x = 0$. \exists point $u \neq p$ in L_1 . $\Rightarrow l_1^\top u = 0$ $\Rightarrow l_1 \sim \hat{x}u$.

ii. $l_2 \sim \hat{x}v$: analog to i.

iii. $x_1 \sim \hat{l}r$: x_1 is in the preimage of $L. \Rightarrow x_1^\top l = 0$ \exists a line L' through p_1 with coimage $r \neq l. \Rightarrow x_1^\top r = 0$. $\Rightarrow x_1 \sim \hat{l}r$.

iv. $x_2 \sim \hat{l}s$: analog to iii.

3.
$$\operatorname{rank}\left(\begin{array}{c} \hat{x_1}\Pi_1\\ \hat{x_2}\Pi_2 \end{array}\right)\leqq 3$$

$$\Rightarrow \exists X \in \mathbb{R}^4 \backslash \{0\} \text{ with } \left(\begin{array}{c} \hat{x_1} \Pi_1 \\ \hat{x_2} \Pi_2 \end{array} \right) X = 0.$$

$$\Rightarrow \hat{x_1}\Pi_1 X = 0 \quad \land \quad \hat{x_2}\Pi_2 X = 0,$$

$$\Rightarrow x_1 \times \Pi_1 X = 0 \quad \land \quad x_2 \times \Pi_2 X = 0.$$

 $\Rightarrow x_1$ and $\Pi_1 X$ are linearly dependent; and x_2 and $\Pi_2 X$ are linearly dependent.

$$\Rightarrow \exists \lambda_1, \lambda_2 \in \mathbb{R} \text{ with } \Pi_1 X = \lambda_1 x_1 \ \, \wedge \ \, \Pi_2 X = \lambda_2 x_2$$

 $\Rightarrow x_1$ and x_2 are projections of X.

$$4. \ \exists \, \lambda \in \mathbb{R} : [R',T'] = \lambda \, [R,T]H = \lambda \, [R,T] \begin{bmatrix} I & 0 \\ v^\top & v_4 \end{bmatrix} = \lambda \, [R+Tv^\top,Tv_4]$$

$$E' = \hat{T}'R'$$

$$= (\widehat{\lambda v_4 T}) \cdot (\lambda(R + Tv^{\top}))$$

$$= \lambda^2 v_4 \hat{T}(R + Tv^{\top})$$

$$= \lambda^2 v_4 \hat{T}R + \lambda^2 v_4 \underbrace{\hat{T}T}_{=0} v^{\top}$$

$$= \lambda^2 v_4 \hat{T}R$$

$$= \lambda^2 v_4 E \text{ with } \lambda^2 v_4 \in \mathbb{R}$$

$$\Rightarrow E' \sim E$$