
Computer Vision Group
Prof. Daniel Cremers

Visual Navigation
for Flying Robots

Dr. Jürgen Sturm

Motion Planning

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAAA

Motivation: Flying Through Forests

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 2

1

2

3

Motion Planning Problem

 Given obstacles, a robot, and its motion
capabilities, compute collision-free robot
motions from the start to goal.

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 3

Motion Planning Problem

What are good performance metrics?

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 4

Motion Planning Problem

What are good performance metrics?

 Execution speed / path length

 Energy consumption

 Planning speed

 Safety (minimum distance to obstacles)

 Robustness against disturbances

 Probability of success

 …

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 5

Motion Planning Examples

Motion planning is sometimes also called the
piano mover’s problem

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 6

Local Obstacle Map

Robot

Robot Architecture

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 7

Sensors Actuators

Physical
World

Collision Avoidance

Localization Position Control

.. ..

Path Planner

Path Tracking

Global Map (SLAM) Executive

Agenda for Today

 Configuration spaces

 Roadmap construction

 Search algorithms

 Path optimization and re-planning

 Path execution

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 8

Configuration Space

 Work space

 Position in 3D  3 DOF

 Configuration space

 Reduced pose (position + yaw)  4 DOF

 Full pose  6 DOF

 Pose + velocity  12 DOF

 Joint angles of manipulation robot

 …

 Planning takes place in configuration space

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 9

Configuration Space

 The configuration space (C-space) is the
space of all possible configurations

 C-space topology is usually not Cartesian

 C-space is described as a topological manifold

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 10

wrap
around start

goal

obstacle

connecting path
wraps around

Notation

 Configuration space

 Configuration

 Free space

 Obstacle space

 Properties

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 11

Free Space Example

 What are admissible configurations for the
robot? Equiv.: What is the free space?

 “Point” robot

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 12

robot

obstacle

Example

 What are admissible configurations for the
robot? Equiv.: What is the free space?

 “Point” robot

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 13

robot

obstacle

Example

 What are admissible configurations for the
robot? Equiv.: What is the free space?

 Circular robot

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 14

?

robot footprint

Example

 What are admissible configurations for the
robot? Equiv.: What is the free space?

 Circular robot

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 15

obstacle in configuration
space

robot footprint in work space
(disk)

robot footprint in
configuration space (point)

Example

 What are admissible configurations for the
robot? Equiv.: What is the free space?

 Large circular robot

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 16

Computing the Free Space

 Free configuration space is obtained by sliding
the robot along the edge of the obstacle
regions "blowing them up" by the robot radius

 This operation is called the Minowski sum

where

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 17

Example: Minowski Sum

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 18

 Triangular robot and rectangular obstacle

Example

 Polygonal robot, translation only

 C-space is obtained by sliding the robot along
the edge of the obstacle regions

 Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 19

Configuration space Work space

Reference point

Basic Motion Planning Problem

 Given

 Free space

 Initial configuration

 Goal configuration

 Goal: Find a continuous path

with

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 20

Motion Planning Sub-Problems

1. C-Space discretization
(generating a graph / roadmap)

2. Search algorithm
(Dijkstra’s algorithm, A*, …)

3. Re-planning
(D*, …)

4. Path tracking
(PID control, potential fields, funnels, …)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 21

C-Space Discretizations

 Combinatorial planning

 Find a solution when one exists (complete)

 Require polygonal decomposition

 Become quickly intractable for higher dimensions

 Sampling-based planning

 Weaker guarantees but more efficient

 Need only point-wise evaluations of

 We will have a look at:
grid decomposition, road maps, random trees

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 22

Grid Decomposition

 Construct a regular grid

 Determine status of every cell (free/occ)

 Simple, but not efficient (why?)

 Not exact (why?)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 23

qI
qG

qI
qG

Grid Decomposition

 Regular grid

 Construct graph

 Grid cells as vertices

 Edges encode
traversability

 Query

 Add start and goal to
graph, connect to
nearest neighbors

 Perform graph search

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 24

Probabilistic Roadmaps (PRMs)
[Kavraki et al., 1992]

 Grids do not scale well to high dimensions

 Sampling-based approach

 Vertex: Take random sample from , check
whether sample is in

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 25

Probabilistic Roadmaps (PRMs)
[Kavraki et al., 1992]

 Vertex: Take random sample from , check
whether sample is in

 Edge: Check whether line-of-sight between two
nearby vertices is collision-free

 Options for “nearby”: k-nearest neighbors or
all neighbors within specified radius

 Add vertices and edges until roadmap is dense
enough

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 26

PRM Example

1. Sample vertex

2. Find neighbors

3. Add edges

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 27

Step 3: Check edges for collisions, e.g.,
using discretized line search

Probabilistic Roadmaps

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 28

Cobs Cobs

Cobs Cobs

qI

qG

Cobs

Cobs

Cobs

qI

qG

+ Probabilistic. complete

+ Scale well to higher
dimensional C-spaces

+ Very popular, many
extensions

- Do not work well for
some problems (e.g.,
narrow passages)

- Not optimal, not
complete

Rapidly Exploring Random Trees
[Lavalle and Kuffner, 1999]

 Idea: Grow a tree from start to goal location

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 29

Rapidly Exploring Random Trees

 Algorithm

1. Initialize tree with first node

2. Pick a random target location (every 100th
iteration, choose)

3. Find closest vertex in roadmap

4. Extend this vertex towards target location

5. Repeat steps until goal is reached

 Why not pick every time?

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 30

Rapidly Exploring Random Trees

 Algorithm

1. Initialize tree with first node

2. Pick a random target location (every 100th
iteration, choose)

3. Find closest vertex in roadmap

4. Extend this vertex towards target location

5. Repeat steps until goal is reached

 Why not pick every time?

 This will fail and run into instead of exploring

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 31

Rapidly Exploring Random Trees
[Lavalle and Kuffner, 1999]

 RRT: Grow trees from start and goal location
towards each other, stop when they connect

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 32

RRT Examples

 2-DOF example

 3-DOF example (2D translation + rotation)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 33

Non-Holonomic Robots

 Some robots cannot move freely on the
configuration space manifold

 Example: A car can not move sideways

 2-DOF controls (speed and steering)

 3-DOF configuration space (2D translation +
rotation)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 34

Non-Holonomic Robots

 RRTs can naturally consider such constraints
during tree construction

 Example: Car-like robot

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 35

Example: Blimp Motion Planning
[Müller et al., IROS 2011]

Advantages

 Low power consumption

 Safe navigation capabilities

Challenges

 Seriously underactuated (only 3-DOF control)

 Heavily subject to drift

 Requires kinodynamic motion planning

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 36

Example: Blimp Motion Planning
[Müller et al., IROS 2011]

 High-level planner: A* in 4D

 Low-level planner: RRT in 12D considering
kinodynamic constraints

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 37

Example: Blimp Motion Planning
[Müller et al., IROS 2011]

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 38

Rapidly Exploring Random Trees

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 39

+ Probabilistic. complete

+ Balance between
greedy search and
exploration

+ Very popular, many
extensions

- Metric sensitivity

- Unknown rate of
convergence

- Not optimal, not
complete

Summary: Sampling-based Planning

 More efficient in most practical problems but
offer weaker guarantees

 Probabilistically complete (given enough time
it finds a solution if one exists, otherwise, it
may run forever)

 Performance degrades in problems with
narrow passages

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 40

Motion Planning Sub-Problems

1. C-Space discretization
(generating a graph / roadmap)

2. Search algorithms
(Dijkstra’s algorithm, A*, …)

3. Re-planning
(D*, …)

4. Path tracking
(PID control, potential fields, funnels, …)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 41

Search Algorithms

 Given: Graph G consisting of vertices and edges
(with associated costs)

 Wanted: Find the best (shortest) path between
two vertices

 What search algorithms do you know?

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 42

Uninformed Search

 Breadth-first

 Complete

 Optimal if action costs equal

 Time and space

 Depth-first

 Not complete in infinite spaces

 Not optimal

 Time

 Space
(can forget explored subtrees)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 43

Example: Dijkstra’s Algorithm

 Extension of breadth-first with arbitrary (non-
negative) costs

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 44

Informed Search

 Idea

 Select nodes for further expansion based on an
evaluation function

 First explore the node with lowest value

 What is a good evaluation function?

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 45

Informed Search

 Idea

 Select nodes for further expansion based on an
evaluation function

 First explore the node with lowest value

 What is a good evaluation function?

 Often a combination of

 Path cost so far

 Heuristic function
(e.g., estimated distance to goal, but can also
encode additional domain knowledge)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 46

What is a Good Heuristic Function?

 Choice is problem/application-specific

 Popular choices

 Manhattan distance (neglecting obstacles)

 Euclidean distance (neglecting obstacles)

 Value iteration / Dijkstra (from the goal backwards)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 47

Informed Search

 A* search

 Combines path cost with estimated goal distance

 Heuristic function has to be

 Admissible (never over-estimate the true cost)

 Consistent (satisfies triangle inequality)

 A* is optimal (in the number of expanded
nodes) and complete (finds a solution if there
is one and fails otherwise)

 Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 48

A* Algorithm

 Initialize

 OPEN = {start}, CLOSED = {}

 f(s) = inf

 While goal not in CLOSED

 Remove vertex s from OPEN with smallest
estimated cost f(s)

 Insert s into CLOSED

 For every successor s’ of s not yet in CLOSED,

 Update g(s’) = min(g(s’), g(s) + c(s,s’))

 Insert s’ into OPEN

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 49

A* Example

 OPEN = {s1}

 CLOSED = {}

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 50

s1

s2

s3

s4

s5

s6

start goal

g=0
h=3

g=inf
h=2

g=inf
h=2

g=inf
h=1

g=inf
h=1

g=inf
h=0

1

2

3

2

1

1

A* Example

 OPEN = {s2}

 CLOSED = {s1}

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 51

s1

s2

s3

s4

s5

s6

start goal

g=0
h=3

g=1
h=2

g=inf
h=2

g=inf
h=1

g=inf
h=1

g=inf
h=0

1

2

3

2

1

1

A* Example

 OPEN = {s3,s4}

 CLOSED = {s1,s2}

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 52

s1

s2

s3

s4

s5

s6

start goal

g=0
h=3

g=1
h=2

g=2
h=2

g=3
h=1

g=inf
h=1

g=inf
h=0

1

2

3

2

1

1

A* Example

 OPEN = {s4}

 CLOSED = {s1,s2,s3}

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 53

s1

s2

s3

s4

s5

s6

start goal

g=0
h=3

g=1
h=2

g=2
h=2

g=3
h=1

g=5
h=1

g=inf
h=0

1

2

3

2

1

1

A* Example

 OPEN = {s5,s6}

 CLOSED = {s1,s2,s3,s4}

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 54

s1

s2

s3

s4

s5

s6

start goal

g=0
h=3

g=1
h=2

g=2
h=2

g=3
h=1

g=5
h=1

g=4
h=0

1

2

3

2

1

1

A* Example

 OPEN = {s5}

 CLOSED = {s1,s2,s3,s4,s6}

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 55

s1

s2

s3

s4

s5

s6

start goal

g=0
h=3

g=1
h=2

g=2
h=2

g=3
h=1

g=5
h=1

g=4
h=0

1

2

3

2

1

1

Effect of the Heuristic Function

 Consider the following path planning problem

 How many states will be expanded by the
previous search algorithms?

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 56

start goal

obstacle

Effect of the Heuristic Function

 Dijkstra expands states in the order of f=g
values

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 57

expanded
states

start goal

obstacle

found path

Effect of the Heuristic Function

 A* expands states in the order of f=g+h values

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 58

expanded
states

start goal

obstacle

Effect of the Heuristic Function

 A* expands states in the order of f=g+h values

 For large problems, this results in A* quickly
running out of memory (many OPEN/CLOSED
states)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 59

expanded
states

start goal

obstacle

Effect of the Heuristic Function

 Weighted A* search expands states in the
order of f=g+εh

 ε>1  bias towards states that are closer to
the goal

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 60

start goal

obstacle

expanded
states

Effect of the Heuristic Function

 Weighted A* search expands states in the
order of f=g+εh

 ε>1  bias towards states that are closer to
the goal

 Search is typically orders of magnitude faster

 Found path may be longer (by a factor of ε)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 61

start goal

obstacle

Anytime A*

 Constructing anytime search based on A*

 Find the best possible path for a given ε

 Reduce ε and re-plan

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 62

ε=1.0
expansions: 20

moves: 10

ε=1.5
expansions: 15

moves: 11

ε=2.5
expansions: 13

moves: 11

Comparison Search Algorithms

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 63

D* Search

 Problem: In unknown, partially known or
dynamic environments, the planned path may
be blocked and we need to replan

 Can this be done efficiently, avoiding to replan
the entire path?

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 64

D* Search

 Idea: Incrementally repair path keeping its
modifications local around robot pose

 Many variants:

 D* (Dynamic A*) [Stentz, ICRA ’94] [Stentz, IJCAI ‘95]

 D* Lite [Koenig and Likhachev, AAAI ‘02]

 Field D* [Ferguson and Stenz, JFR ‘06]

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 65

D* Search

Main concepts

 Invert search direction (from goal to start)

 Goal does not move, but robot does

 Map changes (new obstacles) have only local
influence close to current robot pose

 Mark the changed node and all dependent
nodes as unclean (=to be re-evaluated)

 Find shortest path to start (using A*) while re-
using previous solution

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 66

D* Example

 Initial search

 Second search

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 67

start

goal

expanded cell

new obstacle

Backwards A* D* Lite

Backwards A* D* Lite
start

goal

expanded cell

new obstacle

D* Search

 D* is as optimal and complete as A*

 D* and its variants are widely used in practice

 Field D* was running on Mars rovers Spirit and
Opportunity

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 68

D* Lite for Footstep Planning
[Garimort et al., ICRA ‘11]

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 69

Problems on A*/D* on Grids

1. The shortest path is often very close to
obstacles (cutting corners)
 Uncertain path execution increases the risk of

collisions

 Uncertainty can come from delocalized robot,
imperfect map, or poorly modeled dynamic
constraints

2. Trajectories are aligned to grid structure
 Path looks unnatural

 Paths are longer than the true shortest path in
continuous space

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 70

Problems on A*/D* on Grids

3. When the path turns out to be blocked during
traversal, it needs to be re-planned from
scratch

 In unknown or dynamic environments, this can
occur very often

 Replanning in large state spaces is costly

 Can we re-use (repair) the initial plan?

Let’s look at solutions to these problems…

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 71

Map Smoothing

 Problem: Path gets close to obstacles

 Solution: Convolve the map with a kernel (e.g.,
Gaussian)

 Leads to non-zero probability around obstacles

 Evaluation function

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 72

Example: Map Smoothing

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 73

Path Smoothing

 Problem: Paths are aligned to grid structure
(because they have to lie in the roadmap)

 Paths look unnatural and are sub-optimal

 Solution: Smooth the path after generation

 Traverse path and find pairs of nodes with direct
line of sight; replace by line segment

 Refine initial path using non-linear minimization
(e.g., optimize for continuity/energy/execution
time)

 …

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 74

Example: Path Smoothing

 Replace pairs of nodes by line segments

 Non-linear optimization

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 75

Real-Time Motion Planning

 What is the maximum time needed to re-plan in
case of an obstacle detection?

 What if the robot has to react quickly to
unforeseen, fast moving objects?

 Do we really need to re-plan for every obstacle on
the way?

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 76

Real-Time Motion Planning

 What is the maximum time needed to re-plan in
case of an obstacle detection?
In principle, re-planning with D* can take arbitrarily long

 What if the robot has to react quickly to
unforeseen, fast moving objects?
Need a collision avoidance algorithm that runs in constant
time!

 Do we really need to re-plan for every obstacle on
the way?
Could trigger re-planning only if path gets obstructed (or
robot predicts that re-planning reduces path length by p%)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 77

Local Obstacle Map

Robot

Robot Architecture

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 78

Sensors Actuators

Physical
World

Collision Avoidance

Localization Position Control

.. ..

Path Planner

Path Tracking

Global Map (SLAM) Executive

Layered Motion Planning

 An approximate global planner computes
paths ignoring the kinematic and dynamic
vehicle constraints (not real-time)

 An accurate local planner accounts for the
constraints and generates feasible local
trajectories in real-time (collision avoidance)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 79

Local Planner

 Given: Path to goal (sequence of via points),
range scan of the local vicinity, dynamic
constraints

 Wanted: Collision-free, safe, dynamically
feasible, and fast motion towards the goal (or
next via point)

 Typical approaches:

 Potential fields

 Dynamic window approach

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 80

Navigation with Potential Fields

 Treat robot as a particle under the influence of
a potential field

 Pro:

 Easy to implement

 Con:

 Suffers from local minima

 No consideration of
dynamic constraints

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 81

Navigation with Funnels
[Choi and Latombe, IROS 1991]

 Different regions of the configuration space
need different potential fields

 Compose navigation function from overlapping
local potential functions (the so-called funnels)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 82

Dynamic Window Approach
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

Algorithm:

1. Sample the robot’s control space

2. Simulate each sample for a short period of
time

3. Score each sample based on
 proximity to obstacles

 proximity to goal

 proximity to global path

 speed

4. Pick the highest-scoring control command
Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 83

Dynamic Window Approach
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

 Consider a 2DOF planar robot

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 84

forward velocity

angular
velocity

0.9m/s

-90deg/s +90deg/s

all possible speeds
of the robot

Dynamic Window Approach
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

 Consider a 2DOF planar robot + 2D environment

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 85

forward velocity

angular
velocity

0.9m/s

-90deg/s +90deg/s

all possible speeds
of the robot

obstacle-free
area

Dynamic Window Approach
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

 Consider additionally dynamic constraints

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 86

forward velocity

angular
velocity

0.9m/s

-90deg/s +90deg/s

all possible speeds
of the robot

obstacle-free
area

current
robot speed

dynamic window
 (speeds
reachable in
one time frame)

Admissible space

Dynamic Window Approach
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

 Navigation function (potential field)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 87

Maximizes
velocity

Path
from
A*

Current
robot
pose

angular
velocity -90deg/s +90deg/s

forward velocity

0.9m/s

Dynamic Window Approach
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

 Navigation function (potential field)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 88

Maximizes
velocity

Rewards alignment to
A* path gradient

Path
from
A*

Current
robot
pose

angular
velocity -90deg/s +90deg/s

forward velocity

0.9m/s

Dynamic Window Approach
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

 Navigation function (potential field)

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 89

Rewards large advances on
A* path

Maximizes
velocity

Rewards alignment to
A* path gradient

Path
from
A*

Current
robot
pose

angular
velocity -90deg/s +90deg/s

forward velocity

0.9m/s

Dynamic Window Approach
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

 Discretize dynamic window and evaluate
navigation function (note: window has fixed size
= real-time!)

 Find the maximum and execute motion

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 90

Example: Dynamic Window Approach
[Brock and Khatib, ICRA ‘99]

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 91

92

Problems of DWAs

 DWAs suffer from local minima (need tuning),
e.g., robot does not slow down early enough
to enter doorway:

 Can you think of a solution?

 Note: General case requires global planning

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots

Example: Motion Planning in ROS

 Executive: state machine (move_base)

 Global costmap: grid with inflation
(costmap_2d)

 Global path planner: Dijkstra (Dijkstra, navfn)

 Local costmap (costmap_2d)

 Local planner: Dynamic window approach
(base_local_planner)

 Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 93

Example: Motion Planning in ROS

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 94

Lessons Learned Today

 How to sample roadmaps and probabilistic
random trees

 How to efficiently compute a path between the
start and goal node

 How to update plan efficiently

 How to follow and execute a path in real-time

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 95

