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Motivation: Flying Through Forests 
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Motion Planning Problem 

 Given obstacles, a robot, and its motion 
capabilities, compute collision-free robot 
motions from the start to goal. 
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Motion Planning Problem 

What are good performance metrics? 
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Motion Planning Problem 

What are good performance metrics? 

 Execution speed / path length 

 Energy consumption 

 Planning speed 

 Safety (minimum distance to obstacles) 

 Robustness against disturbances 

 Probability of success 

 … 
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Motion Planning Examples 

Motion planning is sometimes also called the  
piano mover’s problem  
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Local Obstacle Map 

Robot 

Robot Architecture 
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Sensors Actuators 

Physical 
World 

Collision Avoidance 

Localization Position Control 

.. .. 

Path Planner 

Path Tracking 

Global Map (SLAM) Executive 



Agenda for Today 

 Configuration spaces 

 Roadmap construction 

 Search algorithms 

 Path optimization and re-planning 

 Path execution 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 8 



Configuration Space 

 Work space 

 Position in 3D  3 DOF 

 Configuration space 

 Reduced pose (position + yaw)  4 DOF 

 Full pose   6 DOF 

 Pose + velocity  12 DOF 

 Joint angles of manipulation robot 

 … 

 Planning takes place in configuration space 
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Configuration Space 

 The configuration space (C-space) is the  
space of all possible configurations 

 C-space topology is usually not Cartesian 

 C-space is described as a topological manifold 
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Notation 

 Configuration space 

 Configuration 

 Free space 

 Obstacle space 

 

 Properties 
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Free Space Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 “Point” robot 
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robot 

obstacle 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 “Point” robot 
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robot 

obstacle 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 Circular robot 
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? 

robot footprint 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 Circular robot 
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obstacle in configuration  
space 

robot footprint in work space 
(disk) 

robot footprint in  
configuration space (point) 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 Large circular robot 

 

 

 

 

 

 

 

 

 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 16 



Computing the Free Space 

 Free configuration space is obtained by sliding 
the robot along the edge of the obstacle 
regions "blowing them up" by the robot radius 

 This operation is called the Minowski sum 
 
 
where  
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Example: Minowski Sum 
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 Triangular robot and rectangular obstacle 



Example 

 Polygonal robot, translation only 

 
 

 

 

 

 

 C-space is obtained by sliding the robot along 
the edge of the obstacle regions 
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Configuration space Work space 

Reference point 



Basic Motion Planning Problem 

 Given 

 Free space 

 Initial configuration 

 Goal configuration 
 

 Goal: Find a continuous path  
 
 

 
with 
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Motion Planning Sub-Problems 

1. C-Space discretization  
(generating a graph / roadmap) 

2. Search algorithm 
(Dijkstra’s algorithm, A*, …) 

3. Re-planning 
(D*, …)  

4. Path tracking 
(PID control, potential fields, funnels, …) 
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C-Space Discretizations 

 Combinatorial planning 

 Find a solution when one exists (complete) 

 Require polygonal decomposition 

 Become quickly intractable for higher dimensions 

 Sampling-based planning 

 Weaker guarantees but more efficient 

 Need only point-wise evaluations of  

 We will have a look at: 
grid decomposition, road maps, random trees 
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Grid Decomposition 

 Construct a regular grid 

 Determine status of every cell (free/occ) 

 Simple, but not efficient (why?) 

 Not exact (why?) 
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Grid Decomposition 

 Regular grid 

 Construct graph 

 Grid cells as vertices 

 Edges encode 
traversability 

 Query 

 Add start and goal to 
graph, connect to 
nearest neighbors 

 Perform graph search 
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Probabilistic Roadmaps (PRMs) 
[Kavraki et al., 1992] 

 Grids do not scale well to high dimensions 

 Sampling-based approach 

 Vertex: Take random sample from     , check 
whether sample is in 
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Probabilistic Roadmaps (PRMs) 
[Kavraki et al., 1992] 

 Vertex: Take random sample from     , check 
whether sample is in 

 Edge: Check whether line-of-sight between two 
nearby vertices is collision-free 

 Options for “nearby”: k-nearest neighbors or 
all neighbors within specified radius 

 Add vertices and edges until roadmap is dense 
enough 
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PRM Example 

1. Sample vertex  

2. Find neighbors 

3. Add edges 
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Step 3: Check edges for collisions, e.g.,  
using discretized line search 



Probabilistic Roadmaps 
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Cobs Cobs 

Cobs Cobs 

qI 

qG 

Cobs 

Cobs 

Cobs 

qI 

qG 

+ Probabilistic. complete 

+ Scale well to higher 
dimensional C-spaces 

+ Very popular, many 
extensions 

 

- Do not work well for 
some problems (e.g., 
narrow passages) 

- Not optimal, not 
complete 



Rapidly Exploring Random Trees 
[Lavalle and Kuffner, 1999] 

 Idea: Grow a tree from start to goal location 
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Rapidly Exploring Random Trees 

 Algorithm 

1. Initialize tree with first node 

2. Pick a random target location (every 100th 
iteration, choose       ) 

3. Find closest vertex in roadmap  

4. Extend this vertex towards target location 

5. Repeat steps until goal is reached 
 

 Why not pick       every time?  
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Rapidly Exploring Random Trees 

 Algorithm 

1. Initialize tree with first node 

2. Pick a random target location (every 100th  
iteration, choose       ) 

3. Find closest vertex in roadmap  

4. Extend this vertex towards target location 

5. Repeat steps until goal is reached 

 Why not pick       every time?  

 This will fail and run into        instead of exploring 
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Rapidly Exploring Random Trees 
[Lavalle and Kuffner, 1999] 

 RRT: Grow trees from start and goal location 
towards each other, stop when they connect 
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RRT Examples 

 2-DOF example 

 
 

 

 3-DOF example (2D translation + rotation) 
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Non-Holonomic Robots 

 Some robots cannot move freely on the 
configuration space manifold 

 Example: A car can not move sideways 

 2-DOF controls (speed and steering) 

 3-DOF configuration space (2D translation + 
rotation) 
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Non-Holonomic Robots 

 RRTs can naturally consider such constraints 
during tree construction 

 Example: Car-like robot 
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Example: Blimp Motion Planning 
[Müller et al., IROS 2011] 

Advantages 

 Low power consumption 

 Safe navigation capabilities 
 

Challenges 

 Seriously underactuated (only 3-DOF control) 

 Heavily subject to drift 

 Requires kinodynamic motion planning 
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Example: Blimp Motion Planning 
[Müller et al., IROS 2011] 

 High-level planner: A* in 4D 

 Low-level planner: RRT in 12D considering 
kinodynamic constraints 
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Example: Blimp Motion Planning 
[Müller et al., IROS 2011] 
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Rapidly Exploring Random Trees 
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+ Probabilistic. complete  

+ Balance between 
greedy search and 
exploration 

+ Very popular, many 
extensions 

 

 

- Metric sensitivity 

- Unknown rate of 
convergence 

- Not optimal, not 
complete 



Summary: Sampling-based Planning 

 More efficient in most practical problems but 
offer weaker guarantees 

 Probabilistically complete (given enough time 
it finds a solution if one exists, otherwise, it 
may run forever) 

 Performance degrades in problems with 
narrow passages 
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Motion Planning Sub-Problems 

1. C-Space discretization  
(generating a graph / roadmap) 

2. Search algorithms 
(Dijkstra’s algorithm, A*, …) 

3. Re-planning 
(D*, …)  

4. Path tracking 
(PID control, potential fields, funnels, …) 
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Search Algorithms 

 Given: Graph G consisting of vertices and edges 
(with associated costs) 

 Wanted: Find the best (shortest) path between 
two vertices 

 

 What search algorithms do you know? 
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Uninformed Search 

 Breadth-first  

 Complete 

 Optimal if action costs equal 

 Time and space 

 Depth-first 

 Not complete in infinite spaces 

 Not optimal  

 Time  

 Space 
(can forget explored subtrees) 
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Example: Dijkstra’s Algorithm 

 Extension of breadth-first with arbitrary (non-
negative) costs 
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Informed Search 

 Idea 

 Select nodes for further expansion based on an 
evaluation function 

 First explore the node with lowest value 

 What is a good evaluation function? 
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Informed Search 

 Idea 

 Select nodes for further expansion based on an 
evaluation function 

 First explore the node with lowest value 

 What is a good evaluation function? 

 Often a combination of 

 Path cost so far 

 Heuristic function 
(e.g., estimated distance to goal, but can also 
encode additional domain knowledge) 
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What is a Good Heuristic Function? 

 Choice is problem/application-specific 

 Popular choices 

 Manhattan distance (neglecting obstacles) 

 Euclidean distance (neglecting obstacles) 

 Value iteration / Dijkstra (from the goal backwards) 
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Informed Search 

 A* search 

 Combines path cost with estimated goal distance 

 

 Heuristic function          has to be 

 Admissible (never over-estimate the true cost) 

 

 Consistent (satisfies triangle inequality) 

 A* is optimal (in the number of expanded 
nodes) and complete (finds a solution if there 
is one and fails otherwise) 

 Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 48 



A* Algorithm 

 Initialize 

 OPEN = {start}, CLOSED = {} 

 f(s) = inf 

 While goal not in CLOSED 

 Remove vertex s from OPEN with smallest 
estimated cost f(s) 

 Insert s into CLOSED 

 For every successor s’ of s not yet in CLOSED,  

 Update g(s’) = min( g(s’), g(s) + c(s,s’) ) 

 Insert s’ into OPEN 
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A* Example 

 OPEN = {s1} 

 CLOSED = {} 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 50 

s1 
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start goal 

g=0 
h=3 
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h=2 

g=inf 
h=2 
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h=1 

g=inf 
h=1 

g=inf 
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1 

2 

3 

2 

1 

1 



A* Example 

 OPEN = {s2} 

 CLOSED = {s1} 
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s6 

start goal 

g=0 
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h=2 
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h=1 

g=inf 
h=1 
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1 

2 

3 

2 

1 
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A* Example 

 OPEN = {s3,s4} 

 CLOSED = {s1,s2} 
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s1 
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s3 
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s5 

s6 

start goal 

g=0 
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g=1 
h=2 

g=2 
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2 
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A* Example 

 OPEN = {s4} 

 CLOSED = {s1,s2,s3} 
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s1 

s2 

s3 

s4 

s5 

s6 

start goal 

g=0 
h=3 

g=1 
h=2 

g=2 
h=2 

g=3 
h=1 

g=5 
h=1 

g=inf 
h=0 

1 

2 

3 

2 

1 

1 



A* Example 

 OPEN = {s5,s6} 

 CLOSED = {s1,s2,s3,s4} 
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s1 

s2 

s3 
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s5 

s6 

start goal 

g=0 
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A* Example 

 OPEN = {s5} 

 CLOSED = {s1,s2,s3,s4,s6} 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 55 

s1 

s2 

s3 
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Effect of the Heuristic Function 

 Consider the following path planning problem 

 How many states will be expanded by the 
previous search algorithms? 
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start goal 

obstacle 



Effect of the Heuristic Function 

 Dijkstra expands states in the order of f=g 
values 
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expanded  
states 

start goal 

obstacle 

found path 



Effect of the Heuristic Function 

 A* expands states in the order of f=g+h values 
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expanded  
states 

start goal 

obstacle 



Effect of the Heuristic Function 

 A* expands states in the order of f=g+h values 

 For large problems, this results in A* quickly 
running out of memory (many OPEN/CLOSED 
states) 
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expanded  
states 

start goal 

obstacle 



Effect of the Heuristic Function 

 Weighted A* search expands states in the 
order of f=g+εh  

 ε>1  bias towards states that are closer to 
the goal 
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start goal 

obstacle 

expanded  
states 



Effect of the Heuristic Function 

 Weighted A* search expands states in the 
order of f=g+εh  

 ε>1  bias towards states that are closer to 
the goal 

 Search is typically orders of magnitude faster 

 Found path may be longer (by a factor of ε) 
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start goal 

obstacle 



Anytime A* 

 Constructing anytime search based on A* 

 Find the best possible path for a given ε 

 Reduce ε and re-plan 
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ε=1.0 
expansions: 20 

moves: 10 

ε=1.5 
expansions: 15 

moves: 11 

ε=2.5 
expansions: 13 

moves: 11 



Comparison Search Algorithms 
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D* Search 

 Problem: In unknown, partially known or 
dynamic environments, the planned path may 
be blocked and we need to replan 

 Can this be done efficiently, avoiding to replan 
the entire path? 
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D* Search 

 Idea: Incrementally repair path keeping its 
modifications local around robot pose 

 Many variants:  

 D* (Dynamic A*) [Stentz, ICRA ’94] [Stentz, IJCAI ‘95] 

 D* Lite [Koenig and Likhachev, AAAI ‘02] 

 Field D* [Ferguson and Stenz, JFR ‘06] 
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D* Search 

Main concepts 

 Invert search direction (from goal to start) 

 Goal does not move, but robot does 

 Map changes (new obstacles) have only local 
influence close to current robot pose 

 Mark the changed node and all dependent 
nodes as unclean (=to be re-evaluated) 

 Find shortest path to start (using A*) while re-
using previous solution 
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D* Example 

 Initial search 

 

 

 

 Second search 
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start 

goal 

expanded cell 

new obstacle 

Backwards A* D* Lite 

Backwards A* D* Lite 
start 

goal 

expanded cell 

new obstacle 



D* Search 

 D* is as optimal and complete as A* 

 D* and its variants are widely used in practice 

 Field D* was running on Mars rovers Spirit and 
Opportunity  
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D* Lite for Footstep Planning 
[Garimort et al., ICRA ‘11] 
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Problems on A*/D* on Grids 

1. The shortest path is often very close to 
obstacles (cutting corners) 
 Uncertain path execution increases the risk of 

collisions 

 Uncertainty can come from delocalized robot, 
imperfect map, or poorly modeled dynamic 
constraints 

2. Trajectories are aligned to grid structure 
 Path looks unnatural 

 Paths are longer than the true shortest path in 
continuous space 
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Problems on A*/D* on Grids 

3. When the path turns out to be blocked during 
traversal, it needs to be re-planned from 
scratch 

 In unknown or dynamic environments, this can 
occur very often 

 Replanning in large state spaces is costly 

 Can we re-use (repair) the initial plan? 

 
Let’s look at solutions to these problems… 
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Map Smoothing 

 Problem: Path gets close to obstacles 

 Solution: Convolve the map with a kernel (e.g., 
Gaussian) 

 

 
 

 Leads to non-zero probability around obstacles 

 Evaluation function 
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Example: Map Smoothing 
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Path Smoothing 

 Problem: Paths are aligned to grid structure 
(because they have to lie in the roadmap) 

 Paths look unnatural and are sub-optimal 

 Solution: Smooth the path after generation 

 Traverse path and find pairs of nodes with direct 
line of sight; replace by line segment 

 Refine initial path using non-linear minimization 
(e.g., optimize for continuity/energy/execution 
time) 

 … 

 
Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 74 



Example: Path Smoothing 

 Replace pairs of nodes by line segments 

 

 

 

 Non-linear optimization 
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Real-Time Motion Planning 

 What is the maximum time needed to re-plan in 
case of an obstacle detection? 
 

 What if the robot has to react quickly to 
unforeseen, fast moving objects? 
 

 Do we really need to re-plan for every obstacle on 
the way?  
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Real-Time Motion Planning 

 What is the maximum time needed to re-plan in 
case of an obstacle detection? 
In principle, re-planning with D* can take arbitrarily long 

 What if the robot has to react quickly to 
unforeseen, fast moving objects? 
Need a collision avoidance algorithm that runs in constant 
time! 

 Do we really need to re-plan for every obstacle on 
the way?  
Could trigger re-planning only if path gets obstructed (or 
robot predicts that re-planning reduces path length by p%) 
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Local Obstacle Map 

Robot 

Robot Architecture 
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Sensors Actuators 

Physical 
World 

Collision Avoidance 

Localization Position Control 

.. .. 

Path Planner 

Path Tracking 

Global Map (SLAM) Executive 



Layered Motion Planning 

 An approximate global planner computes 
paths ignoring the kinematic and dynamic 
vehicle constraints (not real-time) 

 An accurate local planner accounts for the 
constraints and generates feasible local 
trajectories in real-time (collision avoidance) 
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Local Planner 

 Given: Path to goal (sequence of via points), 
range scan of the local vicinity, dynamic 
constraints 

 Wanted: Collision-free, safe, dynamically 
feasible, and fast motion towards the goal (or 
next via point) 

 Typical approaches: 

 Potential fields 

 Dynamic window approach 
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Navigation with Potential Fields 

 Treat robot as a particle under the influence of 
a potential field 

 Pro: 

 Easy to implement 

 Con:  

 Suffers from local minima 

 No consideration of  
dynamic constraints 
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Navigation with Funnels 
[Choi and Latombe, IROS 1991] 

 Different regions of the configuration space 
need different potential fields 

 Compose navigation function from overlapping 
local potential functions (the so-called funnels) 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

Algorithm: 

1. Sample the robot’s control space 

2. Simulate each sample for a short period of 
time 

3. Score each sample based on  
 proximity to obstacles 

 proximity to goal 

 proximity to global path 

 speed 

4. Pick the highest-scoring control command 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Consider a 2DOF planar robot  
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Consider a 2DOF planar robot + 2D environment 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Consider additionally dynamic constraints  
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Navigation function (potential field) 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Navigation function (potential field) 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Navigation function (potential field) 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Discretize dynamic window and evaluate 
navigation function (note: window has fixed size 
= real-time!) 

 Find the maximum and execute motion 
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Example: Dynamic Window Approach 
[Brock and Khatib, ICRA ‘99] 
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Problems of DWAs  

 DWAs suffer from local minima (need tuning), 
e.g., robot does not slow down early enough 
to enter doorway: 

 

 

 
 

 Can you think of a solution? 

 Note: General case requires global planning 
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Example: Motion Planning in ROS 

 Executive: state machine (move_base) 

 Global costmap: grid with inflation 
(costmap_2d) 

 Global path planner: Dijkstra (Dijkstra, navfn) 

 Local costmap (costmap_2d) 

 Local planner: Dynamic window approach 
(base_local_planner) 
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Example: Motion Planning in ROS 
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Lessons Learned Today 

 How to sample roadmaps and probabilistic 
random trees 

 How to efficiently compute a path between the 
start and goal node 

 How to update plan efficiently 

 How to follow and execute a path in real-time 
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