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Motivation: Flying Through Forests 
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Motion Planning Problem 

 Given obstacles, a robot, and its motion 
capabilities, compute collision-free robot 
motions from the start to goal. 
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Motion Planning Problem 

What are good performance metrics? 
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Motion Planning Problem 

What are good performance metrics? 

 Execution speed / path length 

 Energy consumption 

 Planning speed 

 Safety (minimum distance to obstacles) 

 Robustness against disturbances 

 Probability of success 

 … 
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Motion Planning Examples 

Motion planning is sometimes also called the  
piano mover’s problem  
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Local Obstacle Map 

Robot 

Robot Architecture 
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Sensors Actuators 

Physical 
World 

Collision Avoidance 

Localization Position Control 

.. .. 

Path Planner 

Path Tracking 

Global Map (SLAM) Executive 



Agenda for Today 

 Configuration spaces 

 Roadmap construction 

 Search algorithms 

 Path optimization and re-planning 

 Path execution 
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Configuration Space 

 Work space 

 Position in 3D  3 DOF 

 Configuration space 

 Reduced pose (position + yaw)  4 DOF 

 Full pose   6 DOF 

 Pose + velocity  12 DOF 

 Joint angles of manipulation robot 

 … 

 Planning takes place in configuration space 
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Configuration Space 

 The configuration space (C-space) is the  
space of all possible configurations 

 C-space topology is usually not Cartesian 

 C-space is described as a topological manifold 
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Notation 

 Configuration space 

 Configuration 

 Free space 

 Obstacle space 

 

 Properties 
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Free Space Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 “Point” robot 

 

 

 

 

 

 
Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 12 

robot 

obstacle 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 “Point” robot 
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robot 

obstacle 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 Circular robot 
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? 

robot footprint 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 Circular robot 

 

 

 

 

 

 
Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 15 

obstacle in configuration  
space 

robot footprint in work space 
(disk) 

robot footprint in  
configuration space (point) 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 Large circular robot 
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Computing the Free Space 

 Free configuration space is obtained by sliding 
the robot along the edge of the obstacle 
regions "blowing them up" by the robot radius 

 This operation is called the Minowski sum 
 
 
where  
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Example: Minowski Sum 
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 Triangular robot and rectangular obstacle 



Example 

 Polygonal robot, translation only 

 
 

 

 

 

 

 C-space is obtained by sliding the robot along 
the edge of the obstacle regions 
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Configuration space Work space 

Reference point 



Basic Motion Planning Problem 

 Given 

 Free space 

 Initial configuration 

 Goal configuration 
 

 Goal: Find a continuous path  
 
 

 
with 
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Motion Planning Sub-Problems 

1. C-Space discretization  
(generating a graph / roadmap) 

2. Search algorithm 
(Dijkstra’s algorithm, A*, …) 

3. Re-planning 
(D*, …)  

4. Path tracking 
(PID control, potential fields, funnels, …) 
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C-Space Discretizations 

 Combinatorial planning 

 Find a solution when one exists (complete) 

 Require polygonal decomposition 

 Become quickly intractable for higher dimensions 

 Sampling-based planning 

 Weaker guarantees but more efficient 

 Need only point-wise evaluations of  

 We will have a look at: 
grid decomposition, road maps, random trees 
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Grid Decomposition 

 Construct a regular grid 

 Determine status of every cell (free/occ) 

 Simple, but not efficient (why?) 

 Not exact (why?) 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 23 

qI 
qG 

qI 
qG 



Grid Decomposition 

 Regular grid 

 Construct graph 

 Grid cells as vertices 

 Edges encode 
traversability 

 Query 

 Add start and goal to 
graph, connect to 
nearest neighbors 

 Perform graph search 
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Probabilistic Roadmaps (PRMs) 
[Kavraki et al., 1992] 

 Grids do not scale well to high dimensions 

 Sampling-based approach 

 Vertex: Take random sample from     , check 
whether sample is in 
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Probabilistic Roadmaps (PRMs) 
[Kavraki et al., 1992] 

 Vertex: Take random sample from     , check 
whether sample is in 

 Edge: Check whether line-of-sight between two 
nearby vertices is collision-free 

 Options for “nearby”: k-nearest neighbors or 
all neighbors within specified radius 

 Add vertices and edges until roadmap is dense 
enough 
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PRM Example 

1. Sample vertex  

2. Find neighbors 

3. Add edges 
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Step 3: Check edges for collisions, e.g.,  
using discretized line search 



Probabilistic Roadmaps 
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Cobs Cobs 

Cobs Cobs 

qI 

qG 

Cobs 

Cobs 

Cobs 

qI 

qG 

+ Probabilistic. complete 

+ Scale well to higher 
dimensional C-spaces 

+ Very popular, many 
extensions 

 

- Do not work well for 
some problems (e.g., 
narrow passages) 

- Not optimal, not 
complete 



Rapidly Exploring Random Trees 
[Lavalle and Kuffner, 1999] 

 Idea: Grow a tree from start to goal location 
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Rapidly Exploring Random Trees 

 Algorithm 

1. Initialize tree with first node 

2. Pick a random target location (every 100th 
iteration, choose       ) 

3. Find closest vertex in roadmap  

4. Extend this vertex towards target location 

5. Repeat steps until goal is reached 
 

 Why not pick       every time?  
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Rapidly Exploring Random Trees 

 Algorithm 

1. Initialize tree with first node 

2. Pick a random target location (every 100th  
iteration, choose       ) 

3. Find closest vertex in roadmap  

4. Extend this vertex towards target location 

5. Repeat steps until goal is reached 

 Why not pick       every time?  

 This will fail and run into        instead of exploring 
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Rapidly Exploring Random Trees 
[Lavalle and Kuffner, 1999] 

 RRT: Grow trees from start and goal location 
towards each other, stop when they connect 
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RRT Examples 

 2-DOF example 

 
 

 

 3-DOF example (2D translation + rotation) 
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Non-Holonomic Robots 

 Some robots cannot move freely on the 
configuration space manifold 

 Example: A car can not move sideways 

 2-DOF controls (speed and steering) 

 3-DOF configuration space (2D translation + 
rotation) 
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Non-Holonomic Robots 

 RRTs can naturally consider such constraints 
during tree construction 

 Example: Car-like robot 
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Example: Blimp Motion Planning 
[Müller et al., IROS 2011] 

Advantages 

 Low power consumption 

 Safe navigation capabilities 
 

Challenges 

 Seriously underactuated (only 3-DOF control) 

 Heavily subject to drift 

 Requires kinodynamic motion planning 
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Example: Blimp Motion Planning 
[Müller et al., IROS 2011] 

 High-level planner: A* in 4D 

 Low-level planner: RRT in 12D considering 
kinodynamic constraints 
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Example: Blimp Motion Planning 
[Müller et al., IROS 2011] 
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Rapidly Exploring Random Trees 
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+ Probabilistic. complete  

+ Balance between 
greedy search and 
exploration 

+ Very popular, many 
extensions 

 

 

- Metric sensitivity 

- Unknown rate of 
convergence 

- Not optimal, not 
complete 



Summary: Sampling-based Planning 

 More efficient in most practical problems but 
offer weaker guarantees 

 Probabilistically complete (given enough time 
it finds a solution if one exists, otherwise, it 
may run forever) 

 Performance degrades in problems with 
narrow passages 
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Motion Planning Sub-Problems 

1. C-Space discretization  
(generating a graph / roadmap) 

2. Search algorithms 
(Dijkstra’s algorithm, A*, …) 

3. Re-planning 
(D*, …)  

4. Path tracking 
(PID control, potential fields, funnels, …) 
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Search Algorithms 

 Given: Graph G consisting of vertices and edges 
(with associated costs) 

 Wanted: Find the best (shortest) path between 
two vertices 

 

 What search algorithms do you know? 
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Uninformed Search 

 Breadth-first  

 Complete 

 Optimal if action costs equal 

 Time and space 

 Depth-first 

 Not complete in infinite spaces 

 Not optimal  

 Time  

 Space 
(can forget explored subtrees) 
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Example: Dijkstra’s Algorithm 

 Extension of breadth-first with arbitrary (non-
negative) costs 
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Informed Search 

 Idea 

 Select nodes for further expansion based on an 
evaluation function 

 First explore the node with lowest value 

 What is a good evaluation function? 
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Informed Search 

 Idea 

 Select nodes for further expansion based on an 
evaluation function 

 First explore the node with lowest value 

 What is a good evaluation function? 

 Often a combination of 

 Path cost so far 

 Heuristic function 
(e.g., estimated distance to goal, but can also 
encode additional domain knowledge) 
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What is a Good Heuristic Function? 

 Choice is problem/application-specific 

 Popular choices 

 Manhattan distance (neglecting obstacles) 

 Euclidean distance (neglecting obstacles) 

 Value iteration / Dijkstra (from the goal backwards) 
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Informed Search 

 A* search 

 Combines path cost with estimated goal distance 

 

 Heuristic function          has to be 

 Admissible (never over-estimate the true cost) 

 

 Consistent (satisfies triangle inequality) 

 A* is optimal (in the number of expanded 
nodes) and complete (finds a solution if there 
is one and fails otherwise) 
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A* Algorithm 

 Initialize 

 OPEN = {start}, CLOSED = {} 

 f(s) = inf 

 While goal not in CLOSED 

 Remove vertex s from OPEN with smallest 
estimated cost f(s) 

 Insert s into CLOSED 

 For every successor s’ of s not yet in CLOSED,  

 Update g(s’) = min( g(s’), g(s) + c(s,s’) ) 

 Insert s’ into OPEN 
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A* Example 

 OPEN = {s1} 

 CLOSED = {} 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 50 

s1 

s2 

s3 

s4 

s5 

s6 

start goal 

g=0 
h=3 

g=inf 
h=2 

g=inf 
h=2 

g=inf 
h=1 

g=inf 
h=1 

g=inf 
h=0 

1 

2 

3 

2 

1 

1 



A* Example 

 OPEN = {s2} 

 CLOSED = {s1} 
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s1 

s2 

s3 
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s6 
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g=inf 
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2 
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1 
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A* Example 

 OPEN = {s3,s4} 

 CLOSED = {s1,s2} 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 52 

s1 

s2 

s3 

s4 

s5 

s6 

start goal 

g=0 
h=3 

g=1 
h=2 

g=2 
h=2 

g=3 
h=1 

g=inf 
h=1 

g=inf 
h=0 

1 

2 

3 

2 

1 

1 



A* Example 

 OPEN = {s4} 

 CLOSED = {s1,s2,s3} 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 53 

s1 

s2 

s3 

s4 

s5 

s6 

start goal 

g=0 
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2 
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2 

1 
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A* Example 

 OPEN = {s5,s6} 

 CLOSED = {s1,s2,s3,s4} 
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A* Example 

 OPEN = {s5} 

 CLOSED = {s1,s2,s3,s4,s6} 
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Effect of the Heuristic Function 

 Consider the following path planning problem 

 How many states will be expanded by the 
previous search algorithms? 
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start goal 

obstacle 



Effect of the Heuristic Function 

 Dijkstra expands states in the order of f=g 
values 
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expanded  
states 

start goal 

obstacle 

found path 



Effect of the Heuristic Function 

 A* expands states in the order of f=g+h values 
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expanded  
states 

start goal 

obstacle 



Effect of the Heuristic Function 

 A* expands states in the order of f=g+h values 

 For large problems, this results in A* quickly 
running out of memory (many OPEN/CLOSED 
states) 
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expanded  
states 

start goal 

obstacle 



Effect of the Heuristic Function 

 Weighted A* search expands states in the 
order of f=g+εh  

 ε>1  bias towards states that are closer to 
the goal 
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start goal 

obstacle 

expanded  
states 



Effect of the Heuristic Function 

 Weighted A* search expands states in the 
order of f=g+εh  

 ε>1  bias towards states that are closer to 
the goal 

 Search is typically orders of magnitude faster 

 Found path may be longer (by a factor of ε) 
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start goal 

obstacle 



Anytime A* 

 Constructing anytime search based on A* 

 Find the best possible path for a given ε 

 Reduce ε and re-plan 
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ε=1.0 
expansions: 20 

moves: 10 

ε=1.5 
expansions: 15 

moves: 11 

ε=2.5 
expansions: 13 

moves: 11 



Comparison Search Algorithms 
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D* Search 

 Problem: In unknown, partially known or 
dynamic environments, the planned path may 
be blocked and we need to replan 

 Can this be done efficiently, avoiding to replan 
the entire path? 
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D* Search 

 Idea: Incrementally repair path keeping its 
modifications local around robot pose 

 Many variants:  

 D* (Dynamic A*) [Stentz, ICRA ’94] [Stentz, IJCAI ‘95] 

 D* Lite [Koenig and Likhachev, AAAI ‘02] 

 Field D* [Ferguson and Stenz, JFR ‘06] 
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D* Search 

Main concepts 

 Invert search direction (from goal to start) 

 Goal does not move, but robot does 

 Map changes (new obstacles) have only local 
influence close to current robot pose 

 Mark the changed node and all dependent 
nodes as unclean (=to be re-evaluated) 

 Find shortest path to start (using A*) while re-
using previous solution 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 66 



D* Example 

 Initial search 

 

 

 

 Second search 
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start 

goal 

expanded cell 

new obstacle 

Backwards A* D* Lite 

Backwards A* D* Lite 
start 

goal 

expanded cell 

new obstacle 



D* Search 

 D* is as optimal and complete as A* 

 D* and its variants are widely used in practice 

 Field D* was running on Mars rovers Spirit and 
Opportunity  
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D* Lite for Footstep Planning 
[Garimort et al., ICRA ‘11] 
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Problems on A*/D* on Grids 

1. The shortest path is often very close to 
obstacles (cutting corners) 
 Uncertain path execution increases the risk of 

collisions 

 Uncertainty can come from delocalized robot, 
imperfect map, or poorly modeled dynamic 
constraints 

2. Trajectories are aligned to grid structure 
 Path looks unnatural 

 Paths are longer than the true shortest path in 
continuous space 
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Problems on A*/D* on Grids 

3. When the path turns out to be blocked during 
traversal, it needs to be re-planned from 
scratch 

 In unknown or dynamic environments, this can 
occur very often 

 Replanning in large state spaces is costly 

 Can we re-use (repair) the initial plan? 

 
Let’s look at solutions to these problems… 
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Map Smoothing 

 Problem: Path gets close to obstacles 

 Solution: Convolve the map with a kernel (e.g., 
Gaussian) 

 

 
 

 Leads to non-zero probability around obstacles 

 Evaluation function 
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Example: Map Smoothing 
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Path Smoothing 

 Problem: Paths are aligned to grid structure 
(because they have to lie in the roadmap) 

 Paths look unnatural and are sub-optimal 

 Solution: Smooth the path after generation 

 Traverse path and find pairs of nodes with direct 
line of sight; replace by line segment 

 Refine initial path using non-linear minimization 
(e.g., optimize for continuity/energy/execution 
time) 

 … 
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Example: Path Smoothing 

 Replace pairs of nodes by line segments 

 

 

 

 Non-linear optimization 
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Real-Time Motion Planning 

 What is the maximum time needed to re-plan in 
case of an obstacle detection? 
 

 What if the robot has to react quickly to 
unforeseen, fast moving objects? 
 

 Do we really need to re-plan for every obstacle on 
the way?  
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Real-Time Motion Planning 

 What is the maximum time needed to re-plan in 
case of an obstacle detection? 
In principle, re-planning with D* can take arbitrarily long 

 What if the robot has to react quickly to 
unforeseen, fast moving objects? 
Need a collision avoidance algorithm that runs in constant 
time! 

 Do we really need to re-plan for every obstacle on 
the way?  
Could trigger re-planning only if path gets obstructed (or 
robot predicts that re-planning reduces path length by p%) 
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Local Obstacle Map 

Robot 

Robot Architecture 
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Sensors Actuators 

Physical 
World 

Collision Avoidance 

Localization Position Control 

.. .. 

Path Planner 

Path Tracking 

Global Map (SLAM) Executive 



Layered Motion Planning 

 An approximate global planner computes 
paths ignoring the kinematic and dynamic 
vehicle constraints (not real-time) 

 An accurate local planner accounts for the 
constraints and generates feasible local 
trajectories in real-time (collision avoidance) 
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Local Planner 

 Given: Path to goal (sequence of via points), 
range scan of the local vicinity, dynamic 
constraints 

 Wanted: Collision-free, safe, dynamically 
feasible, and fast motion towards the goal (or 
next via point) 

 Typical approaches: 

 Potential fields 

 Dynamic window approach 
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Navigation with Potential Fields 

 Treat robot as a particle under the influence of 
a potential field 

 Pro: 

 Easy to implement 

 Con:  

 Suffers from local minima 

 No consideration of  
dynamic constraints 
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Navigation with Funnels 
[Choi and Latombe, IROS 1991] 

 Different regions of the configuration space 
need different potential fields 

 Compose navigation function from overlapping 
local potential functions (the so-called funnels) 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

Algorithm: 

1. Sample the robot’s control space 

2. Simulate each sample for a short period of 
time 

3. Score each sample based on  
 proximity to obstacles 

 proximity to goal 

 proximity to global path 

 speed 

4. Pick the highest-scoring control command 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Consider a 2DOF planar robot  
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forward velocity 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Consider a 2DOF planar robot + 2D environment 
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forward velocity 

angular  
velocity 

0.9m/s 

-90deg/s +90deg/s 

all possible speeds 
of the robot 

obstacle-free 
area 



Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Consider additionally dynamic constraints  
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forward velocity 

angular  
velocity 

0.9m/s 

-90deg/s +90deg/s 

all possible speeds 
of the robot 

obstacle-free 
area 

current 
robot speed 

dynamic window 
       (speeds  
reachable in  
one time frame) 

Admissible space 



Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Navigation function (potential field) 
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robot  
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angular  
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Navigation function (potential field) 
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A* path gradient 

Path  
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pose 

angular  
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Navigation function (potential field) 
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Rewards large advances on 
A* path 

Maximizes 
velocity 

Rewards alignment to 
A* path gradient 

Path  
from  
A* 

Current  
robot  
pose 

angular  
velocity -90deg/s +90deg/s 

forward velocity 

0.9m/s 



Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Discretize dynamic window and evaluate 
navigation function (note: window has fixed size 
= real-time!) 

 Find the maximum and execute motion 
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Example: Dynamic Window Approach 
[Brock and Khatib, ICRA ‘99] 
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92 

Problems of DWAs  

 DWAs suffer from local minima (need tuning), 
e.g., robot does not slow down early enough 
to enter doorway: 

 

 

 
 

 Can you think of a solution? 

 Note: General case requires global planning 
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Example: Motion Planning in ROS 

 Executive: state machine (move_base) 

 Global costmap: grid with inflation 
(costmap_2d) 

 Global path planner: Dijkstra (Dijkstra, navfn) 

 Local costmap (costmap_2d) 

 Local planner: Dynamic window approach 
(base_local_planner) 
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Example: Motion Planning in ROS 
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Lessons Learned Today 

 How to sample roadmaps and probabilistic 
random trees 

 How to efficiently compute a path between the 
start and goal node 

 How to update plan efficiently 

 How to follow and execute a path in real-time 
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