
Computer Vision Group  
Prof. Daniel Cremers 

Visual Navigation  
for Flying Robots 

Dr. Jürgen Sturm 

Exploration, Multi-Robot 
Coordination and Coverage 



Agenda for Today 

 Exploration with a single robot 

 Coordinated exploration with a team of robots 

 Coverage planning 

 Benchmarking 
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Mission Planning 

 Goal: Generate and execute a plan to 
accomplish a certain (navigation) task 

 Example tasks 

 Exploration 

 Coverage 

 Surveillance 

 Tracking 

 … 
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Task Planning 

 Goal: Generate and execute a high level plan to 
accomplish a certain task 

 Often symbolic reasoning (or hard-coded) 

 Propositional or first-order logic 

 Automated reasoning systems  

 Common programming languages: Prolog, LISP 

 Multi-agent systems, communication 

 Artificial Intelligence 
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Exploration and SLAM 

 SLAM is typically passive, because it consumes 
incoming sensor data 

 Exploration actively guides the robot to cover 
the environment with its sensors 

 Exploration in combination with SLAM: 
Acting under pose and map uncertainty 

 Uncertainty should/needs to be taken into 
account when selecting an action 
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Exploration 

 By reasoning about control, the mapping 
process can be made much more effective 

 Question: Where to move next? 

 

 

 

 

 

 This is also called the next-best-view problem 
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Exploration 

 Choose the action that maximizes utility 

 

 

 Question: How can we define utility? 
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Example 

 Where should the robot go next? 
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Maximizing the Information Gain 

 Pick the action    that maximizes the 
information gain given a map m 
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robot 



Maximizing the Information Gain 

 Pick the action    that maximizes the 
information gain given a map m 
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Information Theory 

 Entropy is a general measure for the 
uncertainty of a probability distribution 

 Entropy = Expected amount of information 
needed to encode an outcome 
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Example: Binary Random Variable 

 Binary random variable 

 Probability distribution 

 How many bits do we need to transmit one 
sample of           ? 

 For p=0? 

 For p=0.5? 

 For p=1? 
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Example: Binary Random Variable 

 Binary random variable 

 Probability distribution 

 How many bits do we need to transmit one 
sample of           ? 

 Answer: 
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Example: Map Entropy 
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The overall entropy is the sum of the individual entropy values 



Information Theory 

 Entropy of a grid map 

 

 

 

 

 

 Information gain = reduction in entropy 
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grid cells probability that the cell is occupied 



Maximizing the Information Gain 

 To compute the information gain one needs to 
know the observations obtained when carrying 
out an action 

 
 This quantity is not known! Reason about 

potential measurements 
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Example 
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Exploration Costs 

 So far, we did not consider the cost of 
executing an action (e.g., time, energy, …) 

 

 Utility = uncertainty reduction – cost 

 

 Select the action with the highest expected 
utility 
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Exploration 

 For each location <x,y> 

 Estimate the number of cells robot can sense (e.g., 
simulate laser beams using current map) 

 Estimate the cost of getting there 
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Exploration 

 Greedy strategy: Select the candidate location 
with the highest utility, then repeat… 
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Exploration Actions 

 So far, we only considered reduction in map 
uncertainty 

 In general, there are many sources of 
uncertainty that can be reduced by exploration 

 Map uncertainty (visit unexplored areas) 

 Trajectory uncertainty (loop closing) 

 Localization uncertainty (active re-localization by 
re-visiting known locations) 
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Example: Active Loop Closing 
[Stachniss et al., 2005] 

 Reduce map uncertainty 

 
 

 
 Reduce map + path uncertainty 
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Example: Active Loop Closing 
[Stachniss et al., 2005] 
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Example: Active Loop Closing 
[Stachniss et al., 2005] 

 Entropy evolution 
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Example: Reduce uncertainty in  
map, path, and pose [Stachniss et al., 2005] 
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Corridor Exploration  
[Stachniss et al., 2005] 

 The decision-theoretic approach leads to 
intuitive behaviors: “re-localize before getting 
lost” 

 Some animals show a similar behavior  
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Multi-Robot Exploration 

Given: Team of robots with communication 

Goal: Explore the environment as fast as possible 
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[Wurm et al., IROS 2011] 



Complexity 

 Single-robot exploration in known, graph-like 
environments is in general NP-hard  

 Proof: Reduce traveling salesman problem to 
exploration 

 Complexity of multi-robot exploration is 
exponential in the number of robots 
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Motivation: Why Coordinate? 

 Without coordination, two robots might 
choose the same exploration frontier 
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Robot 1 Robot 2 



Levels of Coordination 

1. No exchange of information 

2. Implicit coordination: Sharing a joint map 

 Communication of the individual maps and poses 

 Central mapping system  

3. Explicit coordination: Determine better target 
locations to distribute the robots 

 Central planner for target point assignment 

 Minimize expected path cost / information gain / … 
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Typical Trajectories 
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Implicit coordination: Explicit coordination: 



Exploration Time 
[Stachniss et al., 2006] 
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Coordination Algorithm 

In each time step: 

 Determine set of exploration targets 

 

 Compute for each robot      and each target      
the expected cost/utility 

 Assign robots to targets using the Hungarian 
algorithm 
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Hungarian Algorithm 
[Kuhn, 1955] 

 Combinatorial optimization algorithm 

 Solves the assignment problem in polynomial 
time 

 General idea: Algorithm modifies the cost 
matrix until there is zero cost assignment 
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36 / 16 

Hungarian Algorithm: Example 

1. Compute the cost matrix (non-negative) 
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Hungarian Algorithm: Example 

2. Find minimum element in each row 
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Hungarian Algorithm: Example 

3. Subtract minimum from each row element 



Hungarian Algorithm: Example 
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4. Find minimum element in each column 



Hungarian Algorithm: Example 
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5. Subtract minimum from each column element 



Hungarian Algorithm: Example 
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6a. Assign (if possible) 
 



Hungarian Algorithm: Example 
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6b. If no assignment is possible: 

 Connect all 0’s by 
vertical/horizontal lines 

 Find the minimum in all 
remaining elements and 
subtract 

 Add to all double crossed out 
coefficients 

 Repeat step 2 – 6  



Hungarian Algorithm: Example 

If there are not enough 
targets: 
Copy targets to allow 
multiple assignments 
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Example: Segmentation-based Exploration 
[Wurm et al., IROS 2008] 

 Two-layer hierarchical role assignments using 
Hungarian algorithm (1: rooms, 2: targets in room) 

 Reduces exploration time and risk of interferences 
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Summary: Exploration 

 Exploration aims at generating robot motions 
so that an optimal map is obtained 

 Coordination reduces exploration time 

 Hungarian algorithm efficiently solves the 
assignment problem (centralized, 1-step 
lookahead) 

 Challenges (active research): 

 Limited bandwidth and unreliable communication 

 Decentralized planning and task assignment 
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Coverage Path Planning 

 Given: Known environment with obstacles 

 Wanted: The shortest trajectory that ensures 
complete (sensor) coverage 
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[images from Xu et al., ICRA 2011] 



Coverage Path Planning 
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Coverage Path Planning: Applications 

 For flying robots 
 Search and rescue 

 Area surveillance  

 Environmental inspection 

 Inspection of buildings (bridges) 

 For service robots 
 Lawn mowing 

 Vacuum cleaning 

 For manipulation robots 
 Painting 

 Automated farming 
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Coverage Path Planning 

 What is a good coverage strategy? 

 What would be a good cost function? 
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Coverage Path Planning 

 What is a good coverage strategy? 

 What would be a good cost function? 

 Amount of redundant traversals 

 Number of stops and rotations 

 Execution time 

 Energy consumption 

 Robustness 

 Probability of success 

 … 
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Coverage Path Planning 

 Related to the traveling salesman problem 
(TSP): 
“Given a weighted graph, compute a path that 
visits every vertex once” 

 In general NP-complete 

 Many approximations exist 

 Many approximate (and exact) solvers exist 
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Coverage of Simple Shapes 

 Approximately optimal solution often easy to 
compute for simple shapes (e.g., trapezoids) 
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Idea 
[Mannadiar and Rekleitis, ICRA 2011] 
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Idea 
[Mannadiar and Rekleitis, ICRA 2011] 
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Idea 
[Mannadiar and Rekleitis, ICRA 2011] 
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Coverage Based On Cell Decomposition 
[Mannadiar and Rekleitis, ICRA 2011] 

Approach: 

1. Decompose map into “simple” cells 

2. Compute connectivity between cells and build 
graph 

3. Solve coverage problem on reduced graph 
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Step 1: Boustrophedon Cellular 
Decomposition [Mannadiar and Rekleitis, ICRA 2011] 

 Similar to trapezoidal decomposition 

 Can be computed efficiently in 2D 
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Step 2: Build Reeb Graph 
[Mannadiar and Rekleitis, ICRA 2011] 

 Vertices = Critical points (that triggered the split) 

 Edges = Connectivity between critical points 
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Step 3: Compute Euler Tour 
[Mannadiar and Rekleitis, ICRA 2011] 

 Extend graph so that vertices have even order 

 Compute Euler tour (linear time) 
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Resulting Coverage Plan 
[Mannadiar and Rekleitis, ICRA 2011] 

 Follow the Euler tour 

 Use simple coverage strategy for cells 

 Note: Cells are visited once or twice 
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What are the desired properties of a 
good scientific experiment? 

 Reproducibility / repeatability 

 Document the experimental setup 

 Choose (and motivate) an your evaluation criterion 

 Experiments should allow you to 
validate/falsify competing hypotheses 

Current trends: 

 Make data available for review and criticism 

 Same for software (open source) 
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Benchmarks 

 Effective and affordable way of conducting 
experiments 

 Sample of a task domain 

 Well-defined performance measurements 

 Widely used in computer vision and robotics 

 Which benchmark problems do you know? 
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Example Benchmark Problems 

Computer Vision 

 Middlebury datasets (optical flow, stereo, …) 

 Caltech-101, PASCAL (object recognition) 

 Stanford bunny (3d reconstruction) 

Robotics 

 RoboCup competitions (robotic soccer) 

 DARPA challenges (autonomous car) 

 SLAM datasets 
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Image Denoising: Lenna Image 

 512x512 pixel standard image for image 
compression and denoising 

 Lena Söderberg, Playboy magazine Nov. 1972 

 Scanned by Alex Sawchuck at USC in a hurry for 
a conference paper 
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Object Recognition: Caltech-101 

 Pictures of objects belonging to 101 categories 

 About 40-800 images per category 

 Recognition, classification, categorization 
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RoboCup Initiative 

 Evaluation of full system performance 

 Includes perception, planning, control, … 

 Easy to understand, high publicity  

 “By mid-21st century, a team of fully 
autonomous humanoid robot soccer players 
shall win the soccer game, complying with the 
official rule of the FIFA, against the winner of 
the most recent World Cup.” 
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RoboCup Initiative 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 67 



SLAM Evaluation 

 Intel dataset: laser + odometry [Haehnel, 2004] 

 New College dataset: stereo + omni-directional 
vision + laser + IMU [Smith et al., 2009] 

 TUM RGB-D dataset [Sturm et al., 2011/12] 

 … 
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TUM RGB-D Dataset 
[Sturm et al., RSS RGB-D 2011; Sturm et al., IROS 2012] 

 RGB-D dataset with ground truth for SLAM 
evaluation 

 Two error metrics proposed (relative and 
absolute error) 

 Online + offline evaluation tools 

 Training datasets (fully available) 

 Validation datasets (ground truth not publicly 
available to avoid overfitting) 
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Recorded Scenes 

 Various scenes (handheld/robot-mounted, 
office, industrial hall, dynamic objects, …) 

 Large variations in camera speed, camera 
motion, illumination, environment size, … 
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Dataset Acquisition 

 Motion capture system 

 Camera pose (100 Hz) 

 Microsoft Kinect 

 Color images (30 Hz) 

 Depth maps (30 Hz) 

 IMU (500 Hz) 

 External video camera (for documentation) 
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Motion Capture System 

 9 high-speed cameras mounted in room 

 Cameras have active illumination and pre-
process image (thresholding) 

 Cameras track positions of retro-reflective 
markers 
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Calibration 

Calibration of the overall system is not trivial: 

1. Mocap calibration 

2. Kinect-mocap calibration 

3. Time synchronization 
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Calibration Step 1: Mocap 

 Need at least 2 cameras for position fix 

 Need at least 3 markers on object for full pose 

 Calibration stick for extrinsic calibration 
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Calibration Step 1: Mocap 
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trajectory of the 
calibration stick in 3D 

trajectory of the 
calibration stick 
in the individual 
cameras  



Example: Raw Image from Mocap 
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detected markers 



Example: Position Triangulation of a 
Single Marker 
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Example: Tracked Object (4 Markers) 
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Example: Recorded Trajectory 
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Calibration Step 2: Mocap-Kinect 
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 Need to find transformation between the 
markers on the Kinect and the optical center 

 Special calibration board visible both by Kinect 
and mocap system (manually gauged) 



Calibration Step 3: Time Synchronization 

 Assume a constant time delay between mocap 
and Kinect messages 

 Choose time delay that minimizes reprojection 
error during checkerboard calibration 
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time delay 
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Dataset Website 

 In total: 39 sequences (19 with ground truth) 

 One ZIP archive per sequence, containing 

 Color and depth images (PNG)  

 Accelerometer data (timestamp ax ay az) 

 Trajectory file (timestamp tx ty ty qx qy qz qw) 

 Sequences also available as ROS bag and MRPT 
rawlog 
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What Is a Good Evaluation Metric? 

 Compare camera trajectories 

 Ground truth trajectory 

 Estimate camera trajectory 

 Two common evaluation metrics 

 Relative pose error (drift per second) 

 Absolute trajectory error (global consistency) 

 

 

 
Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 86 

RGB-D 
sequence 
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 Measures the (relative) drift 

 Recommended for the evaluation of visual 
odometry approaches 

 

 

 

Relative Pose Error (RPE) 

Ground truth Estimated traj. 

Relative error 
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True motion Estimated motion Relative error 



Absolute Trajectory Error (ATE) 

 Measures the global error 

 Requires pre-aligned trajectories 

 Recommended for SLAM evaluation 

 

 

Ground truth 

Pre-aligned  
estimated traj. 

Absolute error 
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Evaluation metrics 

 Average over all time steps 

 

 

 Reference implementations for both evaluation 
metrics available 

 Output: RMSE, Mean, Median (as text) 

 Plot (png/pdf, optional) 
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Example: Online Evaluation 
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Summary – TUM RGB-D Benchmark 

 Dataset for the evaluation of RGB-D SLAM 
systems 

 Ground-truth camera poses 

 Evaluation metrics + tools available 
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Discussion on Benchmarks 

Pro: 

 Provide objective measure 

 Simplify empirical evaluation  

 Stimulate comparison 

Con: 

 Introduce bias towards approaches that 
perform well on the benchmark (overfitting) 

 Evaluation metrics are not unique (many 
alternative metrics exist, choice is subjective) 
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Lessons Learned Today 

 How to generate plans that are robust to 
uncertainty in sensing and locomotion 

 How to explore an unknown environment 

 With a single robot 

 With a team of robots 

 How to generate plans that fully cover known 
environments 

 How to benchmark SLAM algorithms 
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