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Agenda for Today 

 Exploration with a single robot 

 Coordinated exploration with a team of robots 

 Coverage planning 

 Benchmarking 
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Local Obstacle Map 

Robot 

Mission Planning 
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Mission Planning 

 Goal: Generate and execute a plan to 
accomplish a certain (navigation) task 

 Example tasks 

 Exploration 

 Coverage 

 Surveillance 

 Tracking 

 … 
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Task Planning 

 Goal: Generate and execute a high level plan to 
accomplish a certain task 

 Often symbolic reasoning (or hard-coded) 

 Propositional or first-order logic 

 Automated reasoning systems  

 Common programming languages: Prolog, LISP 

 Multi-agent systems, communication 

 Artificial Intelligence 
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Exploration and SLAM 

 SLAM is typically passive, because it consumes 
incoming sensor data 

 Exploration actively guides the robot to cover 
the environment with its sensors 

 Exploration in combination with SLAM: 
Acting under pose and map uncertainty 

 Uncertainty should/needs to be taken into 
account when selecting an action 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 6 



Exploration 

 By reasoning about control, the mapping 
process can be made much more effective 

 Question: Where to move next? 

 

 

 

 

 

 This is also called the next-best-view problem 
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Exploration 

 Choose the action that maximizes utility 

 

 

 Question: How can we define utility? 
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Example 

 Where should the robot go next? 
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Maximizing the Information Gain 

 Pick the action    that maximizes the 
information gain given a map m 
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robot 



Maximizing the Information Gain 

 Pick the action    that maximizes the 
information gain given a map m 
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robot 

possible 
exploration 
target 

area with large 
information gain 



Information Theory 

 Entropy is a general measure for the 
uncertainty of a probability distribution 

 Entropy = Expected amount of information 
needed to encode an outcome 
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Example: Binary Random Variable 

 Binary random variable 

 Probability distribution 

 How many bits do we need to transmit one 
sample of           ? 

 For p=0? 

 For p=0.5? 

 For p=1? 
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Example: Binary Random Variable 

 Binary random variable 

 Probability distribution 

 How many bits do we need to transmit one 
sample of           ? 

 Answer: 
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Example: Map Entropy 
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The overall entropy is the sum of the individual entropy values 



Information Theory 

 Entropy of a grid map 

 

 

 

 

 

 Information gain = reduction in entropy 
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grid cells probability that the cell is occupied 



Maximizing the Information Gain 

 To compute the information gain one needs to 
know the observations obtained when carrying 
out an action 

 
 This quantity is not known! Reason about 

potential measurements 
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Example 
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Exploration Costs 

 So far, we did not consider the cost of 
executing an action (e.g., time, energy, …) 

 

 Utility = uncertainty reduction – cost 

 

 Select the action with the highest expected 
utility 
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Exploration 

 For each location <x,y> 

 Estimate the number of cells robot can sense (e.g., 
simulate laser beams using current map) 

 Estimate the cost of getting there 
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Exploration 

 Greedy strategy: Select the candidate location 
with the highest utility, then repeat… 
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Exploration Actions 

 So far, we only considered reduction in map 
uncertainty 

 In general, there are many sources of 
uncertainty that can be reduced by exploration 

 Map uncertainty (visit unexplored areas) 

 Trajectory uncertainty (loop closing) 

 Localization uncertainty (active re-localization by 
re-visiting known locations) 
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Example: Active Loop Closing 
[Stachniss et al., 2005] 

 Reduce map uncertainty 

 
 

 
 Reduce map + path uncertainty 
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Example: Active Loop Closing 
[Stachniss et al., 2005] 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 24 



Example: Active Loop Closing 
[Stachniss et al., 2005] 

 Entropy evolution 
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Example: Reduce uncertainty in  
map, path, and pose [Stachniss et al., 2005] 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 26 

Selected 
target 
location 

 



Corridor Exploration  
[Stachniss et al., 2005] 

 The decision-theoretic approach leads to 
intuitive behaviors: “re-localize before getting 
lost” 

 Some animals show a similar behavior  
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Multi-Robot Exploration 

Given: Team of robots with communication 

Goal: Explore the environment as fast as possible 
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[Wurm et al., IROS 2011] 



Complexity 

 Single-robot exploration in known, graph-like 
environments is in general NP-hard  

 Proof: Reduce traveling salesman problem to 
exploration 

 Complexity of multi-robot exploration is 
exponential in the number of robots 
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Motivation: Why Coordinate? 

 Without coordination, two robots might 
choose the same exploration frontier 
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Robot 1 Robot 2 



Levels of Coordination 

1. No exchange of information 

2. Implicit coordination: Sharing a joint map 

 Communication of the individual maps and poses 

 Central mapping system  

3. Explicit coordination: Determine better target 
locations to distribute the robots 

 Central planner for target point assignment 

 Minimize expected path cost / information gain / … 
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Typical Trajectories 
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Implicit coordination: Explicit coordination: 



Exploration Time 
[Stachniss et al., 2006] 
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Coordination Algorithm 

In each time step: 

 Determine set of exploration targets 

 

 Compute for each robot      and each target      
the expected cost/utility 

 Assign robots to targets using the Hungarian 
algorithm 
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Hungarian Algorithm 
[Kuhn, 1955] 

 Combinatorial optimization algorithm 

 Solves the assignment problem in polynomial 
time 

 General idea: Algorithm modifies the cost 
matrix until there is zero cost assignment 
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Hungarian Algorithm: Example 

1. Compute the cost matrix (non-negative) 
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Hungarian Algorithm: Example 

2. Find minimum element in each row 
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Hungarian Algorithm: Example 

3. Subtract minimum from each row element 



Hungarian Algorithm: Example 
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4. Find minimum element in each column 



Hungarian Algorithm: Example 
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5. Subtract minimum from each column element 



Hungarian Algorithm: Example 

Dr. Jürgen Sturm, Computer 
Vision Group, TUM 

Visual Navigation for Flying Robots 41 

6a. Assign (if possible) 
 



Hungarian Algorithm: Example 
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6b. If no assignment is possible: 

 Connect all 0’s by 
vertical/horizontal lines 

 Find the minimum in all 
remaining elements and 
subtract 

 Add to all double crossed out 
coefficients 

 Repeat step 2 – 6  



Hungarian Algorithm: Example 

If there are not enough 
targets: 
Copy targets to allow 
multiple assignments 
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Example: Segmentation-based Exploration 
[Wurm et al., IROS 2008] 

 Two-layer hierarchical role assignments using 
Hungarian algorithm (1: rooms, 2: targets in room) 

 Reduces exploration time and risk of interferences 
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Summary: Exploration 

 Exploration aims at generating robot motions 
so that an optimal map is obtained 

 Coordination reduces exploration time 

 Hungarian algorithm efficiently solves the 
assignment problem (centralized, 1-step 
lookahead) 

 Challenges (active research): 

 Limited bandwidth and unreliable communication 

 Decentralized planning and task assignment 
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Coverage Path Planning 

 Given: Known environment with obstacles 

 Wanted: The shortest trajectory that ensures 
complete (sensor) coverage 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 46 

[images from Xu et al., ICRA 2011] 



Coverage Path Planning 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 47 



Coverage Path Planning: Applications 

 For flying robots 
 Search and rescue 

 Area surveillance  

 Environmental inspection 

 Inspection of buildings (bridges) 

 For service robots 
 Lawn mowing 

 Vacuum cleaning 

 For manipulation robots 
 Painting 

 Automated farming 
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Coverage Path Planning 

 What is a good coverage strategy? 

 What would be a good cost function? 
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Coverage Path Planning 

 What is a good coverage strategy? 

 What would be a good cost function? 

 Amount of redundant traversals 

 Number of stops and rotations 

 Execution time 

 Energy consumption 

 Robustness 

 Probability of success 

 … 
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Coverage Path Planning 

 Related to the traveling salesman problem 
(TSP): 
“Given a weighted graph, compute a path that 
visits every vertex once” 

 In general NP-complete 

 Many approximations exist 

 Many approximate (and exact) solvers exist 
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Coverage of Simple Shapes 

 Approximately optimal solution often easy to 
compute for simple shapes (e.g., trapezoids) 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 52 



Idea 
[Mannadiar and Rekleitis, ICRA 2011] 
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Idea 
[Mannadiar and Rekleitis, ICRA 2011] 
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Idea 
[Mannadiar and Rekleitis, ICRA 2011] 
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Coverage Based On Cell Decomposition 
[Mannadiar and Rekleitis, ICRA 2011] 

Approach: 

1. Decompose map into “simple” cells 

2. Compute connectivity between cells and build 
graph 

3. Solve coverage problem on reduced graph 
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Step 1: Boustrophedon Cellular 
Decomposition [Mannadiar and Rekleitis, ICRA 2011] 

 Similar to trapezoidal decomposition 

 Can be computed efficiently in 2D 
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cells 

critical points 
(=produce splits 
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Step 2: Build Reeb Graph 
[Mannadiar and Rekleitis, ICRA 2011] 

 Vertices = Critical points (that triggered the split) 

 Edges = Connectivity between critical points 
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Step 3: Compute Euler Tour 
[Mannadiar and Rekleitis, ICRA 2011] 

 Extend graph so that vertices have even order 

 Compute Euler tour (linear time) 
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Resulting Coverage Plan 
[Mannadiar and Rekleitis, ICRA 2011] 

 Follow the Euler tour 

 Use simple coverage strategy for cells 

 Note: Cells are visited once or twice 
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What are the desired properties of a 
good scientific experiment? 

 Reproducibility / repeatability 

 Document the experimental setup 

 Choose (and motivate) an your evaluation criterion 

 Experiments should allow you to 
validate/falsify competing hypotheses 

Current trends: 

 Make data available for review and criticism 

 Same for software (open source) 
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Benchmarks 

 Effective and affordable way of conducting 
experiments 

 Sample of a task domain 

 Well-defined performance measurements 

 Widely used in computer vision and robotics 

 Which benchmark problems do you know? 
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Example Benchmark Problems 

Computer Vision 

 Middlebury datasets (optical flow, stereo, …) 

 Caltech-101, PASCAL (object recognition) 

 Stanford bunny (3d reconstruction) 

Robotics 

 RoboCup competitions (robotic soccer) 

 DARPA challenges (autonomous car) 

 SLAM datasets 
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Image Denoising: Lenna Image 

 512x512 pixel standard image for image 
compression and denoising 

 Lena Söderberg, Playboy magazine Nov. 1972 

 Scanned by Alex Sawchuck at USC in a hurry for 
a conference paper 
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http://www.cs.cmu.edu/~chuck/lennapg/ 

http://www.cs.cmu.edu/~chuck/lennapg/


Object Recognition: Caltech-101 

 Pictures of objects belonging to 101 categories 

 About 40-800 images per category 

 Recognition, classification, categorization 
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RoboCup Initiative 

 Evaluation of full system performance 

 Includes perception, planning, control, … 

 Easy to understand, high publicity  

 “By mid-21st century, a team of fully 
autonomous humanoid robot soccer players 
shall win the soccer game, complying with the 
official rule of the FIFA, against the winner of 
the most recent World Cup.” 
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RoboCup Initiative 
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SLAM Evaluation 

 Intel dataset: laser + odometry [Haehnel, 2004] 

 New College dataset: stereo + omni-directional 
vision + laser + IMU [Smith et al., 2009] 

 TUM RGB-D dataset [Sturm et al., 2011/12] 

 … 
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TUM RGB-D Dataset 
[Sturm et al., RSS RGB-D 2011; Sturm et al., IROS 2012] 

 RGB-D dataset with ground truth for SLAM 
evaluation 

 Two error metrics proposed (relative and 
absolute error) 

 Online + offline evaluation tools 

 Training datasets (fully available) 

 Validation datasets (ground truth not publicly 
available to avoid overfitting) 
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Recorded Scenes 

 Various scenes (handheld/robot-mounted, 
office, industrial hall, dynamic objects, …) 

 Large variations in camera speed, camera 
motion, illumination, environment size, … 
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Dataset Acquisition 

 Motion capture system 

 Camera pose (100 Hz) 

 Microsoft Kinect 

 Color images (30 Hz) 

 Depth maps (30 Hz) 

 IMU (500 Hz) 

 External video camera (for documentation) 
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Motion Capture System 

 9 high-speed cameras mounted in room 

 Cameras have active illumination and pre-
process image (thresholding) 

 Cameras track positions of retro-reflective 
markers 
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Calibration 

Calibration of the overall system is not trivial: 

1. Mocap calibration 

2. Kinect-mocap calibration 

3. Time synchronization 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 73 



Calibration Step 1: Mocap 

 Need at least 2 cameras for position fix 

 Need at least 3 markers on object for full pose 

 Calibration stick for extrinsic calibration 
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Calibration Step 1: Mocap 
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trajectory of the 
calibration stick in 3D 

trajectory of the 
calibration stick 
in the individual 
cameras  



Example: Raw Image from Mocap 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 76 

detected markers 



Example: Position Triangulation of a 
Single Marker 
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Example: Tracked Object (4 Markers) 
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Example: Recorded Trajectory 
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Calibration Step 2: Mocap-Kinect 
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 Need to find transformation between the 
markers on the Kinect and the optical center 

 Special calibration board visible both by Kinect 
and mocap system (manually gauged) 



Calibration Step 3: Time Synchronization 

 Assume a constant time delay between mocap 
and Kinect messages 

 Choose time delay that minimizes reprojection 
error during checkerboard calibration 
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time delay 
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Dataset Website 

 In total: 39 sequences (19 with ground truth) 

 One ZIP archive per sequence, containing 

 Color and depth images (PNG)  

 Accelerometer data (timestamp ax ay az) 

 Trajectory file (timestamp tx ty ty qx qy qz qw) 

 Sequences also available as ROS bag and MRPT 
rawlog 
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What Is a Good Evaluation Metric? 

 Compare camera trajectories 

 Ground truth trajectory 

 Estimate camera trajectory 

 Two common evaluation metrics 

 Relative pose error (drift per second) 

 Absolute trajectory error (global consistency) 
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RGB-D 
sequence 

Ground truth 
camera traj. 

Visual 
odometry / 

SLAM system 

Estimated 
camera 

trajectory Trajectory 
comparison 



 Measures the (relative) drift 

 Recommended for the evaluation of visual 
odometry approaches 

 

 

 

Relative Pose Error (RPE) 

Ground truth Estimated traj. 

Relative error 
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True motion Estimated motion Relative error 



Absolute Trajectory Error (ATE) 

 Measures the global error 

 Requires pre-aligned trajectories 

 Recommended for SLAM evaluation 

 

 

Ground truth 

Pre-aligned  
estimated traj. 

Absolute error 
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Evaluation metrics 

 Average over all time steps 

 

 

 Reference implementations for both evaluation 
metrics available 

 Output: RMSE, Mean, Median (as text) 

 Plot (png/pdf, optional) 
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Example: Online Evaluation 
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Summary – TUM RGB-D Benchmark 

 Dataset for the evaluation of RGB-D SLAM 
systems 

 Ground-truth camera poses 

 Evaluation metrics + tools available 
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Discussion on Benchmarks 

Pro: 

 Provide objective measure 

 Simplify empirical evaluation  

 Stimulate comparison 

Con: 

 Introduce bias towards approaches that 
perform well on the benchmark (overfitting) 

 Evaluation metrics are not unique (many 
alternative metrics exist, choice is subjective) 
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Lessons Learned Today 

 How to generate plans that are robust to 
uncertainty in sensing and locomotion 

 How to explore an unknown environment 

 With a single robot 

 With a team of robots 

 How to generate plans that fully cover known 
environments 

 How to benchmark SLAM algorithms 
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