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3D Geometry and Sensors 



Organization: Lab Course 

 Robot lab: room 02.05.14 (different room!) 

 Lecture: room 02.09.23 (here) 

 You have to sign up for a team before May 2nd  
(team list in student lab) 

 After May 2nd, remaining places will be given to 
students on waiting list 

 First exercise sheet is due next Tuesday 10am 
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Today’s Agenda 

 Linear algebra 

 2D and 3D geometry 

 Sensors 

 First exercise sheet 
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Vectors 

 Vector and its coordinates 

 

 

 

 

 Vectors represent points 
in an n-dimensional space 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
 

    are orthogonal if                  

    is lin. dependent from                      if 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
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Cross Product 

 Definition 

 

 

 Matrix notation for the cross product 

 

 

 

 Verify that  
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Matrices 

 Rectangular array of numbers 

 

 

 

 

 

 First index refers to row 

 Second index refers to column 

 

rows   columns 
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Matrices 

 Column vectors of a matrix 

 

 

 

 

 

 

 Geometric interpretation: for example, column 
vectors can form basis of a coordinate system 
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Matrices 

 Row vectors of a matrix 
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Matrices 

 Square matrix 

 Diagonal matrix 

 Upper and lower triangular matrix 

 Symmetric matrix 

 Skew-symmetric matrix 

 (Semi-)positive definite matrix 

 Invertible matrix 

 Orthonormal matrix 

 Matrix rank 
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Matrices 

 Square matrix 

 Diagonal matrix 

 Upper and lower triangular matrix 

 Symmetric matrix 

 Skew-symmetric matrix 

 (Semi-)positive definite matrix 

 Invertible matrix 

 Orthonormal matrix 

 Matrix rank 
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Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 
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Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 
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Matrix-Vector Multiplication 

 

 

 

 
 

 

 Geometric interpretation: 
A linear combination of the columns of A 
scaled by the coefficients of b  
 coordinate transf. from local to global frame 

column vectors 
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Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 
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Matrix-Matrix Multiplication 

 Operator 

 Definition 

 

 

 Interpretation: transformation of coordinate 
systems 

 Can be used to concatenate transforms 
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Matrix-Matrix Multiplication 

 Not commutative (in general) 

 

 Associative 

 

 Transpose 
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Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 
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Matrix Inversion 

 If    is a square matrix of full rank, then there is 
a unique matrix                 such that               .  

 Different ways to compute, e.g., Gauss-Jordan 
elimination, LU decomposition, … 

 When A is orthonormal, then 
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Recap: Linear Algebra 

 Vectors 

 Matrices 

 Operators 

 

 Now let’s apply these concepts to 2D+3D 
geometry 
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Geometric Primitives in 2D 

 2D point 

 

 

 Augmented vector 

 

 

 Homogeneous coordinates 
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Geometric Primitives in 2D 

 Homogeneous vectors that differ only be scale 
represent the same 2D point 

 Convert back to inhomogeneous coordinates 
by dividing through last element 

 

 

 

 Points with             are called points at infinity 
or ideal points 
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Geometric Primitives in 2D 

 2D line 

 

 2D line equation 
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Geometric Primitives in 2D 

 Normalized line equation vector 
 
 
where     is the distance of the line to the origin 

with 
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Geometric Primitives in 2D 

 Polar coordinates of a line:  
(e.g., used in Hough transform for finding lines) 
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Geometric Primitives in 2D 

 Line joining two points 

 

 Intersection point of two lines 
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Geometric Primitives in 3D 

 3D point 
(same as before) 

 
 Augmented vector 

 
 

 Homogeneous coordinates 
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Geometric Primitives in 3D 

 3D plane 

 3D plane equation 

 

 Normalized plane 
with unit normal vector 
 
(              ) 
and distance d 
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Geometric Primitives in 3D 

 3D line 
through points 

 

 Infinite line: 

 

 Line segment joining        : 
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2D Planar Transformations 
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2D Transformations 

 Translation 
 
 
 
 
 
 
 
where              is the translation vector, 
   is the identity matrix, and     is the zero vector  
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2D Transformations 

 Translation 
 
 
 
 
 
 
 
where              is the translation vector, 
   is the identity matrix, and     is the zero vector  
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Question: How many 
DOFs has this 

transformation? 



2D Transformations 

 Rigid body motion or Euclidean transformation 
(rotation + translation) 
 
                                    or 
 
 
where                                           
 
is an orthonormal rotation matrix, i.e.,  

 Distances (and angles) are preserved 
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2D Transformations 

 Scaled rotation/similarity transform 
 
 
                                   or 
 

 

 Preserves angles between lines 
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2D Transformations 

 Affine transform 
 
 
 
 

 

 Parallel lines remain parallel 
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2D Transformations 

 Projective/perspective transform 
 
 
 
 

 Note that     is homogeneous (only defined up 
to scale) 

 Resulting coordinates are homogeneous 

 Lines remain lines :-) 
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2D Transformations 
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Examples: Euclidean Transformations 



Coordinate Transforms 

 Robot is located somewhere in space 
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yaw (heading) 



Coordinate Transforms 

 Robot is located somewhere in space 
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yaw (heading) 



Coordinate Transforms 

 Robot is located at x=0.7, y=0.5, yaw=45deg 
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yaw (heading) 



Vector Transformation 

 Robot is located at x=0.7, y=0.5, yaw=45deg 

 Robot moves 1m forward 

 What is its position afterwards? 
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yaw (heading) 



Vector Transformation 

 Robot is located at x=0.7, y=0.5, yaw=45deg 

 Robot moves 1m forward 
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Inhomogeneous coordinates 

Homogeneous coordinates 



Vector Transformation 

 Robot is located at x=0.7, y=0.5, yaw=45deg 

 Robot moves 1m forward 
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Vector Transformation 
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Vector Transformation 
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Vector Transformation 

 Robot is located at x=0.7, y=0.5, yaw=45deg 

 Robot moves 1m forward 
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Vector Transformation 

 We transformed local to global coordinates 

 Sometimes we need to do the inverse 

 How can we transform global coordinates into 
local coordinates? 
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Vector Transformation 

 We transformed local to global coordinates 

 Sometimes we need to do the inverse 

 How can we transform global coordinates into 
local coordinates? 
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Inverse Transformations 

 We transformed local to global coordinates 

 Sometimes we need to do the inverse 

 How can we transform global coordinates into 
local coordinates? 
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Coordinate System Transformations 

 Now consider a different motion 

 Robot moves 0.2m forward, 0.1m sideways, 
and turns by 10deg 
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Coordinate System Transformations 

 Robot moves 0.2m forward, 0.1m sideways, 
and turns by 10deg 
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Coordinate System Transformations 

 After this motion, the robot pose (in the global 
frame) becomes 
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Coordinate System Transformations 

Note: The order matters 

 Move 1m forward, then turn 90deg left 

 Turn 90deg left, then move 1m forward 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 59 



3D Transformations 

 Translation 

 

 

 Euclidean transform (translation + rotation), 
(also called the Special Euclidean group SE(3)) 

 

 

 Scaled rotation, affine transform, projective 
transform… 
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3D Transformations 
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3D Euclidean Transformtions 

 Translation     has 3 degrees of freedom 

 Rotation      has 3 degrees of freedom 
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3D Rotations 

 Rotation matrix  
(also called the special orientation group SO(3)) 

 

 Euler angles 

 Axis/angle 

 Unit quaternion 
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Rotation Matrix 

 Orthonormal 3x3 matrix 

 

 

 

 Column vectors correspond to coordinate axes 

 Special orientation group 

 What operations do we typically do with 
rotation matrices? 
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Rotation Matrix 

 Orthonormal 3x3 matrix 

 

 

 

 Advantage: Can be easily concatenated and 
inverted (how?) 

 Disadvantage: Over-parameterized  
(9 parameters instead of 3) 
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Euler Angles 

 Product of 3 consecutive rotations (e.g., around 
X-Y-Z axes) 

 Roll-pitch-yaw convention is very common in 
aerial navigation (DIN 9300) 
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Roll-Pitch-Yaw Convention 

 Yaw   , Pitch   ,  Roll     to rotation matrix 

 

 

 

 

 Rotation matrix to Yaw-Pitch-Roll 



Euler Angles 

 Advantage: 

 Minimal representation (3 parameters) 

 Easy interpretation 

 Disadvantages: 

 Many “alternative” Euler representations exist 
(XYZ, ZXZ, ZYX, …) 

 Difficult to concatenate 

 Singularities (gimbal lock) 
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Euler Angles 

 Euler angles (3 parameters) 

 Concatenation: convert to rotation matrix, multiply, 
convert back 

 Inverse: convert to rotation matrix, invert, convert 
back 
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Gimbal Lock 

 When the axes align, one degree-of-freedom 
(DOF) is lost… 
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Axis/Angle 

 Represent rotation by 

 rotation axis      and 

 rotation angle 

 4 parameters 

 3 parameters                 

 length is rotation angle 

 also called the angular velocity 

 minimal but not unique (why?) 
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Conversion 

 Rodriguez’ formula 

 

 

 Inverse 
 
 
 
 
see: An Invitation to 3D Vision, Y. Ma, S. Soatto, J. Kosecka, S. Sastry, Chapter 2 
(available online) 
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Unit Quaternions 

 Quaternion 

 Unit quaternions have                  

 Opposite sign quaternions represent the same 
rotation 

 Otherwise unique 
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Unit Quaternions 

 Advantage: multiplication and inversion 
operations are efficient 

 Quaternion-Quaternion Multiplication 

 

 

 Inverse (flip sign of v or w) 
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Unit Quaternions 

 Quaternion-Vector multiplication (rotate point 
p with rotation q) 
 
 
with 

 Relation to Axis/Angle representation 
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 Note: In general, it is very hard to “read” 3D 
orientations/rotations, no matter in what 
representation 

 Observation:  They are usually easy to visualize 
and can then be intuitively interpreted 

 Advice: Use 3D visualization tools for 
debugging (RVIZ, libqglviewer, …) 

76 

3D Orientations 
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C++ Libraries for Lin. Alg./Geometry 

 Many C++ libraries exist for linear algebra and 
3D geometry 

 Typically conversion necessary 

 Examples: 
 C arrays, std::vector (no linear alg. functions) 

 gsl (gnu scientific library, many functions, plain C) 

 boost::array (used by ROS messages) 

 Bullet library (3D geometry, used by ROS tf) 

 Eigen (both linear algebra and geometry, my 
recommendation) 
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Example: Transform Trees in ROS 

 TF package represents 3D transforms between 
rigid bodies in the scene as a tree 

 Collects transformations 

 Simple query interface 

 

map 

base_link 

person 

camera 

rotor1 rotor2 
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Example: Video from PR2 
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3D to 2D Projections 

 Orthographic projections 

 

 Perspective projections 
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3D to 2D Perspective Projection 
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3D to 2D Perspective Projection 
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3D to 2D Perspective Projection 

 3D point     (in the camera frame) 

 2D point     (on the image plane) 

 Pin-hole camera model 

 
 

 

 Remember,     is homogeneous, need to 
normalize 
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Camera Intrinsics 

 So far, 2D point is given in meters on image 
plane 

 But:  we want 2D point be measured in pixels 
(as the sensor does) 
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Camera Intrinsics 

 Need to apply some scaling/offset  

 

 

 

 

 Focal length  

 Camera center 

 Skew 
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Camera Extrinsics 

 Assume       is given in world coordinates 

 Transform from world to camera (also called 
the camera extrinsics) 

 

 

 Full camera matrix 
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Recap: 2D/3D Geometry 

 Points, lines, planes 

 2D and 3D transformations 

 Different representations for 3D orientations 

 Choice depends on application 

 Which representations do you remember? 

 3D to 2D perspective projections 

 

 You really have to know 2D/3D transformations 
by heart (read Szeliski, Chapter 2) 
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Sensors 
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Sensors 

 Tactile sensors 
Contact switches, bumpers, proximity sensors, pressure 

 Wheel/motor sensors 
Potentiometers, brush/optical/magnetic/inductive/capacitive 
encoders, current sensors 

 Heading sensors 
Compass, infrared, inclinometers, gyroscopes, accelerometers 

 Ground-based beacons 
GPS, optical or RF beacons, reflective beacons 

 Active ranging 
Ultrasonic sensor, laser rangefinder, optical triangulation, structured 
light 

 Motion/speed sensors 
Doppler radar, Doppler sound 

 Vision-based sensors 
CCD/CMOS cameras, visual servoing packages, object tracking 
packages 
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Example: Ardrone Sensors 

 Tactile sensors 
Contact switches, bumpers, proximity sensors, pressure 

 Wheel/motor sensors 
Potentiometers, brush/optical/magnetic/inductive/capacitive 
encoders, current sensors 

 Heading sensors 
Compass, infrared, inclinometers, gyroscopes, accelerometers 

 Ground-based beacons 
GPS, optical or RF beacons, reflective beacons 

 Active ranging 
Ultrasonic sensor, laser rangefinder, optical triangulation, structured 
light 

 Motion/speed sensors 
Doppler radar, Doppler sound 

 Vision-based sensors 
CCD/CMOS cameras, visual servoing packages, object tracking 
packages 
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Characterization of Sensor Performance 

 Bandwidth or Frequency 

 Delay 

 Sensitivity 

 Cross-sensitivity (cross-talk) 

 Error (accuracy) 

 Deterministic errors (modeling/calibration possible) 

 Random errors 

 Weight, power consumption, … 
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Let’s Have a Closer Look 

 Cameras 

 Gyroscope 

 Accelerometers 

 GPS 

 Range sensors 
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Pinhole Camera 

 Lit scene emits light 

 Film/sensor is light sensitive 
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Lens Camera 

 Lit scene emits light 

 Film/sensor is light sensitive 

 A lens focuses rays onto the film/sensor 
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Real Cameras 

 Radial distortion of the image 

 Caused by imperfect lenses 

 Deviations are most noticeable for rays that pass 
through the edge of the lens 
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Radial Distortion 

 Radial distortion of the image 

 Caused by imperfect lenses 

 Deviations are most noticeable for rays that pass 
through the edge of the lens 

 Typically compensated with a low-order 
polynomial 
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Digital Cameras 

 Vignetting 

 De-bayering 

 Rolling shutter and motion blur 

 Compression (JPG) 

 Noise 
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Mechanical Gyroscope 

 Measures orientation (standard gyro) or angular 
velocity (rate gyro, needs integration for angle) 

 Spinning wheel mounted in a gimbal device (can move 
freely in 3 dimensions) 

 Wheel keeps orientation due to angular momentum 
(standard gyro) 
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Modern Gyroscopes 

 Vibrating structure gyroscope (MEMS) 

 Based on Coriolis effect 

 “Vibration keeps its direction under rotation” 

 Implementations: Tuning fork, vibrating wheels, … 

 Ring laser / fibre optic gyro 

 Interference between counter-propagating beams in 
response to rotation 
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Accelerometer 

 Measures all external forces acting upon them 
(including gravity) 

 Acts like a spring-damper system 

 To obtain inertial acceleration (due to motion 
alone), gravity must be subtracted 
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MEMS Accelerometers 

 Micro Electro-Mechanical Systems (MEMS) 

 Spring-like structure with a proof mass 

 Damping results from residual gas 

 Implementations: capacitive, piezoelectric, … 
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Inertial Measurement Unit 

 3-axes MEMS gyroscope  

 Provides angular velocity 

 Integrate for angular position 

 Problem: Drifts slowly over time (e.g., 1deg/hour), 
called the bias 

 3-axes MEMS accelerometer 

 Provides accelerations (including gravity) 

 Can we use these sensors to estimate our 
position? 
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Example: AscTec Autopilot Board 
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GPS 
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GPS 

 24+ satellites, 12 hour orbit, 20.190 km height 

 6 orbital planes, 4+ satellites per orbit, 60deg 
distance 

 

 
 

 

 Satellite transmits orbital location + time 

 50bits/s, msg has 1500 bits  12.5 minutes 
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GPS 

 Position from pseudorange 

 Requires measurements of 4 different satellites 

 Low accuracy (3-15m) but absolute 

 Position from pseudorange + phase shift 

 Very precise (1mm) but highly ambiguous 

 Requires reference receiver (RTK/dGPS) to remove 
ambiguities 
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Range Sensors 

 Sonar 

 

 Laser range finder 

 

 Time of flight camera 

 

 Structured light 
(will be covered later) 
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Range Sensors 

 Emit signal to determine distance along a ray 

 Make use of propagation speed of 
ultrasound/light 

 Traveled distance is given by 

 Sound speed: 340m/s 

 Light speed: 300.000km/s 
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Ultrasonic Range Sensors 

 Range between 12cm and 5m 

 Opening angle around 20 to 40 degrees 

 Soft surfaces absorb sound 

 Reflections  ghosts 

 Lightweight and cheap 
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Laser Scanner 

 Measures phase shift 

 Pro: High precision, wide field of view, safety 
approved for collision detection 

 Con: Relatively expensive + heavy 
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Laser Scanner 

 2D scanners 

 

 

 

 3D scanners 
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Exercise Sheet 1 



 The pose of a robot can be described by  
6 parameters: 

 Three-dimensional Cartesian coordinates  

 Three Euler angles roll, pitch, yaw. 

 The state space of such a system is six-
dimensional 

 

 Robot makes sensor observations usually in its 
ego-centric frame (as seen by the robot) 
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Coordinate Systems 
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 In practice, one often finds two types of 
motion models: 

 Odometry-based 

 Velocity-based (dead reckoning) 

 Odometry-based models are used when 
systems are equipped with distance sensors 
(e.g., wheel encoders). 

 Velocity-based models have to be applied 
when no wheel encoders are given. 
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Odometry Motion Model 

Visual Navigation for Flying Robots Dr. Jürgen Sturm, Computer Vision Group, TUM 



 Mathematical procedure to determine the 
present location of a vehicle 

 Achieved by calculating the current pose of the 
vehicle based on its velocities and the elapsed 
time 
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Dead Reckoning 
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Dead Reckoning 

 Estimating the position      based on the issued 
controls (or IMU readings) 

 Integrate over time 
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Exercise Sheet 1 

 Odometry sensor on Ardrone is an integrated package 
 Sensors 

 Down-looking camera to estimate motion 
 Ultrasonic sensor to get height 
 3-axes gyroscopes 
 3-axes accelerometer 

 IMU readings        (in provided bag file) 
 Horizontal speed (vx/vy) in its local frame (!) 
 Height (z) in the global frame 
 Roll, Pitch, Yaw in the global frame 

 Integrate these values to get robot pose 
 Position (x/y/z) in the global frame 
 Orientation (e.g., r/p/y) in the global frame 
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Lessons Learned Today 

 Linear algebra 

 2D/3D geometry 

 Sensors 

 Exercise sheet 1: Robot odometry 

 Due next Tuesday, 10am 

 Hand in via email to visnav2013@vision.in.tum.de 
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