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Organization: Lab Course 

 Robot lab: room 02.05.14 (different room!) 

 Exercises: room 02.09.23 (here) 

 You have to sign up for a team before May 2nd  
(team list in student lab) 

 After May 2nd, remaining places will be given to 
students on waiting list 

 First exercise sheet is due next Tuesday 10am 
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Today’s Agenda 

 Linear algebra 

 2D and 3D geometry 

 Sensors 

 First exercise sheet 
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Vectors 

 Vector and its coordinates 

 

 

 

 

 Vectors represent points 
in an n-dimensional space 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 

5 Visual Navigation for Flying Robots Dr. Jürgen Sturm, Computer Vision Group, TUM 



Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
 

    are orthogonal if                  

    is lin. dependent from                      if 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
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Cross Product 

 Definition 

 

 

 Matrix notation for the cross product 

 

 

 

 Verify that  
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Matrices 

 Rectangular array of numbers 

 

 

 

 

 

 First index refers to row 

 Second index refers to column 

 

rows   columns 
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Matrices 

 Column vectors of a matrix 

 

 

 

 

 

 

 Geometric interpretation: for example, column 
vectors can form basis of a coordinate system 
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Matrices 

 Row vectors of a matrix 
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Matrices 

 Square matrix 

 Diagonal matrix 

 Upper and lower triangular matrix 

 Symmetric matrix 

 Skew-symmetric matrix 

 (Semi-)positive definite matrix 

 Invertible matrix 

 Orthonormal matrix 

 Matrix rank 
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Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 
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Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 
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Matrix-Vector Multiplication 

 

 

 

 
 

 

 Geometric interpretation: 
A linear combination of the columns of A 
scaled by the coefficients of b  
 coordinate transf. from local to global frame 

column vectors 
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Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 
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Matrix-Matrix Multiplication 

 Operator 

 Definition 

 

 

 Interpretation: transformation of coordinate 
systems 

 Can be used to concatenate transforms 
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Matrix-Matrix Multiplication 

 Not commutative (in general) 

 

 Associative 

 

 Transpose 
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Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 

 

23 Visual Navigation for Flying Robots Dr. Jürgen Sturm, Computer Vision Group, TUM 



Matrix Inversion 

 If    is a square matrix of full rank, then there is 
a unique matrix                 such that               .  

 Different ways to compute, e.g., Gauss-Jordan 
elimination, LU decomposition, … 

 When A is orthonormal, then 
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Recap: Linear Algebra 

 Vectors 

 Matrices 

 Operators 

 

 Now let’s apply these concepts to 2D+3D 
geometry 
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Geometric Primitives in 2D 

 2D point 

 

 

 Augmented vector 

 

 

 Homogeneous coordinates 
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Geometric Primitives in 2D 

 Homogeneous vectors that differ only be scale 
represent the same 2D point 

 Convert back to inhomogeneous coordinates 
by dividing through last element 

 

 

 

 Points with             are called points at infinity 
or ideal points 
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Geometric Primitives in 2D 

 2D line 

 

 2D line equation 
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Geometric Primitives in 2D 

 Normalized line equation vector 
 
 
where     is the distance of the line to the origin 

with 
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Geometric Primitives in 2D 

 Polar coordinates of a line:  
(e.g., used in Hough transform for finding lines) 
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Geometric Primitives in 2D 

 Line joining two points 

 

 Intersection point of two lines 
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Geometric Primitives in 3D 

 3D point 
(same as before) 

 
 Augmented vector 

 
 

 Homogeneous coordinates 
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Geometric Primitives in 3D 

 3D plane 

 3D plane equation 

 

 Normalized plane 
with unit normal vector 
 
(              ) 
and distance d 
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Geometric Primitives in 3D 

 3D line 
through points 

 

 Infinite line: 

 

 Line segment joining        : 
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2D Planar Transformations 
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2D Transformations 

 Translation 
 
 
 
 
 
 
 
where              is the translation vector, 
   is the identity matrix, and     is the zero vector  
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2D Transformations 

 Translation 
 
 
 
 
 
 
 
where              is the translation vector, 
   is the identity matrix, and     is the zero vector  
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Question: How many 
DOFs has this 

transformation? 



2D Transformations 

 Rigid body motion or Euclidean transformation 
(rotation + translation) 
 
                                    or 
 
 
where                                           
 
is an orthonormal rotation matrix, i.e.,  

 Distances (and angles) are preserved 
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2D Transformations 

 Scaled rotation/similarity transform 
 
 
                                   or 
 

 

 Preserves angles between lines 
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2D Transformations 

 Affine transform 
 
 
 
 

 

 Parallel lines remain parallel 
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2D Transformations 

 Projective/perspective transform 
 
 
 
 

 Note that     is homogeneous (only defined up 
to scale) 

 Resulting coordinates are homogeneous 

 Lines remain lines :-) 
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2D Transformations 
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Examples: Euclidean Transformations 



Coordinate Transforms 

 Robot is located somewhere in space 
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yaw (heading) 



Coordinate Transforms 

 Robot is located somewhere in space 
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yaw (heading) 



Coordinate Transforms 

 Robot is located at x=0.7, y=0.5, yaw=45deg 
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yaw (heading) 



Vector Transformation 

 Robot is located at x=0.7, y=0.5, yaw=45deg 

 Robot moves forward with 1m/s (in its local 
frame) 

 What is its speed in the global frame? 
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yaw (heading) 



Vector Transformation 

 Robot is located at x=0.7, y=0.5, yaw=45deg 

 Robot moves forward with 1m/s 
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Inhomogeneous coordinates 

Homogeneous coordinates 



Vector Transformation 

 Robot is located at x=0.7, y=0.5, yaw=45deg 

 Robot moves forward with 1m/s  
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Vector Transformation 

 Robot is located at x=0.7, y=0.5, yaw=45deg 

 Robot moves forward with 1m/s  
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Vector Transformation 

 We transformed local to global coordinates 

 Sometimes we need to do the inverse 

 How can we transform global coordinates into 
local coordinates? 
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Inverse Transformations 

 We transformed local to global coordinates 

 Sometimes we need to do the inverse 

 How can we transform global coordinates into 
local coordinates? 
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Coordinate System Transformations 

 Now consider a different motion 

 Robot moves 0.2m forward, 0.1m sideways, 
and turns by 10deg 
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Coordinate System Transformations 

 Robot moves 0.2m forward, 0.1m sideways, 
and turns by 10deg 
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Coordinate System Transformations 

 After this motion, the robot pose (in the global 
frame) becomes 
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Coordinate System Transformations 

Note: The order matters 

 Move 1m forward, then turn 90deg left 

 Turn 90deg left, then move 1m forward 
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3D Transformations 

 Translation 

 

 

 Euclidean transform (translation + rotation), 
(also called the Special Euclidean group SE(3)) 

 

 

 Scaled rotation, affine transform, projective 
transform… 
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3D Transformations 
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3D Euclidean Transformtions 

 Translation     has 3 degrees of freedom 

 Rotation      has 3 degrees of freedom 
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3D Rotations 

 Rotation matrix  
(also called the special orientation group SO(3)) 

 

 Euler angles 

 Axis/angle 

 Unit quaternion 
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Rotation Matrix 

 Orthonormal 3x3 matrix 

 

 

 

 Column vectors correspond to coordinate axes 

 Special orientation group 

 What operations do we typically do with 
rotation matrices? 
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Rotation Matrix 

 Orthonormal 3x3 matrix 

 

 

 

 Advantage: Can be easily concatenated and 
inverted (how?) 

 Disadvantage: Over-parameterized  
(9 parameters instead of 3) 
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Euler Angles 

 Product of 3 consecutive rotations (e.g., around 
X-Y-Z axes) 

 Roll-pitch-yaw convention is very common in 
aerial navigation (DIN 9300) 
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Roll-Pitch-Yaw Convention 

 Yaw   , Pitch   ,  Roll     to rotation matrix 

 

 

 

 

 Rotation matrix to Yaw-Pitch-Roll 



Euler Angles 

 Advantage: 

 Minimal representation (3 parameters) 

 Easy interpretation 

 Disadvantages: 

 Many “alternative” Euler representations exist 
(XYZ, ZXZ, ZYX, …) 

 Difficult to concatenate 

 Singularities (gimbal lock) 
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Euler Angles 

 Euler angles (3 parameters) 

 Concatenation: convert to rotation matrix, multiply, 
convert back 

 Inverse: convert to rotation matrix, invert, convert 
back 
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Gimbal Lock 

 When the axes align, one degree-of-freedom 
(DOF) is lost… 
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Axis/Angle 

 Represent rotation by 

 rotation axis      and 

 rotation angle 

 4 parameters 

 3 parameters                 

 length is rotation angle 

 also called the angular velocity 

 minimal but not unique (why?) 
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Conversion 

 Rodriguez’ formula 

 

 

 Inverse 
 
 
 
 
see: An Invitation to 3D Vision, Y. Ma, S. Soatto, J. Kosecka, S. Sastry, Chapter 2 
(available online) 
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Unit Quaternions 

 Quaternion 

 Unit quaternions have                  

 Opposite sign quaternions represent the same 
rotation 

 Otherwise unique 

73 Visual Navigation for Flying Robots Dr. Jürgen Sturm, Computer Vision Group, TUM 



Unit Quaternions 

 Advantage: multiplication and inversion 
operations are efficient 

 Quaternion-Quaternion Multiplication 

 

 

 Inverse (flip sign of v or w) 
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Unit Quaternions 

 Quaternion-Vector multiplication (rotate point 
p with rotation q) 
 
 
with 

 Relation to Axis/Angle representation 
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 Note: In general, it is very hard to “read” 3D 
orientations/rotations, no matter in what 
representation 

 Observation:  They are usually easy to visualize 
and can then be intuitively interpreted 

 Advice: Use 3D visualization tools for 
debugging (RVIZ, libqglviewer, …) 

76 

3D Orientations 
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C++ Libraries for Lin. Alg./Geometry 

 Many C++ libraries exist for linear algebra and 
3D geometry 

 Typically conversion necessary 

 Examples: 
 C arrays, std::vector (no linear alg. functions) 

 gsl (gnu scientific library, many functions, plain C) 

 boost::array (used by ROS messages) 

 Bullet library (3D geometry, used by ROS tf) 

 Eigen (both linear algebra and geometry, my 
recommendation) 
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Example: Transform Trees in ROS 

 TF package represents 3D transforms between 
rigid bodies in the scene as a tree 

 Collects transformations 

 Simple query interface 

 

map 

base_link 

person 

camera 

rotor1 rotor2 
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Example: Video from PR2 
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3D to 2D Projections 

 Orthographic projections 

 

 Perspective projections 
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3D to 2D Perspective Projection 
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3D to 2D Perspective Projection 
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3D to 2D Perspective Projection 

 3D point     (in the camera frame) 

 2D point     (on the image plane) 

 Pin-hole camera model 

 
 

 

 Remember,     is homogeneous, need to 
normalize 
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Camera Intrinsics 

 So far, 2D point is given in meters on image 
plane 

 But:  we want 2D point be measured in pixels 
(as the sensor does) 
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Camera Intrinsics 

 Need to apply some scaling/offset  

 

 

 

 

 Focal length  

 Camera center 

 Skew 
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Camera Extrinsics 

 Assume       is given in world coordinates 

 Transform from world to camera (also called 
the camera extrinsics) 

 

 

 Full camera matrix 
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Recap: 2D/3D Geometry 

 Points, lines, planes 

 2D and 3D transformations 

 Different representations for 3D orientations 

 Choice depends on application 

 Which representations do you remember? 

 3D to 2D perspective projections 

 

 You really have to know 2D/3D transformations 
by heart (read Szeliski, Chapter 2) 
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Sensors 
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Sensors 

 Tactile sensors 
Contact switches, bumpers, proximity sensors, pressure 

 Wheel/motor sensors 
Potentiometers, brush/optical/magnetic/inductive/capacitive 
encoders, current sensors 

 Heading sensors 
Compass, infrared, inclinometers, gyroscopes, accelerometers 

 Ground-based beacons 
GPS, optical or RF beacons, reflective beacons 

 Active ranging 
Ultrasonic sensor, laser rangefinder, optical triangulation, structured 
light 

 Motion/speed sensors 
Doppler radar, Doppler sound 

 Vision-based sensors 
CCD/CMOS cameras, visual servoing packages, object tracking 
packages 
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Example: Ardrone Sensors 

 Tactile sensors 
Contact switches, bumpers, proximity sensors, pressure 

 Wheel/motor sensors 
Potentiometers, brush/optical/magnetic/inductive/capacitive 
encoders, current sensors 

 Heading sensors 
Compass, infrared, inclinometers, gyroscopes, accelerometers 

 Ground-based beacons 
GPS, optical or RF beacons, reflective beacons 

 Active ranging 
Ultrasonic sensor, laser rangefinder, optical triangulation, structured 
light 

 Motion/speed sensors 
Doppler radar, Doppler sound 

 Vision-based sensors 
CCD/CMOS cameras, visual servoing packages, object tracking 
packages 
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Characterization of Sensor Performance 

 Bandwidth or Frequency 

 Delay 

 Sensitivity 

 Cross-sensitivity (cross-talk) 

 Error (accuracy) 

 Deterministic errors (modeling/calibration possible) 

 Random errors 

 Weight, power consumption, … 
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Let’s Have a Closer Look 

 Cameras 

 Gyroscope 

 Accelerometers 

 GPS 

 Range sensors 
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Pinhole Camera 

 Lit scene emits light 

 Film/sensor is light sensitive 
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Lens Camera 

 Lit scene emits light 

 Film/sensor is light sensitive 

 A lens focuses rays onto the film/sensor 
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Real Cameras 

 Radial distortion of the image 

 Caused by imperfect lenses 

 Deviations are most noticeable for rays that pass 
through the edge of the lens 
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Radial Distortion 

 Radial distortion of the image 

 Caused by imperfect lenses 

 Deviations are most noticeable for rays that pass 
through the edge of the lens 

 Typically compensated with a low-order 
polynomial 
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Digital Cameras 

 Vignetting 

 De-bayering 

 Rolling shutter and motion blur 

 Compression (JPG) 

 Noise 
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Mechanical Gyroscope 

 Measures orientation (standard gyro) or angular 
velocity (rate gyro, needs integration for angle) 

 Spinning wheel mounted in a gimbal device (can move 
freely in 3 dimensions) 

 Wheel keeps orientation due to angular momentum 
(standard gyro) 
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Modern Gyroscopes 

 Vibrating structure gyroscope (MEMS) 

 Based on Coriolis effect 

 “Vibration keeps its direction under rotation” 

 Implementations: Tuning fork, vibrating wheels, … 

 Ring laser / fibre optic gyro 

 Interference between counter-propagating beams in 
response to rotation 
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Accelerometer 

 Measures all external forces acting upon them 
(including gravity) 

 Acts like a spring-damper system 

 To obtain inertial acceleration (due to motion 
alone), gravity must be subtracted 
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MEMS Accelerometers 

 Micro Electro-Mechanical Systems (MEMS) 

 Spring-like structure with a proof mass 

 Damping results from residual gas 

 Implementations: capacitive, piezoelectric, … 
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Inertial Measurement Unit 

 3-axes MEMS gyroscope  

 Provides angular velocity 

 Integrate for angular position 

 Problem: Drifts slowly over time (e.g., 1deg/hour), 
called the bias 

 3-axes MEMS accelerometer 

 Provides accelerations (including gravity) 

 Can we use these sensors to estimate our 
position? 
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Example: AscTec Autopilot Board 

 

103 Visual Navigation for Flying Robots Dr. Jürgen Sturm, Computer Vision Group, TUM 



GPS 

 

104 Visual Navigation for Flying Robots Dr. Jürgen Sturm, Computer Vision Group, TUM 



GPS 

 24+ satellites, 12 hour orbit, 20.190 km height 

 6 orbital planes, 4+ satellites per orbit, 60deg 
distance 

 

 
 

 

 Satellite transmits orbital location + time 

 50bits/s, msg has 1500 bits  12.5 minutes 
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GPS 

 Position from pseudorange 

 Requires measurements of 4 different satellites 

 Low accuracy (3-15m) but absolute 

 Position from pseudorange + phase shift 

 Very precise (1mm) but highly ambiguous 

 Requires reference receiver (RTK/dGPS) to remove 
ambiguities 
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Range Sensors 

 Sonar 

 

 Laser range finder 

 

 Time of flight camera 

 

 Structured light 
(will be covered later) 
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Range Sensors 

 Emit signal to determine distance along a ray 

 Make use of propagation speed of 
ultrasound/light 

 Traveled distance is given by 

 Sound speed: 340m/s 

 Light speed: 300.000km/s 

 

108 Visual Navigation for Flying Robots Dr. Jürgen Sturm, Computer Vision Group, TUM 



Ultrasonic Range Sensors 

 Range between 12cm and 5m 

 Opening angle around 20 to 40 degrees 

 Soft surfaces absorb sound 

 Reflections  ghosts 

 Lightweight and cheap 
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Laser Scanner 

 Measures phase shift 

 Pro: High precision, wide field of view, safety 
approved for collision detection 

 Con: Relatively expensive + heavy 
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Laser Scanner 

 2D scanners 

 

 

 

 3D scanners 
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 The pose of a robot can be described by  
6 parameters: 

 Three-dimensional Cartesian coordinates  

 Three Euler angles roll, pitch, yaw. 

 The state space of such a system is six-
dimensional 

 

 Robot makes sensor observations usually in its 
ego-centric frame (as seen by the robot) 
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Coordinate Systems 
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 In practice, one often finds two types of 
motion models: 

 Odometry-based 

 Velocity-based (dead reckoning) 

 Odometry-based models are used when 
systems are equipped with distance sensors 
(e.g., wheel encoders). 

 Velocity-based models have to be applied 
when no wheel encoders are given. 
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Odometry Motion Model 
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 Mathematical procedure to determine the 
present location of a vehicle 

 Achieved by calculating the current pose of the 
vehicle based on its velocities and the elapsed 
time 
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Dead Reckoning 
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Dead Reckoning 

 Estimating the position      based on the issued 
controls (or IMU readings) 

 Integrate over time 
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Exercise Sheet 1 

 Odometry sensor on Ardrone is an integrated package 
 Sensors 

 Down-looking camera to estimate motion 
 Ultrasonic sensor to get height 
 3-axes gyroscopes 
 3-axes accelerometer 

 IMU readings        (in provided bag file) 
 Horizontal speed (vx/vy) in its local frame (!) 
 Height (z) in the global frame 
 Roll, Pitch, Yaw in the global frame 

 Integrate these values to get robot pose 
 Position (x/y/z) in the global frame 
 Orientation (e.g., r/p/y) in the global frame 
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Lessons Learned Today 

 Linear algebra 

 2D/3D geometry 

 Sensors 

 Exercise sheet 1: Robot odometry 

 Due next Tuesday, 10am 

 Hand in via email to visnav2013@vision.in.tum.de 
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