Visual Navigation for Flying Robots

3D Geometry and Sensors

Dr. Jürgen Sturm

Organization: Lab Course

- Robot lab: room 02.05 .14 (different room!)
- Exercises: room 02.09.23 (here)
- You have to sign up for a team before May $2^{\text {nd }}$ (team list in student lab)
- After May $2^{\text {nd }}$, remaining places will be given to students on waiting list
- First exercise sheet is due next Tuesday 10am

Today’s Agenda

- Linear algebra
- 2D and 3D geometry
- Sensors
- First exercise sheet

Vectors

- Vector and its coordinates

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

- Vectors represent points in an n-dimensional space

Vector Operations

- Scalar multiplication
- Addition/subtraction
- Length
- Normalized vector
- Dot product
- Cross product

Vector Operations

- Scalar multiplication
- Addition/subtraction
- Length
- Normalized vector
- Dot product
- Cross product

Vector Operations

- Scalar multiplication
- Addition/subtraction
- Length
- Normalized vector
- Dot product
- Cross product

$$
\|x\|_{2}=\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots}
$$

Vector Operations

- Scalar multiplication
- Addition/subtraction
- Length
- Normalized vector
- Dot product
- Cross product

Vector Operations

- Scalar multiplication
- Addition/subtraction
- Length
- Normalized vector
- Dot product
- Cross product

$$
\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

\mathbf{x}, \mathbf{y} are orthogonal if $\mathbf{x} \cdot \mathbf{y}=0$
\mathbf{y} is lin. dependent from $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right\}$ if $\mathbf{y}=\sum_{i} k_{i} \mathbf{x}_{i}$

Vector Operations

- Scalar multiplication
- Addition/subtraction
- Length
- Normalized vector
- Dot product
- Cross product

Cross Product

- Definition

$$
\mathbf{x} \times \mathbf{y}=\left(\begin{array}{l}
x_{2} y_{3}-x_{3} y_{2} \\
x_{3} y_{1}-x_{1} y_{3} \\
x_{1} y_{2}-x_{2} y_{1}
\end{array}\right)
$$

- Matrix notation for the cross product

$$
[\mathbf{x}]_{\times}=\left(\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right)
$$

- Verify that $\mathbf{x} \times \mathbf{y}=[\mathbf{x}]_{\times} \mathbf{y}$

Matrices

- Rectangular array of numbers

$$
X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
\vdots & & & \\
x_{n 1} & x_{n 2} & \ldots & x_{n m}
\end{array}\right) \in \mathbb{R}^{n \times m} \downarrow \downarrow \downarrow
$$

- First index refers to row
- Second index refers to column

Matrices

- Column vectors of a matrix

$$
\begin{aligned}
X & =\left(\begin{array}{cccc}
{\left[\begin{array}{ccc}
x_{11} \\
x_{21} \\
\vdots \\
x_{n 1}
\end{array}\right]} & \begin{array}{ccc}
x_{12} & \ldots & x_{1 m} \\
x_{22} & \ldots & x_{2 m} \\
x_{n 2}
\end{array} & \ldots & x_{n m}
\end{array}\right) \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
& =\left(\begin{array}{cccc}
\mathbf{x}_{* 1} & \mathbf{x}_{* 2} & \ldots & \mathbf{x}_{* m}
\end{array}\right)
\end{aligned}
$$

- Geometric interpretation: for example, column vectors can form basis of a coordinate system

Matrices

- Row vectors of a matrix

Matrices

- Square matrix
- Diagonal matrix
- Upper and lower triangular matrix
- Symmetric matrix
- Skew-symmetric matrix
- (Semi-)positive definite matrix
- Invertible matrix
- Orthonormal matrix
- Matrix rank

Matrices

- Square matrix
- Diagonal matrix
- Upper and lower triangular matrix
- Symmetric matrix $\quad X=X^{\top}$
- Skew-symmetric matrix $X=-X^{\top}\left(=\left(\begin{array}{ccc}0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0\end{array}\right)\right.$)
- (Semi-)positive definite matrix
- Invertible matrix

$$
\mathbf{a}^{\top} X \mathbf{a} \geq 0
$$

- Orthonormal matrix
- Matrix rank

Matrix Operations

- Scalar multiplication
- Addition/subtraction
- Transposition
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Inversion

Matrix Operations

- Scalar multiplication
- Addition/subtraction
- Transposition
- Matrix-vector multiplication $X \mathbf{b}$
- Matrix-matrix multiplication
- Inversion

Matrix-Vector Multiplication

$$
X \cdot \mathbf{b}=\sum_{k=1}^{n} \mathbf{x}_{* k} \cdot b_{k} \quad \stackrel{\mathbf{e}_{2}}{\substack{\text { column vectors }}}
$$

- Geometric interpretation:

A linear combination of the columns of A scaled by the coefficients of \mathbf{b}
\rightarrow coordinate transf. from local to global frame

Matrix Operations

- Scalar multiplication
- Addition/subtraction
- Transposition
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Inversion

Matrix-Matrix Multiplication

- Operator

$$
\begin{aligned}
& \mathbb{R}^{n \times m} \times \mathbb{R}^{m \times p} \rightarrow \mathbb{R}^{n \times p} \\
& C=A B \\
& \quad=A\left(\begin{array}{lll}
\mathbf{b}_{* 1} & \mathbf{b}_{* 2} & \cdots \mathbf{b}_{* p}
\end{array}\right)
\end{aligned}
$$

- Interpretation: transformation of coordinate systems
- Can be used to concatenate transforms

Matrix-Matrix Multiplication

- Not commutative (in general)

$$
A B \neq B A
$$

- Associative

$$
A(B C)=(A B) C
$$

- Transpose

$$
(A B)^{\top}=B^{\top} A^{\top}
$$

Matrix Operations

- Scalar multiplication
- Addition/subtraction
- Transposition
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Inversion

Matrix Inversion

- If A is a square matrix of full rank, then there is a unique matrix $B=A^{\top}$ such that $A B=I$.
- Different ways to compute, e.g., Gauss-Jordan elimination, LU decomposition, ...
- When A is orthonormal, then

$$
A^{-1}=A^{\top}
$$

Recap: Linear Algebra

- Vectors
- Matrices
- Operators
- Now let's apply these concepts to 2D+3D geometry

Geometric Primitives in 2D

- 2D point

$$
\mathbf{x}=\binom{x}{y} \in \mathbb{R}^{2}
$$

- Augmented vector

$$
\overline{\mathbf{x}}=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \in \mathbb{R}^{3}
$$

- Homogeneous coordinates $\quad \tilde{\mathbf{x}}=\left(\begin{array}{c}\tilde{y} \\ \tilde{w} \\ \tilde{w}\end{array}\right) \in \mathbb{P}^{2}$

Geometric Primitives in 2D

- Homogeneous vectors that differ only be scale represent the same 2D point
- Convert back to inhomogeneous coordinates by dividing through last element

$$
\tilde{\mathbf{x}}=\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right)=\left(\begin{array}{c}
\tilde{x} / \tilde{w} \\
\tilde{y} / \tilde{w} \\
1
\end{array}\right)=\tilde{w}\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\tilde{w} \overline{\mathbf{x}}
$$

- Points with $\tilde{w}=0$ are called points at infinity or ideal points

Geometric Primitives in 2D

- 2D line

$$
\tilde{\mathbf{l}}=(a, b, c)^{\top}
$$

- 2D line equation $\overline{\mathbf{x}} \cdot \tilde{\mathbf{l}}=a x+b y+c=0$

Geometric Primitives in 2D

- Normalized line equation vector

$$
\tilde{\mathbf{l}}=\left(\hat{n}_{x}, \hat{n}_{y}, d\right)^{\top}=(\hat{\mathbf{n}}, d)^{\top} \quad \text { with } \quad\|\hat{\mathbf{n}}\|=1
$$

where d is the distance of the line to the origin

Geometric Primitives in 2D

- Polar coordinates of a line: $(\theta, d)^{\top}$
(e.g., used in Hough transform for finding lines)

$$
\hat{\mathbf{n}}=(\cos \theta, \sin \theta)^{\top}
$$

Geometric Primitives in 2D

- Line joining two points

$$
\tilde{\mathbf{l}}=\tilde{\mathbf{x}}_{1} \times \tilde{\mathbf{x}}_{2}
$$

- Intersection point of two lines

$$
\tilde{\mathbf{x}}=\tilde{\mathbf{l}}_{1} \times \tilde{\mathbf{l}}_{2}
$$

Geometric Primitives in 3D

- 3D point
(same as before)
- Augmented vector $\overline{\mathbf{x}}=\left(\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right) \in \mathbb{R}^{4}$

Geometric Primitives in 3D

- 3D plane
$\tilde{\mathbf{m}}=(a, b, c, d)^{\top}$
- 3D plane equation $\overline{\mathbf{x}} \cdot \tilde{\mathbf{m}}=a x+b y+c z+d=0$
- Normalized plane with unit normal vector $\mathbf{m}=\left(\hat{n}_{x}, \hat{n}_{y}, \hat{n}_{z}, d\right)^{\top}=(\hat{\mathbf{n}}, d)$
($\|\hat{\mathbf{n}}\|=1$)
and distance d

Geometric Primitives in 3D

- 3D line $\mathbf{r}=(1-\lambda) \mathbf{p}+\lambda \mathbf{q}$ through points \mathbf{p}, \mathbf{q}
- Infinite line:

$$
\lambda \in \mathbb{R}
$$

- Line segment joining p, q:

$$
0 \leq \lambda \leq 1
$$

2D Planar Transformations

2D Transformations

- Translation

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{x}+\mathbf{t} \\
& \mathbf{x}^{\prime}=\underbrace{\left(\begin{array}{ll}
\mathbf{I} & \mathbf{t}
\end{array}\right)}_{2 \times 3} \overline{\mathbf{x}} \\
& \overline{\mathbf{x}}^{\prime}=\underbrace{\left(\begin{array}{cc}
\mathbf{I} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right)}_{3 \times 3} \overline{\mathbf{x}}
\end{aligned}
$$

where $\mathbf{t} \in \mathbb{R}^{2}$ is the translation vector,
I is the identity matrix, and 0 is the zero vector

2D Transformations

- Translation

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\mathrm{x}+\mathbf{t} \\
& \mathrm{x}^{\prime}=\underbrace{(\mathbf{I}}_{2 \times 3} \mathbf{t} \mathbf{t}) \\
& \mathbf{x} \\
& \overline{\mathrm{x}}^{\prime}=\underbrace{\left(\begin{array}{cc}
\mathbf{I} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right)}_{3 \times 3} \overline{\mathrm{x}}
\end{aligned}
$$

Question: How many DOFs has this transformation?
where $\mathbf{t} \in \mathbb{R}^{2}$ is the translation vector, \mathbf{I} is the identity matrix, and 0 is the zero vector

2D Transformations

- Rigid body motion or Euclidean transformation (rotation + translation)

$$
\mathbf{x}^{\prime}=\mathbf{R} \mathbf{x}+t \quad \text { or } \quad \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \overline{\mathbf{x}}
$$

where $\mathbf{R}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
is an orthonormal rotation matrix, i.e., $\mathbf{R R}^{\top}=\mathbf{I}$

- Distances (and angles) are preserved

2D Transformations

- Scaled rotation/similarity transform

$$
\mathbf{x}^{\prime}=s \mathbf{R} \mathbf{x}+t \quad \text { or } \quad \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \overline{\mathbf{x}}
$$

- Preserves angles between lines

2D Transformations

- Affine transform

$$
\overline{\mathbf{x}}^{\prime}=A \overline{\mathbf{x}}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right) \overline{\mathbf{x}}
$$

- Parallel lines remain parallel

2D Transformations

- Projective/perspective transform

$$
\tilde{\mathbf{x}}^{\prime}=\tilde{H}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \tilde{\mathbf{x}}
$$

- Note that \tilde{H} is homogeneous (only defined up to scale)
- Resulting coordinates are homogeneous
- Lines remain lines :-)

2D Transformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[I \mid t]_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths	\checkmark
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles	
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism	\square
projective	$[\tilde{H}]_{3 \times 3}$	8	straight lines	

Examples: Euclidean Transformations

Coordinate Transforms

- Robot is located somewhere in space

Coordinate Transforms

- Robot is located somewhere in space

$$
X=\left(\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \psi & -\sin \psi & x \\
\sin \psi & \cos \psi & y \\
0 & 0 & 1
\end{array}\right) \in \mathrm{SE}(2) \subset \mathbb{R}^{3 x 3}
$$

Coordinate Transforms

- Robot is located at $x=0.7, y=0.5, y a w=45 \mathrm{deg}$

$$
X=\left(\begin{array}{ccc}
\cos 45 & -\sin 45 & 0.7 \\
\sin 45 & \cos 45 & 0.5 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0.71 & -0.71 & 0.7 \\
0.71 & 0.71 & 0.5 \\
0 & 0 & 1
\end{array}\right)
$$

Vector Transformation

- Robot is located at $x=0.7, y=0.5$, yaw=45deg
- Robot moves forward with $1 \mathrm{~m} / \mathrm{s}$ (in its local frame)
- What is its speed in the global frame?

Vector Transformation

- Robot is located at $x=0.7, y=0.5$, yaw=45deg
- Robot moves forward with $1 \mathrm{~m} / \mathrm{s}$

Inhomogeneous coordinates

$$
\mathbf{v}_{\text {local }}=\binom{1}{0}
$$

Homogeneous coordinates

$$
\tilde{\mathbf{v}}_{\text {local }}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Vector Transformation

- Robot is located at $x=0.7, y=0.5$, yaw=45deg
- Robot moves forward with $1 \mathrm{~m} / \mathrm{s}$

$$
\tilde{\mathbf{v}}_{\text {global }}=X \tilde{\mathbf{v}}_{\text {local }}
$$

Vector Transformation

- Robot is located at $x=0.7, y=0.5$, yaw=45deg
- Robot moves forward with $1 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\tilde{\mathbf{v}}_{\text {global }} & =X \tilde{\mathbf{v}}_{\text {local }} \\
& =\left(\begin{array}{ccc}
0.71 & -0.71 & 0.7 \\
0.71 & 0.71 & 0.5 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Vector Transformation

- Robot is located at $x=0.7, y=0.5$, yaw=45deg
- Robot moves forward with $1 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\tilde{\mathbf{v}}_{\text {global }} & =X \tilde{\mathbf{v}}_{\text {local }} \\
& =\left(\begin{array}{ccc}
0.71 & -0.71 & 0.7 \\
0.71 & 0.71 & 0.5 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
1.41 \\
1.21 \\
1
\end{array}\right)
\end{aligned}
$$

Vector Transformation

- Robot is located at $x=0.7, y=0.5$, yaw=45deg
- Robot moves forward with $1 \mathrm{~m} / \mathrm{s}$

Vector Transformation

- We transformed local to global coordinates
- Sometimes we need to do the inverse
- How can we transform global coordinates into local coordinates?

$$
\tilde{\mathbf{v}}_{\text {global }}=X \tilde{\mathbf{v}}_{\text {local }}
$$

Vector Transformation

- We transformed local to global coordinates
- Sometimes we need to do the inverse
- How can we transform global coordinates into local coordinates?

$$
\begin{aligned}
& \tilde{\mathbf{v}}_{\text {global }}=X \tilde{\mathbf{v}}_{\text {local }} \\
& \tilde{\mathbf{v}}_{\text {local }}=X^{-1} \tilde{\mathbf{v}}_{\text {global }}
\end{aligned}
$$

Inverse Transformations

- We transformed local to global coordinates
- Sometimes we need to do the inverse
- How can we transform global coordinates into local coordinates?

$$
\begin{aligned}
& \tilde{\mathbf{v}}_{\text {global }}=X \tilde{\mathbf{v}}_{\text {local }}=\left(\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right) \tilde{\mathbf{v}}_{\text {local }} \\
& \tilde{\mathbf{v}}_{\text {local }}=X^{-1} \tilde{\mathbf{v}}_{\text {global }}=\left(\begin{array}{cc}
R^{\top} & -R^{\top} \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right) \tilde{\mathbf{v}}_{\text {global }}
\end{aligned}
$$

Coordinate System Transformations

- Now consider a different motion
- Robot moves 0.2 m forward, 0.1 m sideways, and turns by 10 deg

Coordinate System Transformations

- Robot moves 0.2 m forward, 0.1 m sideways, and turns by 10deg

$$
U_{1}=\left(\begin{array}{ccc}
\cos 10 & -\sin 10 & 0.2 \\
\sin 10 & \cos 10 & 0.1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0.98 & -0.17 & 0.2 \\
0.17 & 0.98 & 0.1 \\
0 & 0 & 1
\end{array}\right)
$$

Coordinate System Transformations

- After this motion, the robot pose (in the global frame) becomes

$$
\begin{gathered}
X_{2}=X U \\
=\left(\begin{array}{ccc}
0.71 & -0.71 & 0.7 \\
0.71 & 0.71 & 0.5 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0.98 & -0.17 & 0.2 \\
0.17 & 0.98 & 0.1 \\
0 & 0 & 1
\end{array}\right)=\cdots
\end{gathered}
$$

Coordinate System Transformations

Note: The order matters

- Move 1m forward, then turn 90deg left
- Turn 90deg left, then move 1m forward

$$
A B \neq B A
$$

3D Transformations

- Translation

$$
\overline{\mathbf{x}}^{\prime}=\underbrace{\left(\begin{array}{cc}
\mathbf{I} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right)}_{4 \times 4} \overline{\mathbf{x}}
$$

- Euclidean transform (translation + rotation), (also called the Special Euclidean group SE(3))

$$
\overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \overline{\mathbf{x}}
$$

- Scaled rotation, affine transform, projective transform...

3D Transformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{3 \times 4}$	6	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{3 \times 4}$	7	angles	
affine	$[\boldsymbol{A}]_{3 \times 4}$	12	parallelism	
projective	$[\tilde{\boldsymbol{H}}]_{4 \times 4}$	15	straight lines	

3D Euclidean Transformtions

- Translation t has 3 degrees of freedom
- Rotation R has 3 degrees of freedom

$$
X=\left(\begin{array}{ll}
R & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right)=\left(\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3D Rotations

- Rotation matrix
(also called the special orientation group SO(3))
- Euler angles
- Axis/angle
- Unit quaternion

Rotation Matrix

- Orthonormal 3x3 matrix

$$
R=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)
$$

- Column vectors correspond to coordinate axes
- Special orientation group $R \in \mathrm{SO}(3)$
- What operations do we typically do with rotation matrices?

Rotation Matrix

- Orthonormal 3x3 matrix

$$
R=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)
$$

- Advantage: Can be easily concatenated and inverted (how?)
- Disadvantage: Over-parameterized (9 parameters instead of 3)

Euler Angles

- Product of 3 consecutive rotations (e.g., around X-Y-Z axes)
- Roll-pitch-yaw convention is very common in aerial

Roll-Pitch-Yaw Convention

- Yaw Ψ, Pitch Θ, Roll Φ to rotation matrix

$$
R=R_{Z}(\Psi) R_{Y}(\Theta) R_{X}(\Phi)
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \Phi & \sin \Phi \\
0 & -\sin \Phi & \cos \Phi
\end{array}\right)\left(\begin{array}{ccc}
\cos \Theta & 0 & -\sin \Theta \\
0 & 1 & 0 \\
\sin \Theta & 0 & \cos \Theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \Psi & \sin \Psi & 0 \\
-\sin \Psi & \cos \Psi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \Theta \cos \Psi & \cos \Theta \sin \Psi & -\sin \Theta \\
\sin \Phi \sin \Theta \cos \Psi-\cos \Phi \sin \Psi & \sin \Phi \sin \Theta \sin \Psi+\cos \Phi \cos \Psi & \sin \Phi \cos \Theta \\
\cos \Phi \sin \Theta \cos \Psi+\sin \Phi \sin \Psi & \cos \Phi \sin \Theta \sin \Psi-\sin \Phi \cos \Psi & \cos \Phi \cos \Theta
\end{array}\right)
\end{aligned}
$$

- Rotation matrix to Yaw-Pitch-Roll

$$
\begin{aligned}
\phi & =\operatorname{Atan} 2\left(-r_{31}, \sqrt{r_{11}^{2}+r_{21}^{2}}\right) \\
\psi & =-\operatorname{Atan} 2\left(\frac{r_{21}}{\cos (\phi)}, \frac{r_{11}}{\cos (\phi)}\right) \\
\theta & =\operatorname{Atan} 2\left(\frac{r_{32}}{\cos (\phi)}, \frac{r_{33}}{\cos (\phi)}\right)
\end{aligned}
$$

Euler Angles

- Advantage:
- Minimal representation (3 parameters)
- Easy interpretation
- Disadvantages:
- Many "alternative" Euler representations exist (XYZ, ZXZ, ZYX, ...)
- Difficult to concatenate
- Singularities (gimbal lock)

Euler Angles

- Euler angles (3 parameters)
- Concatenation: convert to rotation matrix, multiply, convert back
- Inverse: convert to rotation matrix, invert, convert back

$$
\begin{aligned}
& R_{Z}\left(\psi_{1}\right) R_{Y}\left(\theta_{1}\right) R_{X}\left(\phi_{1}\right) \cdot R_{Z}\left(\psi_{2}\right) R_{Y}\left(\theta_{2}\right) R_{X}\left(\phi_{2}\right) \\
& \neq R_{Z}\left(\psi_{1}+\psi_{2}\right) R_{Y}\left(\theta_{1}+\theta_{2}\right) R_{X}\left(\phi_{1}+\phi_{2}\right)
\end{aligned}
$$

Gimbal Lock

- When the axes align, one degree-of-freedom (DOF) is lost...

1. Rotations in Euler angles
can be defined like gimbal
system with three circles

Axis/Angle

- Represent rotation by
- rotation axis $\hat{\mathbf{n}}$ and
- rotation angle θ
- 4 parameters ($\hat{\mathbf{n}}, \theta$)
- 3 parameters $\boldsymbol{\omega}=\theta \hat{\mathbf{n}}$
- length is rotation angle
- also called the angular velocity
- minimal but not unique (why?)

Conversion

- Rodriguez' formula

$$
R(\hat{\mathbf{n}}, \theta)=I+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2}
$$

- Inverse

$$
\theta=\cos ^{-1}\left(\frac{\operatorname{trace}(R)-1}{2}\right), \hat{\mathbf{n}}=\frac{1}{2 \sin \theta}\left(\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right)
$$

see: An Invitation to 3D Vision, Y. Ma, S. Soatto, J. Kosecka, S. Sastry, Chapter 2
(available online)

Unit Quaternions

- Quaternion $\quad \mathbf{q}=\left(q_{x}, q_{y}, q_{z}, q_{w}\right)^{\top} \in \mathbb{R}^{4}$
- Unit quaternions have $\|\mathbf{q}\|=1$
- Opposite sign quaternions represent the same rotation $\mathbf{q}=-\mathbf{q}$
- Otherwise unique

Unit Quaternions

- Advantage: multiplication and inversion operations are efficient
- Quaternion-Quaternion Multiplication

$$
\begin{aligned}
\mathbf{q}_{0} \mathbf{q}_{1} & =\left(\mathbf{v}_{0}, w_{0}\right)\left(\mathbf{v}_{1}, w_{1}\right) \\
& =\left(\mathbf{v}_{0} \times \mathbf{v}_{1}+w_{0} \mathbf{v}_{1}+w_{1} \mathbf{v}_{0}, w_{0} w_{1}-\mathbf{v}_{0} \mathbf{v}_{1}\right)
\end{aligned}
$$

- Inverse (flip sign of vor w)

$$
\begin{aligned}
\mathbf{q}^{-1} & =(\mathbf{v}, w)^{-1} \\
& =(\mathbf{v},-w)
\end{aligned}
$$

Unit Quaternions

- Quaternion-Vector multiplication (rotate point p with rotation q)

$$
\mathbf{p}^{\prime}=\mathbf{v} \overline{\mathbf{p}} \mathbf{q}^{-1}
$$

with $\overline{\mathbf{p}}=(x, y, z, 0)^{\top}$

- Relation to Axis/Angle representation

$$
\mathbf{q}=(\mathbf{v}, w)=\left(\sin \frac{\theta}{2} \hat{\mathbf{n}}, \cos \frac{\theta}{2}\right)
$$

3D Orientations

- Note: In general, it is very hard to "read" 3D orientations/rotations, no matter in what representation
- Observation: They are usually easy to visualize and can then be intuitively interpreted
- Advice: Use 3D visualization tools for debugging (RVIZ, libqglviewer, ...)

C++ Libraries for Lin. Alg./Geometry

- Many C++ libraries exist for linear algebra and 3D geometry
- Typically conversion necessary
- Examples:
- C arrays, std::vector (no linear alg. functions)
- gsl (gnu scientific library, many functions, plain C)
- boost::array (used by ROS messages)
- Bullet library (3D geometry, used by ROS tf)
- Eigen (both linear algebra and geometry, my recommendation)

Example: Transform Trees in ROS

- TF package represents 3D transforms between rigid bodies in the scene as a tree
- Collects transformations
- Simple query interface

Example: Video from PR2

3D to 2D Projections

- Orthographic projections
- Perspective projections

3D to 2D Perspective Projection

3D to 2D Perspective Projection

3D to 2D Perspective Projection

- 3D point p (in the camera frame)
- 2D point x (on the image plane)
- Pin-hole camera model

$$
\tilde{\mathbf{x}}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \tilde{\mathbf{p}}
$$

- Remember, $\tilde{\mathbf{x}}$ is homogeneous, need to
normalize

$$
\Rightarrow \quad \mathbf{x}=\binom{\tilde{x} / \tilde{z}}{\tilde{y} / \tilde{z}}
$$

Camera Intrinsics

- So far, 2D point is given in meters on image plane
- But: we want 2D point be measured in pixels (as the sensor does)

Camera Intrinsics

- Need to apply some scaling/offset

$$
\tilde{\mathbf{x}}=\underbrace{\left(\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)}_{\text {intrinsics } K} \underbrace{\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)}_{\text {projection }} \tilde{\mathbf{p}}
$$

- Focal length f_{x}, f_{y}
- Camera center c_{x}, c_{y}
- Skew s

Camera Extrinsics

- Assume $\tilde{\mathbf{p}}_{w}$ is given in world coordinates
- Transform from world to camera (also called the camera extrinsics)

$$
\tilde{\mathbf{p}}=\left(\begin{array}{rr}
R & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \tilde{\mathbf{p}}_{w}
$$

- Full camera matrix

$$
\tilde{\mathbf{x}}=\left(\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
R & \mathbf{t}
\end{array}\right) \tilde{\mathbf{p}}_{w}
$$

Recap: 2D/3D Geometry

- Points, lines, planes
- 2D and 3D transformations
- Different representations for 3D orientations
- Choice depends on application
- Which representations do you remember?
- 3D to 2D perspective projections
- You really have to know 2D/3D transformations by heart (read Szeliski, Chapter 2)

Sensors

Sensons

- Tactile sensors Contact switches, bumpers, proximity sensors, pressure
- Wheel/motor sensors

Potentiometers, brush/optical/magnetic/inductive/capacitive encoders, current sensors

- Heading sensors

Compass, infrared, inclinometers, gyroscopes, accelerometers

- Ground-based beacons GPS, optical or RF beacons, reflective beacons
- Active ranging Ultrasonic sensor, laser rangefinder, optical triangulation, structured light
- Motion/speed sensors Doppler radar, Doppler sound
- Vision-based sensors

CCD/CMOS cameras, visual servoing packages, object tracking packages

Example: Ardrone Sensors

- Tactile sensors

Contact switches, bumpers, proximity sensors, pressure

- Wheel/motor sensors

Potentiometers, brush/optical/magnetic/inductive/capacitive encoders, current sensors

- Heading sensors

Compass, infrared, inclinometers, gyroscopes, accelerometers

- Ground-based beacons

GPS, optical or RF beacons, reflective beacons

- Active ranging

Ultrasonic sensor, laser rangefinder, optical triangulation, structured light

- Motion/speed sensors

Doppler radar, Doppler sound

- Vision-based sensors

CCD/CMOS cameras, visual servoing packages, object tracking packages

Characterization of Sensor Performance

- Bandwidth or Frequency
- Delay
- Sensitivity
- Cross-sensitivity (cross-talk)
- Error (accuracy)
- Deterministic errors (modeling/calibration possible)
- Random errors
- Weight, power consumption, ...

Let's Have a Closer Look

- Cameras
- Gyroscope
- Accelerometers
- GPS
- Range sensors

Pinhole Camera

- Lit scene emits light
- Film/sensor is light sensitive

Lens Camera

- Lit scene emits light
- Film/sensor is light sensitive
- A lens focuses rays onto the film/sensor

Real Cameras

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Radial Distortion

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens
- Typically compensated with a low-order polynomial

$$
\begin{aligned}
\hat{x}_{c} & =x_{c}\left(1+\kappa_{1} r_{c}^{2}+\kappa_{2} r_{c}^{4}\right) \\
\hat{y}_{c} & =y_{c}\left(1+\kappa_{1} r_{c}^{2}+\kappa_{2} r_{c}^{4}\right)
\end{aligned}
$$

Digital Cameras

- Vignetting
- De-bayering
- Rolling shutter and motion blur
- Compression (JPG)
- Noise

Mechanical Gyroscope

- Measures orientation (standard gyro) or angular velocity (rate gyro, needs integration for angle)
- Spinning wheel mounted in a gimbal device (can move freely in 3 dimensions)
- Wheel keeps orientation due to angular momentum (standard gyro)

Visual Navigation for Flying Robots

98

Dr. Jürgen Sturm, Computer Vision Group, TUM

Modern Gyroscopes

- Vibrating structure gyroscope (MEMS)
- Based on Coriolis effect
- "Vibration keeps its direction under rotation"
- Implementations: Tuning fork, vibrating wheels, ...
- Ring laser / fibre optic gyro
- Interference between counter-propagating beams in response to rotation

Accelerometer

- Measures all external forces acting upon them (including gravity)
- Acts like a spring-damper system
- To obtain inertial acceleration (due to motion alone), gravity must be subtracted

Fig. 1. Schematic structure of an accelerometer

MEMS Accelerometers

- Micro Electro-Mechanical Systems (MEMS)
- Spring-like structure with a proof mass
- Damping results from residual gas
- Implementations: capacitive, piezoelectric, ...

Inertial Measurement Unit

- 3-axes MEMS gyroscope
- Provides angular velocity
- Integrate for angular position
- Problem: Drifts slowly over time (e.g., 1deg/hour), called the bias
- 3-axes MEMS accelerometer
- Provides accelerations (including gravity)
- Can we use these sensors to estimate our position?

Example: AscTec Autopilot Board

GPS

GPS

- $24+$ satellites, 12 hour orbit, 20.190 km height
- 6 orbital planes, 4+ satellites per orbit, 60deg distance

- Satellite transmits orbital location + time
- 50bits/s, msg has 1500 bits $\rightarrow 12.5$ minutes

GPS

- Position from pseudorange
- Requires measurements of 4 different satellites
- Low accuracy ($3-15 \mathrm{~m}$) but absolute
- Position from pseudorange + phase shift
- Very precise (1 mm) but highly ambiguous
- Requires reference receiver (RTK/dGPS) to remove ambiguities

Range Sensors

- Sonar
- Laser range finder
- Time of flight camera

- Structured light (will be covered later)

Range Sensors

- Emit signal to determine distance along a ray
- Make use of propagation speed of ultrasound/light
- Traveled distance is given by $d=c \cdot t$
- Sound speed: $340 \mathrm{~m} / \mathrm{s}$
- Light speed: $300.000 \mathrm{~km} / \mathrm{s}$

Ultrasonic Range Sensors

- Range between 12 cm and 5 m
- Opening angle around 20 to 40 degrees
- Soft surfaces absorb sound
- Reflections \rightarrow ghosts
- Lightweight and cheap

Laser Scanner

- Measures phase shift
- Pro: High precision, wide field of view, safety approved for collision detection
- Con: Relatively expensive + heavy

Laser Scanner

- 2D scanners

- 3D scanners

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Exercise Sheet 1

Coordinate Systems

- The pose of a robot can be described by 6 parameters:
- Three-dimensional Cartesian coordinates
- Three Euler angles roll, pitch, yaw.
- The state space of such a system is sixdimensional

$$
\mathbf{x}_{t}=(x, y, z, \phi, \theta, \psi)^{\top}
$$

- Robot makes sensor observations usually in its ego-centric frame (as seen by the robot)

Odometry Motion Model

- In practice, one often finds two types of motion models:
- Odometry-based
- Velocity-based (dead reckoning)
- Odometry-based models are used when systems are equipped with distance sensors (e.g., wheel encoders).
- Velocity-based models have to be applied when no wheel encoders are given.

Dead Reckoning

- Mathematical procedure to determine the present location of a vehicle
- Achieved by calculating the current pose of the vehicle based on its velocities and the elapsed time

Dead Reckoning

- Estimating the position x_{t} based on the issued controls (or IMU readings) \mathbf{u}_{t}
- Integrate over time $\mathbf{x}_{t}=f\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)$

Exercise Sheet 1

- Odometry sensor on Ardrone is an integrated package
- Sensors
- Down-looking camera to estimate motion
- Ultrasonic sensor to get height
- 3-axes gyroscopes
- 3-axes accelerometer
- IMU readings \mathbf{u}_{t} (in provided bag file)
- Horizontal speed (vx/vy) in its local frame (!)
- Height (z) in the global frame
- Roll, Pitch, Yaw in the global frame
- Integrate these values to get robot pose $\mathbf{x}_{t}=f\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)$
- Position ($\mathrm{x} / \mathrm{y} / \mathrm{z}$) in the global frame
- Orientation (e.g., r/p/y) in the global frame

Lessons Learned Today

- Linear algebra
- 2D/3D geometry
- Sensors
- Exercise sheet 1: Robot odometry
- Due next Tuesday, 10am
- Hand in via email to visnav2013@vision.in.tum.de

