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 Kinematics and Dynamics 
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DC Motors 

 Maybe you have built one in school 

 Stationary permanent magnet 

 Electromagnet induces torque 

 Split ring switches direction of current 
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Brushless Motors 

 Used in most quadrocopters 

 Permanent magnets on the axis 

 Electromagnets on the outside 

 Does not require brushes (less maintenance) 
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Brushless Motors 

 Winding styles 

 

 

 

 Hall sensor or EMF to detect rotation 
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good at  
low speeds 

good at  
high speeds 



Motor Controller 

 Micro controller estimates rotation and 
generates PWM signal 

 AC signal generator (inverter) generates motor 
phases 
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Pulse Width Modulation (PWM) 

 Protocol used to control motor speed 

 Remote controls typically output PWM 
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I2C Protocol 

 Serial data line (SDA) + serial clock line (SCL) 

 All devices connected in parallel 

 7-10 bit address, 100-3400 kbit/s speed 

 Used by Mikrocopter for motor control 
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Attitude + Motor Controller Boards 

 Example: Mikrokopter Platform 
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Attitude + Motor Controller Boards 

 Example: Ardrone Platform 
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Kinematics and  Dynamics 

 Kinematics 

 Describes the motion of rigid bodies 

 Position, velocity, acceleration 

 Dynamics 

 Actuators induce forces and torques 

 Forces induce linear acceleration 

 Torques induce angular acceleration 

 What types of forces do you know? 

 What types of torques do you know? 
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Example: 1D Kinematics 

 State 

 Action 

 Linear process model 

 

 

 

 Kalman filter 

 How many states do we need for 3D? 
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Dynamics - Essential Equations 

 Force (Kraft) 

 

 

 

 Torque (Drehmoment) 
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linear  
acceleration 

angular 
acceleration 



Forces 

 Gravity 

 Friction 

 Stiction (static friction) 

 Damping (viscous friction)  

 Air drag 

 Spring 

 Magnetic force 

 … 
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Example: Spring-Damper System 

 Combination of spring and damper 

 Forces 

 Resulting dynamics 
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 Definition 

 Torques sum up 

 Torque results in angular acceleration 
(with              ,     moment of inertia) 

 Friction same as before… 

Torques 
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Dynamics of a Quadrocopter 

 Each propeller induces force and torque by 
accelerating air 

 Gravity pulls quadrocopter downwards 
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Vertical Acceleration 

 Thrust 
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Vertical and Horizontal Acceleration 

 Thrust 
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Vertical and Horizontal Acceleration 

 Thrust 

 Acceleration 
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attitude 



Pitch (and Roll) 
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Side view of  
quadrocopter 

 Attitude changes when opposite motors 
generate unequal thrust 

 Induced torque 

 Induced angular acceleration 

 



Yaw 

 Each propeller induces torque due to rotation 
and the interaction with the air 

 Induced torque 

 Induced angular acceleration 
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Assumptions of Cascaded Control 

 Dynamics of inner loops is so fast that it is not 
visible from outer loops 

 Dynamics of outer loops is so slow that it 
appears as static to the inner loops 
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Cascaded Control Example 

 Motor control happens on motor boards 
(controls every motor tick) 

 Attitude control implemented on micro-
controller with hard real-time (at 1000 Hz) 

 Position control (at 10 – 250 Hz) 

 Trajectory (waypoint) control (at 0.1 – 1 Hz) 
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Feedback Control 

 Given: 

 Goal state 

 Measured state (feedback) 

 Wanted: 

 Control signal      to reach goal state 

 

 How to compute the control signal? 
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Feedback Control - Generic Idea 
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Desired  
value 
35° 



Feedback Control - Generic Idea 
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Plant (Regelstrecke) 

Desired  
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Feedback Control - Generic Idea 
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Feedback Control - Generic Idea 
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Plant (Regelstrecke) 

Desired  
value 
35° 

How hot is it? 
Measured  
temperature 

25° 

35° 

45° 

Sensor 

Controller (Regler) 

25° 

35° 

45° 

Error 

How can we correct? 

Turn hotter (not colder) 



Feedback Control - Example 
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Controller Plant 

Measurement 



Measurement Noise 

 What effect has noise in the measurements? 

 

 

 

 

 

 

 Poor performance for K=1 

 How can we fix this? 
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Proper Control with Measurement Noise 

 Lower the gain… (K=0.15) 
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What do High Gains do? 

 High gains are always problematic (K=2.15) 
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What happens if sign is messed up? 

 Check K=-0.5 
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Saturation 

 In practice, often the set of admissible controls 
u is bounded 

 This is called (control) saturation 
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Measurement 

Block Diagram 
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Controller 
– 

Plant 



Delays 

 In practice most systems have delays 

 Can lead to overshoots/oscillations/de-
stabilization 

 

 
 

 

 

 One solution: lower gains (why is this bad?) 
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 What is the total dead time of this system? 

 

 

 

 
 

 

 

Measurement 

Delays 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 42 

Controller 
– 

Plant 

100ms delay 
in water pipe 

50ms delay 
in sensing 



 What is the total dead time of this system? 

 

 

 

 
 

 

 Can we distinguish delays in the measurement 
from delays in actuation? 

 

Measurement 

Delays 
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Controller 
– 

Plant 

100ms delay 
in water pipe 

50ms delay 
in sensing 



 What is the total dead time of this system? 

 

 

 

 
 

 

 Can we distinguish delays in the measurement 
from delays in actuation? No! 

 

Delays 
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Controller 
– 

Plant (and 
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Smith Predictor 

 Allows for higher gains 

 Requires (accurate) model of plant 
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Smith Predictor 

 Plant model is available 

 5 seconds delay 

 Results in perfect compensation 

 Why is this unrealistic in practice? 
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Smith Predictor 

 Time delay (and plant model) is often not 
known accurately (or changes over time) 

 What happens if time delay is overestimated? 
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Smith Predictor 

 Time delay (and plant model) is often not 
known accurately (or changes over time) 

 What happens if time delay is underestimated? 
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 

 Example:  
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 

 Example:  
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 In each time instant, we can apply a force F 

 Results in acceleration  

 Desired position 
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P Control 

 What happens for this control law? 

 

 This is called proportional control 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 54 



P Control 

 What happens for this control law? 

 

 This is called proportional control 
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PD Control 

 What happens for this control law? 

 

 Proportional-Derivative control 
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PD Control 

 What happens for this control law? 

 

 What if we set higher gains?  
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PD Control 

 What happens for this control law? 

 

 What if we set lower gains?  
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PD Control 

 What happens when we add gravity? 
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Gravity compensation 

 Add as an additional term in the control law 

 

 Any known (inverse) dynamics can be included 
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PD Control 

 What happens when we have systematic errors? 
(control/sensor noise with non-zero mean) 

 Example: unbalanced quadrocopter, wind, … 

 Does the robot ever reach its desired location? 
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PID Control 

 Idea: Estimate the system error (bias) by 
integrating the error 

 
 Proportional+Derivative+Integral Control 
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PID Control 

 Idea: Estimate the system error (bias) by 
integrating the error 

 
 Proportional+Derivative+Integral Control 

 For steady state systems, this can be 
reasonable 

 Otherwise, it may create havoc or even disaster 
(wind-up effect) 
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Example: Wind-up effect 

 Quadrocopter gets stuck in a tree  does not 
reach steady state 

 What is the effect on the I-term? 
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De-coupled Control 

 So far, we considered only single-input, single-
output systems (SISO) 

 Real systems have multiple inputs + outputs 

 MIMO (multiple-input, multiple-output) 

 In practice, control is often de-coupled 
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How to Choose the Coefficients? 

 Gains too large: overshooting, oscillations 

 Gains too small: long time to converge 

 Heuristic methods exist 

 In practice, often tuned manually 
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Cascaded control 

 Inner loop runs on embedded PC and stabilizes 
flight 

 Outer loop runs externally and implements 
position control 

 

Example: Ardrone 
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Inner loop Plant Outer loop 

Ardrone (=seen as the plant by the outer loop) Laptop 

wireless, approx. 15Hz 

onboard, 1000Hz 



Ardrone: Inner Control Loop 

 Plant input: motor torques 

 

 

 Plant output: roll, pitch, yaw rate, z velocity 
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attitude 
(measured using gyro +  

accelerometer) 

altitude 
(measured using ultrasonic 
distance sensor + attitude) 



Ardrone: Inner Control Loop 

 Plant input: motor torques 

 

 Plant output: roll, pitch, yaw rate, z velocity 
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Inner loop Plant 

Ardrone (=seen as the plant by the outer loop) 

onboard, 1000Hz 



Ardrone: Outer Control Loop 

 Outer loop sees inner loop as a plant (black 
box) 

 Plant input: roll, pitch, yaw rate, z velocity 

 

 Plant output:  
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Inner loop Plant Outer loop 

Ardrone (=seen as the plant by the outer loop) Laptop 

wireless, approx. 15Hz 

onboard, 1000Hz 



Mechanical Equivalent 

 PD Control is equivalent to adding spring-
dampers between the desired values and the 
current position 

 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 71 



PID Control – Summary 

PID is the most used control technique in practice 

 P control  simple proportional control, often 
enough 

 PI control  can compensate for bias (e.g., 
wind) 

 PD control  can be used to reduce overshoot 
(e.g., when acceleration is controlled) 

 PID control  all of the above 
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PID Control – Beergarden Example 
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[Georg Eggers, Nerd Nite, 2013] 
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banned 
from pub upset beer 

tray 



Advanced Control Techniques 

What other control techniques do exist? 

 Adaptive control 

 Robust control 

 Optimal control 

 Linear-quadratic regulator (LQR) 

 Reinforcement learning 

 Inverse reinforcement learning 

 ... and many more 
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Optimal Control 

 Find the controller that provides the best 
performance 

 Need to define a measure of performance 

 What would be a good performance measure? 

 Minimize the error? 

 Minimize the controls? 

 Combination of both? 
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Linear Quadratic Regulator 

Given: 

 Discrete-time linear system 
 

 

 Quadratic cost function 

 
 

Goal: Find the controller with the lowest cost  
LQR control 
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Linear Quadratic Regulator 

 Advantage:  
Cost matrix has an intuitive interpretation 

 

 Disadvantage: 
Typically no closed form solution 

 

 Often solved numerically 

 Only for small planning horizon 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 77 



Reinforcement Learning 

 Note that in principle, any cost function can be 
used 

 Sometimes, it is easier to specify a reward 
function 

 Example: 
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Reinforcement Learning 

 Reward function 

 Episode (=trajectory)  

 

 Reward of an episode 
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Reinforcement Learning 

 A policy (=controller) defines which action to 
take in a particular state 

 

 

 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 80 

1 1 



Policy Evaluation 

 The optimal policy maximizes the expected 
future reward 

 How can we estimate the expected future 
reward? 

 How can we find the optimal policy? 

 Closer look at two methods 

 Q learning 

 Policy gradient methods 
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Reinforcement Learning 

Q learning 

 Learn the value function for each state-action 
pair 

 Needs compact representation of value 
function (e.g., neural networks) 

 Examples: TD-Gammon (mid-90’s), Inverted 
pendulum, … 
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Reinforcement Learning 

Policy gradient methods 

 Policy is parameterized 

 Analytic gradient typically not available 

 Simulation-based optimization 
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[Lupashin et al., 
ICRA 2010] 



Reinforcement Learning 

Policy gradient methods 

 Policy is parameterized 

 Analytic gradient typically not available 

 Simulation-based optimization 
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[Schoellig et al.,  
ACC 2012] 



Inverse Reinforcement Learning 

 Parameterized reward function 

 Learn these parameters from expert 
demonstrations and refine 

 Example: [Abbeel and Ng, ICML 2010] 
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Lessons Learned Today 

 Brushless Motors 

 Motor Controllers 

 Cascaded Control 

 PID Control 

 Advanced Control Techniques 
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