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Agenda for Today 

 Motors 

 Motor Controllers 

 Kinematics and Dynamics 

 Linear Control 
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DC Motors 

 Maybe you have built one in school 

 Stationary permanent magnet 

 Electromagnet induces torque 

 Split ring switches direction of current 
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Brushless Motors 

 Used in most quadrocopters 

 Permanent magnets on the axis 

 Electromagnets on the outside 

 Does not require brushes (less maintenance) 
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Brushless Motors 

 Winding styles 

 

 

 

 Hall sensor or EMF to detect rotation 
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good at  
low speeds 

good at  
high speeds 



Motor Controller 

 Micro controller estimates rotation and 
generates PWM signal 

 AC signal generator (inverter) generates motor 
phases 
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Pulse Width Modulation (PWM) 

 Protocol used to control motor speed 

 Remote controls typically output PWM 
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I2C Protocol 

 Serial data line (SDA) + serial clock line (SCL) 

 All devices connected in parallel 

 7-10 bit address, 100-3400 kbit/s speed 

 Used by Mikrocopter for motor control 
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Attitude + Motor Controller Boards 

 Example: Mikrokopter Platform 
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Attitude + Motor Controller Boards 

 Example: Ardrone Platform 
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Kinematics and  Dynamics 

 Kinematics 

 Describes the motion of rigid bodies 

 Position, velocity, acceleration 

 Dynamics 

 Actuators induce forces and torques 

 Forces induce linear acceleration 

 Torques induce angular acceleration 

 What types of forces do you know? 

 What types of torques do you know? 
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Example: 1D Kinematics 

 State 

 Action 

 Linear process model 

 

 

 

 Kalman filter 

 How many states do we need for 3D? 
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Dynamics - Essential Equations 

 Force (Kraft) 

 

 

 

 Torque (Drehmoment) 
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linear  
acceleration 

angular 
acceleration 



Forces 

 Gravity 

 Friction 

 Stiction (static friction) 

 Damping (viscous friction)  

 Air drag 

 Spring 

 Magnetic force 

 … 
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Example: Spring-Damper System 

 Combination of spring and damper 

 Forces 

 Resulting dynamics 
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 Definition 

 Torques sum up 

 Torque results in angular acceleration 
(with              ,     moment of inertia) 

 Friction same as before… 

Torques 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 18 



Dynamics of a Quadrocopter 

 Each propeller induces force and torque by 
accelerating air 

 Gravity pulls quadrocopter downwards 
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Vertical Acceleration 

 Thrust 
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Vertical and Horizontal Acceleration 

 Thrust 
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Vertical and Horizontal Acceleration 

 Thrust 

 Acceleration 
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attitude 



Pitch (and Roll) 
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Side view of  
quadrocopter 

 Attitude changes when opposite motors 
generate unequal thrust 

 Induced torque 

 Induced angular acceleration 

 



Yaw 

 Each propeller induces torque due to rotation 
and the interaction with the air 

 Induced torque 

 Induced angular acceleration 
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Assumptions of Cascaded Control 

 Dynamics of inner loops is so fast that it is not 
visible from outer loops 

 Dynamics of outer loops is so slow that it 
appears as static to the inner loops 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 26 



Cascaded Control Example 

 Motor control happens on motor boards 
(controls every motor tick) 

 Attitude control implemented on micro-
controller with hard real-time (at 1000 Hz) 

 Position control (at 10 – 250 Hz) 

 Trajectory (waypoint) control (at 0.1 – 1 Hz) 
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Feedback Control 

 Given: 

 Goal state 

 Measured state (feedback) 

 Wanted: 

 Control signal      to reach goal state 

 

 How to compute the control signal? 
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Feedback Control - Generic Idea 
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Desired  
value 
35° 



Feedback Control - Generic Idea 
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Plant (Regelstrecke) 

Desired  
value 
35° 

Controller (Regler) 



Feedback Control - Generic Idea 
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Plant (Regelstrecke) 

Desired  
value 
35° 

How hot is it? 
Measured  
temperature 

25° 

35° 

45° 

Sensor 

Controller (Regler) 



Feedback Control - Generic Idea 
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Plant (Regelstrecke) 

Desired  
value 
35° 

How hot is it? 
Measured  
temperature 

25° 

35° 

45° 

Sensor 

Controller (Regler) 

25° 

35° 

45° 

Error 

How can we correct? 

Turn hotter (not colder) 



Feedback Control - Example 
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Measurement 



Measurement Noise 

 What effect has noise in the measurements? 

 

 

 

 

 

 

 Poor performance for K=1 

 How can we fix this? 
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Proper Control with Measurement Noise 

 Lower the gain… (K=0.15) 
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What do High Gains do? 

 High gains are always problematic (K=2.15) 
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What happens if sign is messed up? 

 Check K=-0.5 
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Saturation 

 In practice, often the set of admissible controls 
u is bounded 

 This is called (control) saturation 
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Measurement 

Block Diagram 
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Controller 
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Plant 



Delays 

 In practice most systems have delays 

 Can lead to overshoots/oscillations/de-
stabilization 

 

 
 

 

 

 One solution: lower gains (why is this bad?) 
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 What is the total dead time of this system? 

 

 

 

 
 

 

 

Measurement 

Delays 
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Controller 
– 

Plant 

100ms delay 
in water pipe 

50ms delay 
in sensing 



 What is the total dead time of this system? 

 

 

 

 
 

 

 Can we distinguish delays in the measurement 
from delays in actuation? 

 

Measurement 

Delays 
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Controller 
– 

Plant 

100ms delay 
in water pipe 

50ms delay 
in sensing 



 What is the total dead time of this system? 

 

 

 

 
 

 

 Can we distinguish delays in the measurement 
from delays in actuation? No! 

 

Delays 
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Controller 
– 

Plant (and 
measurement) 



Smith Predictor 

 Allows for higher gains 

 Requires (accurate) model of plant 
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Controller 
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Plant with delay 
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– 

– 



Smith Predictor 

 Plant model is available 

 5 seconds delay 

 Results in perfect compensation 

 Why is this unrealistic in practice? 
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Smith Predictor 

 Time delay (and plant model) is often not 
known accurately (or changes over time) 

 What happens if time delay is overestimated? 
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Smith Predictor 

 Time delay (and plant model) is often not 
known accurately (or changes over time) 

 What happens if time delay is underestimated? 
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 

 Example:  
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 

 Example:  
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 In each time instant, we can apply a force F 

 Results in acceleration  

 Desired position 
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P Control 

 What happens for this control law? 

 

 This is called proportional control 
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P Control 

 What happens for this control law? 

 

 This is called proportional control 
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PD Control 

 What happens for this control law? 

 

 Proportional-Derivative control 
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PD Control 

 What happens for this control law? 

 

 What if we set higher gains?  
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PD Control 

 What happens for this control law? 

 

 What if we set lower gains?  
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PD Control 

 What happens when we add gravity? 
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Gravity compensation 

 Add as an additional term in the control law 

 

 Any known (inverse) dynamics can be included 
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PD Control 

 What happens when we have systematic errors? 
(control/sensor noise with non-zero mean) 

 Example: unbalanced quadrocopter, wind, … 

 Does the robot ever reach its desired location? 
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add example plot 



PID Control 

 Idea: Estimate the system error (bias) by 
integrating the error 

 
 Proportional+Derivative+Integral Control 
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add example plot 



PID Control 

 Idea: Estimate the system error (bias) by 
integrating the error 

 
 Proportional+Derivative+Integral Control 

 For steady state systems, this can be 
reasonable 

 Otherwise, it may create havoc or even disaster 
(wind-up effect) 
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Example: Wind-up effect 

 Quadrocopter gets stuck in a tree  does not 
reach steady state 

 What is the effect on the I-term? 
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De-coupled Control 

 So far, we considered only single-input, single-
output systems (SISO) 

 Real systems have multiple inputs + outputs 

 MIMO (multiple-input, multiple-output) 

 In practice, control is often de-coupled 
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Controller 1 

Controller 2 

Plant 



How to Choose the Coefficients? 

 Gains too large: overshooting, oscillations 

 Gains too small: long time to converge 

 Heuristic methods exist 

 In practice, often tuned manually 
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Cascaded control 

 Inner loop runs on embedded PC and stabilizes 
flight 

 Outer loop runs externally and implements 
position control 

 

Example: Ardrone 
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Inner loop Plant Outer loop 

Ardrone (=seen as the plant by the outer loop) Laptop 

wireless, approx. 15Hz 

onboard, 1000Hz 



Ardrone: Inner Control Loop 

 Plant input: motor torques 

 

 

 Plant output: roll, pitch, yaw rate, z velocity 
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attitude 
(measured using gyro +  

accelerometer) 

altitude 
(measured using ultrasonic 
distance sensor + attitude) 



Ardrone: Inner Control Loop 

 Plant input: motor torques 

 

 Plant output: roll, pitch, yaw rate, z velocity 
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Inner loop Plant 

Ardrone (=seen as the plant by the outer loop) 

onboard, 1000Hz 



Ardrone: Outer Control Loop 

 Outer loop sees inner loop as a plant (black 
box) 

 Plant input: roll, pitch, yaw rate, z velocity 

 

 Plant output:  
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Inner loop Plant Outer loop 

Ardrone (=seen as the plant by the outer loop) Laptop 

wireless, approx. 15Hz 

onboard, 1000Hz 



Mechanical Equivalent 

 PD Control is equivalent to adding spring-
dampers between the desired values and the 
current position 
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PID Control – Summary 

PID is the most used control technique in practice 

 P control  simple proportional control, often 
enough 

 PI control  can compensate for bias (e.g., 
wind) 

 PD control  can be used to reduce overshoot 
(e.g., when acceleration is controlled) 

 PID control  all of the above 
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PID Control – Beergarden Example 
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[Georg Eggers, Nerd Nite, 2013] 

desired 
value: 
1 liter 

Waiter!! 
Waaaiiiter! 

Waiter! ??!@$!! 

Quantization 
error 

actions 

system  
dynamics 

strong 
thirst 

dry run double 
catering 

overshooting 

smoking 
break 

nominal 
thirst 

Nogerl-
abräumen 

credit card 

banned 
from pub upset beer 

tray 



Advanced Control Techniques 

What other control techniques do exist? 

 Adaptive control 

 Robust control 

 Optimal control 

 Linear-quadratic regulator (LQR) 

 Reinforcement learning 

 Inverse reinforcement learning 

 ... and many more 
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Optimal Control 

 Find the controller that provides the best 
performance 

 Need to define a measure of performance 

 What would be a good performance measure? 

 Minimize the error? 

 Minimize the controls? 

 Combination of both? 
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Linear Quadratic Regulator 

Given: 

 Discrete-time linear system 
 

 

 Quadratic cost function 

 
 

Goal: Find the controller with the lowest cost  
LQR control 
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Linear Quadratic Regulator 

 Advantage:  
Cost matrix has an intuitive interpretation 

 

 Disadvantage: 
Typically no closed form solution 

 

 Often solved numerically 

 Only for small planning horizon 
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Reinforcement Learning 

 Note that in principle, any cost function can be 
used 

 Sometimes, it is easier to specify a reward 
function 

 Example: 
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Reinforcement Learning 

 Reward function 

 Episode (=trajectory)  

 

 Reward of an episode 
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Reinforcement Learning 

 A policy (=controller) defines which action to 
take in a particular state 
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Policy Evaluation 

 The optimal policy maximizes the expected 
future reward 

 How can we estimate the expected future 
reward? 

 How can we find the optimal policy? 

 Closer look at two methods 

 Q learning 

 Policy gradient methods 
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Reinforcement Learning 

Q learning 

 Learn the value function for each state-action 
pair 

 Needs compact representation of value 
function (e.g., neural networks) 

 Examples: TD-Gammon (mid-90’s), Inverted 
pendulum, … 
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Reinforcement Learning 

Policy gradient methods 

 Policy is parameterized 

 Analytic gradient typically not available 

 Simulation-based optimization 
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[Lupashin et al., 
ICRA 2010] 



Reinforcement Learning 

Policy gradient methods 

 Policy is parameterized 

 Analytic gradient typically not available 

 Simulation-based optimization 
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[Schoellig et al.,  
ACC 2012] 



Inverse Reinforcement Learning 

 Parameterized reward function 

 Learn these parameters from expert 
demonstrations and refine 

 Example: [Abbeel and Ng, ICML 2010] 
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Lessons Learned Today 

 Brushless Motors 

 Motor Controllers 

 Cascaded Control 

 PID Control 

 Advanced Control Techniques 
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