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Motivation 
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 Quick geometry recap 

 Image filters 

 2D image alignment 

 Corner detectors 

 Kanade-Lucas-Tomasi tracker 

 2D motion estimation 

 Interesting research papers from ICRA and 
ROSCon 
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Visual Motion Estimation 
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Recap: Perspective Projection 
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Recap: Perspective Projection 
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3D to 2D Perspective Projection 

 3D point     (in the camera frame) 

 2D point     (on the image plane) 

 Pin-hole camera model 

 
 

 Remember,     is homogeneous, need to 
normalize 
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Camera Intrinsics 

 So far, 2D point is given in meters on image 
plane (located in 1m distance from origin) 

 But:  we want 2D point be measured in pixels 
(as the sensor does) 
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Camera Intrinsics 

 Need to apply some scaling/offset  

 

 

 

 

 Focal length  

 Camera center 

 Skew 
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 Pixel coordinates 

 Image plane 

 

 Example: 

 Discrete case 
(default in this course) 

 Continuous case 
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Image Plane 
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 We can think of an image as a function  

         gives the intensity at position 

 Color images are vector-valued functions 
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Image Functions 
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 Realistically, the image function is only defined 
on a rectangle and has finite range 

 

 Image can be represented as a matrix 

 Alternative notations 
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Image Functions 

Visual Navigation for Flying Robots 

111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 

189 193 214 216 104 79 83 77 

191 201 217 220 103 59 60 68 

195 205 216 222 113 68 69 83 

199 203 223 228 108 68 71 77 

often (row,column) 

often (column,row) 



Example 
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 Light intensity is sampled by CCD/CMOS sensor 
on a regular grid 

 Electric charge of each cell is quantized and 
gamma compressed (for historical reasons) 

                                           with  

 CRTs / monitors do the inverse 

 Almost all images are gamma compressed 

 Double brightness results only in a 37% higher 
intensity value (!) 
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Digital Images 
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Aliasing 

 High frequencies in the scene and a small fill 
factor on the chip can lead to (visually) 
unpleasing effects 

 Examples 
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Rolling Shutter 

 Most CMOS sensors have a rolling shutter 

 Rows are read out sequentially 

 Sensitive to camera and object motion 

 Can we correct for this? 
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Image Filtering 

 We want to remove unwanted sources of 
variation, and keep the information relevant for 
whatever task we need to solve 

 

 

 

 Example tasks: 
de-noising, (de-)blurring, computing 
derivatives, edge detection, … 
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Linear Filtering 

 Each output is a linear combination of all the 
input values 

 
 In matrix form 
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G = H F 

c = c 



Spatially Invariant Filtering 

 We are often interested in spatially invariant 
operations 
 

 

 Example 
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-1 2 -1 

-1 2 -1 

-1 2 -1 

111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 

189 193 214 216 104 79 83 77 

191 201 217 220 103 59 60 68 

195 205 216 222 113 68 69 83 

199 203 223 228 108 68 71 77 

? 



Spatially Invariant Filtering 

 We are often interested in spatially invariant 
operations 
 

 

 Example 
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-1 2 -1 

-1 2 -1 

-1 2 -1 

111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 

189 193 214 216 104 79 83 77 

191 201 217 220 103 59 60 68 

195 205 216 222 113 68 69 83 

199 203 223 228 108 68 71 77 

? ? ? ? ? ? ? ? 

? -5 9 -9 21 -12 10 ? 

? -29 18 24 4 -7 5 ? 

? -50 40 142 -88 -34 10 ? 

? -41 41 264 -175 -71 0 ? 

? -24 37 349 -224 -120 -10 ? 

? -23 33 360 -217 -134 -23 ? 

? ? ? ? ? ? ? ? 



Important Filters 

 Impulses 
 Shifts 
 Blurring and de-blurring 

 Gaussian 
 Bilateral filter 
 Motion blur 

 Edges 
 Finite difference filter 
 Derivative filter 
 Oriented filters 
 Gabor filter 

 … 
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Impulse 
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0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

convolution  
operator 



Image shift (translation) 
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0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 0 0 

0 0 0 0 0 

2 pixels 



Image rotation 
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? 



Image rotation 
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? 
Image rotation is a linear operator (why?), but not a spatially 

invariant operation (why?). There is no convolution. 



Rectangular Filter 
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Rectangular Filter 
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Rectangular Filter 
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Gaussian Blur 

 Gaussian distribution 

 

 

 Example of resulting kernel 
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Gaussian Blur 

Visual Navigation for Flying Robots 

s=1 

s=2 

s=4 



Image Gradient 

 The image gradient                             points in 
the direction of increasing intensity (steepest 
ascend) 
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Image Gradient 

 The image gradient                             points in 
the direction of increasing intensity (steepest 
ascend) 
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Image Gradient 
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 Gradient direction (related to edge orientation) 
 

 

 

 Gradient magnitude (edge strength) 



Image Gradient 

How can we differentiate a digital image            ? 

 Option 1: Reconstruct a continuous image, then 
take gradient 

 Option 2: Take discrete derivative (finite 
difference filter) 

 Option 3: Convolve with derived Gaussian 
(derivative filter) 
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Finite difference 

 First-order central difference 

 

 

 Corresponding convolution kernel: 
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-.5 0 .5 



Finite difference 

 First-order central difference (half pixel) 

 

 

 Corresponding convolution kernel: 
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-1 1 



Second-order Derivative 

 Differentiate again to get second-order central 
difference 
 
 
 
Corresponding convolution kernel: 
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1 -2 1 



Example 
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-1 1 



Example 
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-1 

1 



(Dense) Motion Estimation 

 2D motion 

 

 

 

 3D motion 
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Problem Statement 

 Given: two camera images 

 Goal: estimate the camera motion 

 

 
 

 For the moment, let’s assume that the camera 
only moves in the xy-plane, i.e.,  

 Extension to 3D follows 
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General Idea 

1. Define an error metric            that defines how 
well the two images match given a motion 
vector 

2. Find the motion vector with the lowest error 
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Error Metrics for Image Comparison 

 Sum of Squared Differences (SSD) 
 
 
 
with displacement  
and residual errors  
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Robust Error Metrics 

 SSD metric is sensitive to outliers 

 Solution: apply a (more) robust error metric 
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Robust Error Metrics 

 Sum of absolute differences (SAD, L1 norm) 

 

 

 Sum of truncated errors 

 

 

 Geman-McClure 
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Robust Error Metrics 
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Windowed SSD 

 Images (and image patches) have finite size 

 Standard SSD has a bias towards smaller 
overlaps (less error terms) 

 Solution: divide by the overlap area 

 Root mean square error 
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Exposure Differences 

 Images might be taken with different exposure 
(auto shutter, white balance, …) 

 Bias and gain model 
 

 

 With SSD we get 
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Cross-Correlation 

 Maximize the product (instead of minimizing 
the differences) 

 

 

 Normalized cross-correlation (between -1..1) 
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General Idea 

1. Define an error metric            that defines how 
well the two images match given a motion 
vector 

2. Find the motion vector with the lowest error 
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Finding the minimum 

 Full search (e.g., ±16 pixels) 

 Gradient descent 

 Hierarchical motion estimation 
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Hierarchical motion estimation 

 Construct image pyramid 

 

 

 

 

 Estimate motion on coarse level 

 Use as initialization for next finer level 
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Motion Estimation 

 Perform Gauss-Newton minimization on the 
SSD energy function (Lucas and Kanade, 1981) 

 Gauss-Newton minimization 

 Linearize residuals w.r.t. to camera motion 

 Yields quadratic cost function  

 Build normal equations and solve linear system 
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Motion Estimation 

 Taylor expansion of energy function 
 
 
 
 
 

 
 
with  
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Least Squares Minimization 

 Goal: Minimize 

 
 Solution: Compute derivative and set to zero 

 
 
 
with 
 

and  
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Least Squares Minimization 

1. Compute A,b from image gradients using 
 
 

 
with 
 
and 

 

2. Solve 
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All of these computation  
are super fast! 



Covariance of the Estimated Motion 

 Assuming (small) Gaussian noise in the images 
 
 
with 

 

 … results in uncertainty in the motion estimate 
with covariance (e.g., useful for Kalman filter) 
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Optical Computer Mouse (since 1999) 

 E.g., ADNS3080 from Agilent  
Technologies, 2005 

 6400 fps 

 30x30 pixels 

 4 USD 
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Image Patches 

 Sometimes we are interested of the motion of 
a small image patches 

 Problem: some patches are easier to track than 
others 

 What patches are easy/difficult to track? 

 How can we recognize “good” patches? 
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Image Patches 

 Sometimes we are interested of the motion of 
a small image patches 

 Problem: some patches are easier to track than 
others 
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Example 

 Let’s look at the shape of the energy 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 60 



Corner Detection 

 Idea: Inspect eigenvalues            of Hessian 

             small  no point of interest 

       large,       small  edge 

             large  corner 

 Harris detector (does not need eigenvalues) 

 

 Shi-Tomasi (or Kanade-Lucas) 
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Corner Detection 

1. For all pixels, computer corner strength 

2. Non-maximal suppression  
(E.g., sort by strength, strong corner 
suppresses weaker corners in circle of radius r) 
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strongest responses non-maximal suppression 



Other Detectors 

 Förstner detector (localize corner with sub-
pixel accuracy) 

 FAST corners (learn decision tree, minimize 
number of tests  super fast) 

 Difference of Gaussians / DoG (scale-invariant 
detector) 

 … 
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Kanade-Lucas-Tomasi (KLT) Tracker 

 Algorithm 
1. Find (Shi-Tomasi) corners in first frame and 

initialize tracks 

2. Track from frame to frame 

3. Delete track if error exceeds threshold 

4. Initialize additional tracks when necessary 

5. Repeat step 2-4 

 KLT tracker is highly efficient (real-time on CPU) 
but provides only sparse motion vectors 

 Dense optical flow methods require GPU 
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Example 
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Interesting Papers from ICRA 2013 
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Smartphone as a Sensor Platform 
[Li et al., ICRA ‘13] 

 Quadcore 

 Multiple cameras 

 Accelerometer 

 Gyroscopes 

 GPS 

 Wireless 

 Relatively cheap 
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Challenges  
[Li et al., ICRA ‘13] 

 Rolling shutter camera 

 Poor synchronization between camera and IMU 
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Kalman Filter 
[Li et al., ICRA ‘13] 

 Kalman state contains 

 IMU pose  

 last m camera poses 

 

 

 

 We need to define 

 Motion model 

 Observation model 
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IMU state camera poses of m last states 



Kalman Filter: Motion Model 
[Li et al., ICRA ‘13] 

 Motion model (IMU) 

 Angular velocity 

 

 

 

 Linear acceleration 
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bias noise 

bias noise gravity measure- 
ment 

true 
velocity 

measure- 
ment 

orient- 
ation 

true 
acc. 



 Read-out time of the whole image 

 Observation time of first row 

 Observation time of i-th row  

 

 

 

Rolling Shutter 
[Li et al., ICRA ‘13] 
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Kalman Filter: Observation Model 
[Li et al., ICRA ‘13] 

 Observations from KLT tracker 

 2D observations of 3D points (3D positions 
estimated by triangulation, covered next week) 

 Observation function 

 

 

 Observation function with rolling shutter comp. 
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Results 
[Li et al., ICRA ‘13] 

 Galaxy S2 (live demo at ICRA with S3) 

 IMU updates at 90 Hz (downsampled) 

 Gyroscope at 106 Hz 

 Accelerometer at 93 Hz 

 Images at 15 Hz 

 Read-out time 32msec 

 610m and 900m trajectory 

 Drift less than 0.8%, absolute scale from IMU 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 73 



Results 
[Li et al., ICRA ‘13] 
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Commercial Solutions 

 Pix4flow from ETH/3D robotics 
1 camera, IMU, ultrasound, 150 EUR 

 Parrot Mainboard + Navigation board 
1 camera, IMU, ultrasound, 210 USD 
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Talks at ROSCon 2013 

 ROS Conference (in conjunction with ICRA) 

 Talk by Chad Rockey (Willow Garage) on 
Android sensors driver 

 Android app (Google Play store or github) 

 Provides: 
 /android/imu  

 /android/fix (GPS)  

 /camera/camera_info  

 /camera/image/compressed 
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Android Sensors Driver 
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Android Sensors Driver 
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Android Sensors Driver 
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Cool ICRA Papers 
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Tilting Propellors  
[Ryll et al., ICRA ‘13] 
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Shipdeck Tracking  
[Arora et al., ICRA ‘13] 
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Shipdeck Tracking  
[Arora et al., ICRA ‘13] 
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Cool ICRA Papers 
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Frontal Obstacle Avoidance 
[Mori and Scherer, ICRA ‘13] 
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Cool ICRA Papers 
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Learning to Avoid Obstacles 
[Ross et al., ICRA ‘13] 
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ICRA Proceedings 

 All papers of a conference are (usually) 
collected into so-called proceedings 

 Previously: One or more books 

 Today: USB sticks or online 

 

 Will put ICRA proceedings online (see website) 

 Remember password (or ask by email) 
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Ideas for Your Mini-Project 

 Person following (colored shirt or wearing a marker) 
 Flying camera for taking group pictures (possibly using 

the OpenCV face detector) 
 Fly through a hula hoop (brightly colored, white 

background) 
 Navigate through a door (brightly colored) 
 Navigate from one room to another (using ground 

markers) 
 Avoid obstacles using optical flow  
 Landing on a marked spot/moving target 
 Your own idea here – be creative! 
 ... 
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 How to estimate the translational motion from 
camera images 

 Which image patches are easier to track than 
others 

 How to estimate 2D motion from camera 
images 

 Summary of ICRA and ROSCon papers/talks 
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Lessons Learned Today 
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