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Visual Motion Estimation

Quick geometry recap

Image filters

2D image alignment

Corner detectors
Kanade-Lucas-Tomasi tracker
2D motion estimation

Interesting research papers from ICRA and

ROSCon
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Recap: Perspective Projection

7>
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Recap: Perspective Projection
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3D to 2D Perspective Projection

= 3D point p (in the camera frame)
= 2D point x (on the image plane)
" Pin-hole camera model

X=AX=Dp

= Remember, X is homogeneous, need to

normalize
L ("‘E/f)
]z
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Camera Intrinsics

= So far, 2D point is given in meters on image
plane (located in 1m distance from origin)

= But: we want 2D point be measured in pixels
(as the sensor does)
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Camera Intrinsics

Need to apply some scaling/offset

Jr 8 ¢
x=10 f, ¢
0O 0 1

intrinsics K
Focal length [, f,

Camera center c¢;, ¢y,
Skew s

projection



Image Plane

= Pixel coordinates x €
= |mage plane Q c R?

= Example:
= Discrete case x € [0,W — 1] x [0, H — 1] C Nj
(default in this course)
= Continuous case x € [0,1] x [0,1] C R?
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Image Functions

= We can think of an image as a function f: QO — R
= f(x) gives the intensity at position x
= Color images are vector-valued functions

f: QR
r(x)

f(x) = | g9(x)
b(x)
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Image Functions

= Realistically, the image function is only defined

on a rectangle and has finite range

fol00W—=1] x[0,H — 1| — [0, 1]
" Image can be represented as a matrix

= Alternative notations

Fij, f(i,9), f(2,9), f(x),. ..

11 ]
often (row,column)

often (column,row)
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Digital Images

= Light intensity is sampled by CCD/CMOS sensor
on a regular grid

= Electric charge of each cell is quantized and
gamma compressed (for historical reasons)

V = B> with v =22
= CRTs / monitors do the inverse B = V7
= Almost all images are gamma compressed

— Double brightness results only in a 37% higher
intensity value (!)
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Aliasing

= High frequencies in the scene and a small fill
factor on the chip can lead to (visually)
unpleasing effects

= Examples
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Rolling Shutter

= Most CMOS sensors have a rolling shutter
= Rows are read out sequentially

= Sensitive to camera and object motion

= Can we correct for this?
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Image Filtering

= \We want to remove unwanted sources of
variation, and keep the information relevant for
whatever task we need to solve

f(i.7) g(2,7)

> >

= Example tasks:
de-noising, (de-)blurring, computing
derivatives, edge detection, ...
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Linear Filtering

= Each output is a linear combination of all the
input values

g(i,7) = thg,kl f(k, D)

" |n matrix form
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Spatially Invariant Filtering

= We are often interested in spatially invariant
operations

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l
= Example

163|168 188|196 206|202 206|207 1 2 1
180184206 |219|202]200(195]193

ﬂ< -1 2 -1 p—
189193214 |216

112 | -1 o

1912012171220

195[205(216 1222

1991203223228
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Spatially Invariant Filtering

= We are often interested in spatially invariant
operations

g(i,j) = frh=> h(i—k,j—1)f(k1)
k.l

= Example

196|206(202|206|207 1 2 1
180|184 ]206(219|202]|200]195]|193
X 1] 2|1 —
189|193|214|216
191|201|217|220 1 2 1

195[205(216 1222

1991203223228
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Important Filters

" Impulses
= Shifts

" Blurring and de-blurring
= Gaussian
= Bilateral filter
= Motion blur
" Edges
= Finite difference filter
= Derivative filter
= QOriented filters
= Gabor filter
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Impulse

g(i,j) = fTh = h(i—k,j—1)f(k1)
k.l

convolution
operator
~ ololo|o]o -
oloflofofo
sk o|lo|1]0]|]0]| =
ololoflofo
olofloflofo
P h(i, ) —

f(?’a]) g(z’,j)
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Image shift (translation)

g(i,j) = frh=> h(i—k,j—1)f(k1)
k.l

2 pixels
e

o |lOoOo|O|O|O

o |loOo|]O|O|O
O |]Oo |+ ]|]O|O

— | )| —

f(?’a]) g(z’,j)
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Image rotation

g(i,j) = frh=> h(i—k,j—1)f(k1)
k.l

Y
— h(i, j)

£i.) 966,)
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Image rotation

g(i,j) = frh=> h(i—k,j—1)f(k1)
k.l

Image rotation is a linear operator (why?), but not a spatially
invariant operation (why?). There is no convolution.

f(?’a]) g(z’,j)
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Rectangular Filter

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

f?’:]) g(i,j)
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Rectangular Filter

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

£ )) 9(i, §)
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Rectangular Filter

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

£ )) 9(i, j)
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Gaussian Blur

= Gaussian distribution

. 1 2+ 52
90(1,1) = 2Am o2 b 202

= Example of resulting kernel
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Gaussian Blur
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Image Gradient

T

= The image gradient Vf = (g"; ggj) points in

the direction of increasing intensity (steepest
ascend)

—tzv. ' -
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Image Gradient

or Oy
the direction of increasing intensity (steepest

ascend)

F [T K
vi=(#o0) vi=(0g) vi=($5)
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= The image gradient V f = (df df) points in

TS



Image Gradient

" Gradient direction (related to edge orientation)

B of Of
f = atan?2 (ayj 8:1’:)

" Gradient magnitude (edge strength)

sl =/ (%) + (%)
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Image Gradient

How can we differentiate a digital image f(z,y)?

= Option 1: Reconstruct a continuous image, then
take gradient

= Option 2: Take discrete derivative (finite
difference filter)

= Option 3: Convolve with derived Gaussian
(derivative filter)
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Finite difference

= First-order central difference

8f o Nf($+1?y)_f($_1ﬁy)
%(:’Eny)"“" 9

= Corresponding convolution kernel: |-s]o]s

>
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Finite difference

" First-order central difference (half pixel)

G
a_i(x’ y) ~ f(z+0.5,y) — f(z —0.5,9)

= Corresponding convolution kernel: [+]:

>
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Second-order Derivative

= Differentiate again to get second-order central
difference

of (x)
0x?

~ flo+1) —2f(x) + fz — 1)

Corresponding convolution kernel: [1]2]:

Visual Navigation for Flying Robots 36 Dr. Jirgen Sturm, Computer Vision Group, TUM



Example

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

10, ) girj)
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Example

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

— i —

e Um0

i HEN B
= —

g(1,7)
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(Dense) Motion Estimation

= 2D motion

= 3D motion
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Problem Statement

= Given: two camera images fo, fi
= Goal: estimate the camera motion u

fo

= For the moment, let’s assume that the camera
only moves in the xy-plane, i.e., u= (uv)'

= Extension to 3D follows
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General Idea

1. Define an error metric F(u) that defines how
well the two images match given a motion

vector
2. Find the motion vector with the lowest error

u” = arg min F(u)

h
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Error Metrics for Image Comparison

= Sum of Squared Differences (SSD)

Essp(u) = Z (J1(xi +u) — fo(xi)) Z :
with displacement u = (v v)'

and residual errors ¢; = fi(x; +u) — fo(x;)
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Robust Error Metrics

= SSD metric is sensitive to outliers
= Solution: apply a (more) robust error metric

ESRD ZIO fl X?,_I_U— fU Xz Zp
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Robust Error Metrics

= Sum of absolute differences (SAD, L1 norm)
psap(e) = |e|
= Sum of truncated errors

Prrunc(€) = {

e? if |e| < b
b? otherwise

= Geman-McClure

Pgm (8)

CL‘Q

:1+332
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Robust Error Metrics
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Windowed SSD

" Images (and image patches) have finite size

= Standard SSD has a bias towards smaller
overlaps (less error terms)

= Solution: divide by the overlap area
" Root mean square error

Ervs(u) = /Fsgp/A
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Exposure Differences

" Images might be taken with different exposure
(auto shutter, white balance, ...)

= Bias and gain model
filx+u) = (1+a)fo(x)+f
= With SSD we get
Epc(u) = Z (fr(xi +u) = (1 + ) fo(x:) + B)°

—Z(}ffo +,8—€
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Cross-Correlation

" Maximize the product (instead of minimizing
the differences)

Ecc(u Zfo X;) f1(x; +u)
= Normalized cross-correlation (between -1..1)
Exce(u) =
B Z (fo(x;) — meanfy)(fi(x; +u) — meanfi)

vvar fovar fi
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General Idea

1. Define an error metric F(u) that defines how
well the two images match given a motion

vector
2. Find the motion vector with the lowest error

u” = arg min F(u)

J1 /\

Skt
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Finding the minimum

" Full search (e.g., £16 pixels)
= Gradient descent
= Hjerarchical motion estimation
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Hierarchical motion estimation

= Construct image pyramid ~~\f(2)

V) e %) L

= Estimate motion on coarse level
= Use as initialization for next finer level

a1 « 2u®
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Motion Estimation

= Perform Gauss-Newton minimization on the
SSD energy function (Lucas and Kanade, 1981)
= Gauss-Newton minimization
" Linearize residuals w.r.t. to camera motion
" Yields quadratic cost function
= Build normal equations and solve linear system
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Motion Estimation

= Taylor expansion of energy function

Frx_ssp(u+ Au) = Z(fl (x; +u+ Au) — fU(Xi))2

1

~ Z filx; +u) + Ji(x + u)Au — fo(x;))”
—Z (J1(x +u)Au + ¢;)”

dfi dfi

with Ji(x; + u) = Vfi(x; +u) = (axa oy

)(xi +u)
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Least Squares Minimization

= Goal: Minimize
FE(u+ Au) = Z(Jl (x; + u)Au + ¢;)°

= Solution: Compute derivative and set to zero

OF(u+ Au)

!
A = 2AAu+2b =0

with A = Z J! (x;i +u)Ji(x+u)

and b = ZeiJ;—(XE' -+ 11)
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Least Squares Minimization

1. Compute A,b from image gradients using

A ( > I fofu) b — (S: fzﬂf;f)

> fely 2.1y > 1ot
with 1, = “5 1, = S
9, (x
and /i = fi( )[g f1(x) = fo(x)]

ot

2. Solve AAu= —b
= Au=-A"'b

All of these computation
are super fast!
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Covariance of the Estimated Motion

= Assuming (small) Gaussian noise in the images
fobs (X@) — ftruc (X-?ﬁ) + €;
with ¢ ~ N(0,07)

= .. results in uncertainty in the motion estimate
with covariance (e.g., useful for Kalman filter)

Y, =o0’A"}
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Optical Computer Mouse (since 1999)

= E.g., ADNS3080 from Agilent
Technologies, 2005
= 6400 fps
= 30x30 pixels
= 4 USD

HDNS-2200 (CLIP)

HLMP-ED80 (LED)
HDNS-2000 (SENSOR)

=+—— CUSTOMER SUPPLIED PCB

HDNS-2100 (LENS)

-=—— CUSTOMER SUPPLIED BASE PLATE
WITH RECOMMENDED ALIGNMENT
FEATURES PER IGES DRAWING

Visual Navigation for Flying Robots
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1 68.9 K
1.0 pF 68.9 L
68.9 M
R1| 689 N
78.9 P
931 Q
z 0.1 pF e R
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Image Patches

= Sometimes we are interested of the motion of
a small image patches

" Problem: some patches are easier to track than
others

= What patches are easy/difficult to track?
= How can we recognize “good” patches?
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Image Patches

= Sometimes we are interested of the motion of
a small image patches

" Problem: some patches are easier to track than
others
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Example

= Let’s look at the shape of the energy
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Corner Detection

A (T S5
> [ty 21,
" |dea: Inspect eigenvalues A;, A2 of Hessian A
= A1, A2 small = no point of interest
= )\, large, Ao small 2> edge
= A1, A2 large = corner
= Harris detector (does not need eigenvalues)
Mg > k(A + Ag)? & det(A) > & trace®(A)

= Shi-Tomasi (or Kanade-Lucas) min(Aj, \s) > &
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Corner Detection

For all pixels, computer corner strength

2. Non-maximal suppression
(E.g., sort by strength, strong corner
suppresses weaker corners in circle of radius r)

strongest responses non-maximal suppression
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Other Detectors

= Forstner detector (localize corner with sub-
pixel accuracy)

= FAST corners (learn decision tree, minimize
number of tests = super fast)

= Difference of Gaussians / DoG (scale-invariant
detector)

Visual Navigation for Flying Robots 63 Dr. Jirgen Sturm, Computer Vision Group, TUM



Kanade-Lucas-Tomasi (KLT) Tracker

= Algorithm

1. Find (Shi-Tomasi) corners in first frame and
initialize tracks

Track from frame to frame

Delete track if error exceeds threshold
Initialize additional tracks when necessary
Repeat step 2-4

= KLT tracker is highly efficient (real-time on CPU)
but provides only sparse motion vectors

= Dense optical flow methods require GPU

VR W N
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Interesting Papers from ICRA 2013

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

Real-time Motion Tracking on a Cellphone using Inertial Sensing
and a Rolling-Shutter Camera

Mingyang Li, Byung Hyung Kim and Anastasios I. Mourikis
Dept. of Electrical Engineering, University of California, Riverside
E-mail: mli@ee.ucr.edu, bkim@ee.ucr.edu, mourikis @ee.ucredu

Abstract— All existing methods for vision-aided inertial nav-
igation assume a camera with a global shutter, in which all the
pixels in an image are captured simultaneously. However, the
vast majority of consumer-grade cameras use rolling-shutter
sensors, which capture each row of pixels at a slightly different
time instant. The effects of the rolling shutter distortion when
a camera is in motion can be very significant, and are not
modelled by existing visual-inertial motion-tracking methods.
In this paper we describe the first, to the best pf our knowledge,
method for vision-aided inertial navigation using rolling-shutter
cameras. Specifically, we present an extended Kalman filter
(EKF)-based method for visual-inertial odometry, which fuses
the IMU measurements with observations of visual feature
tracks provided by the camera. The key contribution of this
work is a computationally tractable approach for taking into
account the rolling-shutter effect, incurring only minimal ap-
proximations. The experimental results from the application of
the method show that it is able to track, in real time, the position
of a mobile phone moving in an unknown environment with
an error accumulation of approximately 0.8% of the distance Fig. 1: An example image with rolling-shutter distortion.
travelled, over hundreds of meters.




Smartphone as a Sensor Platform
[Li et al., ICRA ‘13]

= Quadcore

" Multiple cameras
= Accelerometer

= (Gyroscopes

= GPS

= Wireless

= Relatively cheap
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Challenges

[Li et al., ICRA ‘13]

= Rolling shutter camera
" Poor synchronization between camera and IMU
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Kalman Filter
[Li et al., ICRA ‘13]

= Kalman state contains
= |MU pose

" [ast m camera poses

T
Xk — [Xﬂ ng_m o ﬂ-gk—l]

IMU state camera poses of m last states

= \We need to define
= Motion model
= Observation model
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Kalman Filter: Motion Model
[Li et al., ICRA ‘13]

= Motion model (IMU)

= Angular velocity

ws'n,:Iw‘l‘bg‘l‘nr
) ) ) 1

measure- true bias noise
ment velocity

= |inear acceleration

A, — éR (Ga— Gg) —|—ba + ng,
t ) ) ) ) )

measure- orient- true gravity bias noise
ment ation acc.
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Rolling Shutter

[Li et al., ICRA ‘13]

= Read-out time of the whole image fimage = Nliine
= Observation time of first row ¢
= Observation time of i-th row ¢ + ity

L+ tline
t+ 2tlin0
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Kalman Filter: Observation Model

[Li et al., ICRA ‘13]

= Observations from KLT tracker

= 2D observations of 3D points (3D positions
estimated by triangulation, covered next week)

= Observation function

zj = h(“/ps) +n;

= Observation function with rolling shutter comp.

2" = h(“py(t; + nta))

(n)
1,
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Results
Li et al., ICRA “13]

= Galaxy S2 (live demo at ICRA with S3)

" IMU updates at 90 Hz (downsampled)
= Gyroscope at 106 Hz
= Accelerometer at 93 Hz

= |[mages at 15 Hz
= Read-out time 32msec

= 610m and 900m trajectory
= Drift less than 0.8%, absolute scale from IMU
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Results
[Li et al., ICRA ‘13]

l.-llIlI—lllI‘-l-;_:-—lliF-..-lllll-I“.I;lll-I...
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Commercial Solutions

= Pix4flow from ETH/3D robotics
1 camera, IMU, ultrasound, 150 EUR

= Parrot Mainboard + Navigation board
1 camera, IMU, ultrasound, 210 USD
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Talks at ROSCon 2013

= ROS Conference (in conjunction with ICRA)

" Talk by Chad Rockey (Willow Garage) on
Android sensors driver

" Android app (Google Play store or github)
= Provides:

= /android/imu
= /android/fix (GPS)
" /camera/camera_ info

» /camera/image/compressed
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Android Sensors Driver
E E E R O S .0 rg About | Support | answers ros.org

Documentation Browse Software New

android_sensors_driver

fuerte | IOl Documentation Status

Package Summary Package Links
Code API
android_sensors_driver Tutorials
FAQ
¢ Author: Chad Rockey (chadrockey@gmail com) Change List
¢ License: Apache 2.0 Releases
e Source: git hitps://github.com/ros-android/android_sensors_driver.git Reviews
Contents
1. App Summary
2. Example
3. Installation
4. Tutorials
5. Report a Bug

1. App Summary

This Android app aims to provide an easy way to use Android-enabled devices in ROS. The app currently supports

Visual Nav pL_JbIlshmg ofGF'S fixes as sensor_msas/NavSatFix and accelerometer/magnetometer/gyroscope data as up, TUM




Android Sensors Driver

B» Google play

SHOP

ROS Android Sensors

Driver
Chad Rockey

(XX
e 0 _
@ 00 s

More from developer

v ROS Android Robot Monitor

S’ - L A 2
o @ Free
See more

Users who viewed this also viewed

Sensor Viewer Driver Droid

m Pomen -

Free
PR ee

MY MUSIC MY BOOKS

R NSNS
\\. ER REV

Description

This is a dnver that exposes the sensors in an Android device to ROS
For more information, please see

http://ros_org:

http://www_ros_org/wiki/android_sensors_dnver

To view source and file bug reports, see

https_//github.com/chadrockey/android_sensors_dnver

Visit Developer's Website Email Developer

App Screenshots

MY ANDROID APPS

¥ Tweet

ABOUT THIS APP
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First Flight Tests for a Quadrotor UAV with Tilting Propellers

Markus Ryll, Heinrich H. Biilthoff, and Paolo Robuffo Giordano

Abstract—In this work we present a novel concept of a
quadrotor UAV with tilting propellers. Standard quadrotors
are limited in their mobility because of their intrinsic underac-
tuation (only 4 independent control inputs vs. their G-dof pose
in space). The quadrotor prototype discussed in this paper, on
the other hand, has the ability to also control the orientation
of its 4 propellers, thus making it possible to overcome the
aforementioned underactuation and behave as a fully-actuated
flying vehicle. We first illustrate the hardware/software specifi-
cations of our recently developed prototype, and then report the
experimental results of some preliminary, but promising, flight
tests which show the capabilities of this new UAV concept.

I. INTRODUCTION

Common UAVs (Unmanned Aerial Vehicles) are under-
actuated mechanical systems, i.e., possessing less control
inputs than available degrees of freedom (dofs). This is, for
instance, the case of helicopters and quadrotor UAVs [1],
[2]. For these latter platforms, only the Cartesian position
and yaw angle of their body frame w.r.t an inertial frame
can be independently controlled (4 dofs), while the behavior
of the remaining roll and pitch angles (2 dofs) is completely

Fig. 1: A picture of the prototype on a testing gimbal

The work in [10] proposed a trajectory tracking con-
troller based on dynamic feedback linearization and meant
to fully exploit the actuation capabilities of this new design.
The closed-loop tracking performance was, however, only
evaluated via numerical simulations, albeit considering a
realistic dynamical model. Goal of the present paper is to




Tilting Propellors

[Ryll et al., ICRA ‘13]

Second Experiment:

Sinusoidal rotation around X-axis

Keeping position in place
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Shipdeck Tracking
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Infrastructure-free Shipdeck Tracking for Autonomous Landing

Sankalp Arora, Sezal Jain, Sebastian Scherer, Stephen Nuske, Lyle Chamberlain and Sanjiv Singh

Abstract— Shipdeck landing is one of the most challenging
tasks for a rotorcraft. Current autonomous rotorcrafl use
shipdeck mounted transponders to measure the relative pose
of the vehicle to the landing pad. This tracking system is not
only expensive but renders an unequipped ship unlandable. We
address the challenge of tracking a shipdeck without additional
infrastructure on the deck. We present two methods based on
video and lidar that are able to track the shipdeck starting
at a considerable distance from the ship. This redundant
sensor design enables us to have two independent tracking
systems. We show the results of the tracking algorithms in three
different environments — field testing results on actual helicopter
flights, in simulation with a moving shipdeck for lidar based
tracking and in laboratory using an occluded, and, moving
scaled model of a landing deck for camera based tracking.
The complimentary modalities allow shipdeck tracking under
varying conditions.

I. INTRODUCTION

Take-off and landing on ships is a necessary capability
for rotorcraft operating at sea. Missions for rotorcraft on
ships are surveillance. transfer of supplies, and ship to
shore operations. Manned helicopters rely on the skill of
the pilot to track the deck markings and ship. while current
autonomous helicopters rely on additional infrastructure on
the deck such as radar beacons or GPS systems to track the
deck. This additional infrastructure emits radio signals to
communicate with the rotorcraft which is undesirable and
an autonomous helicopter can only land on instrumented

chine Additinnally the evicting tochnnlaov ic avnencive and
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Fig. 1: (a) Landing pad used during experimentation (b)

Sensor head monnted on the nose of the heliconter carries

n Group, TUM




Shipdeck Tracking
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First Results in Detecting and Avoiding Frontal Obstacles from a Monocular
Camera for Micro Unmanned Aerial Vehicles

Tomoyuki Mori and Sebastian Scherer

Abstract— Obstacle avoidance is desirable for lightweight
micro aerial vehicles and is a challenging problem since
the payload constraints only permit monocular cameras and
obstacles cannot be directly observed. Depth can however be
inferred based on various cues in the image. Prior work has
examined optical flow, and perspective cues, however these
methods cannot handle frontal obstacles well. In this paper
we examine the problem of detecting obstacles right in front
of the vehicle. We developed a method to detect relative size
changes of image patches that is able to detect size changes
in the absence of optical flow. The method uses SURF feature
matches in combination with template matching to compare
relative obstacle sizes with different image spacing. We present
results from our algorithm in autonomous flight tests on a
small quadrotor. We are able to detect obstacles with a frame-
to-frame enlargement of 120% with a high confidence and
confirmed our algorithm in 20 successful flight experiments. In
future work, we will improve the control algorithms to avoid
more complicated obstacle configurations.

I. INTRODUCTION

The ability to detect and avoid obstacles of birds flying
in a forest is fascinating and has been subject of a lot of
research. However, there are also many applications of small
safe aenal vehicles for search and rescue, mapping, and
information gathering.

Advances in battery technology. computing. and mechan-
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Fig. I: An example frontal obstacle. The optical flow
response of this obstacle is close to zero. However, our
approach is able to detect and avoid this type of obstacle.

cues to detect oncoming obstacles. Biological flying crea-
tures on the other hand also use many other monocular cues
to detect oncoming collisions as shown in Table I. A suc-
cessful system will have to exploit all available cues to detect
obstacles. Different cues, however, are useful at different
times. For example perspective cues such as vanishing lines
can be very useful in man-made environments while they do
not work well in natural environments because of a lack of
straight lines. Optical flow on the other hand fails in man-
made environments. because large regions of homogeneous
texture (e.g. painted wall) do not have sufficient information
to enable flow calculations.
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Learning Monocular Reactive UAV Control in
Cluttered Natural Environments

Stéphane Ross*, Narek Melik-Barkhudarov®, Kumar Shaurya Shankar®,
Andreas Wendel’, Debadeepta Dey*, J. Andrew Bagnell* and Martial Hebert”
*The Robotics Institute
Camnegie Mellon University. Pittsburgh. PA, USA
Email: {srossl. nmelikba, kumarsha, debadeep, dbagnell. hebert} @ andrew.cmu.edu
fInstitute for Computer Graphics and Vision
Graz University of Technology, Austria
Email: wendel@icg.tugraz.at

Abstract—Autonomous navigation for large Unmanned Aerial
Vehicles (UAVs) is fairly straight-forward, as expensive sensors
and monitoring devices can be employed. In contrast, obstacle
avoidance remains a challenging task for Micro Aerial Vehicles
(MAYVs) which operate at low altitude in cluttered environments.
Unlike large vehicles, MAVs can only carry very light sensors,
such as cameras, making autonomous navigation through ob-
stacles much more challenging. In this paper, we describe a
system that navigates a small quadrotor helicopter autonomously
at low altitude through natural forest environments. Using only
a single cheap camera to perceive the environment, we are able
to maintain a constant velocity of up to 1.5m/s. Given a small
set of human pilot demonstrations, we use recent state-of-the-
art imitation learning techniques to train a controller that can
avoid trees by adapting the MAVs heading. We demonstrate the
performance of our system in a more controlled environment
indoors, and in real natural forest environments outdoors.

1. INTRODUCTION

In the past decade Unmanned Aerial Vehicles (UAVs)
have enjoyed considerable success in many applications such
as search and rescue, monitoring, research, exploration, or
mapping. While there has been significant progress in making

Fig. 1. We present a novel method for high-speed, autonomous MAV flight
through densc forest arcas. The system is based on purely visual input and
imitates human reactive control.

In contrast to straightforward supervised learning [10]. our
policies are iteratively leamed and exploit corrective input at
later iterations to boost the overall performance of the predic-
tor. especially in situations which would not be encountered
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Learning to Avoid Obstacles
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Ideas for Your Mini-Project

Person following (colored shirt or wearing a marker)

Flying camera for taking group pictures (possibly using
the OpenCV face detector)

Fly through a hula hoop (brightly colored, white
background)

Navigate through a door (brightly colored)

Navigate from one room to another (using ground
markers)

Avoid obstacles using optical flow
Landing on a marked spot/moving target
Your own idea here — be creative!
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Lessons Learned Today

How to estimate the translational motion from
camera images

Which image patches are easier to track than
others

How to estimate 2D motion from camera
Images

Summary of ICRA and ROSCon papers/talks
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