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Motivation 
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 Quick geometry recap 

 Image filters 

 2D image alignment 

 Corner detectors 

 Kanade-Lucas-Tomasi tracker 

 2D motion estimation 

 Interesting research papers from ICRA and 
ROSCon 
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Visual Motion Estimation 
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Recap: Perspective Projection 
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Recap: Perspective Projection 
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3D to 2D Perspective Projection 

 3D point     (in the camera frame) 

 2D point     (on the image plane) 

 Pin-hole camera model 

 
 

 Remember,     is homogeneous, need to 
normalize 
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Camera Intrinsics 

 So far, 2D point is given in meters on image 
plane (located in 1m distance from origin) 

 But:  we want 2D point be measured in pixels 
(as the sensor does) 
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Camera Intrinsics 

 Need to apply some scaling/offset  

 

 

 

 

 Focal length  

 Camera center 

 Skew 
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 Pixel coordinates 

 Image plane 

 

 Example: 

 Discrete case 
(default in this course) 

 Continuous case 
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Image Plane 
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 We can think of an image as a function  

         gives the intensity at position 

 Color images are vector-valued functions 
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Image Functions 
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 Realistically, the image function is only defined 
on a rectangle and has finite range 

 

 Image can be represented as a matrix 

 Alternative notations 
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Image Functions 

Visual Navigation for Flying Robots 

111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 

189 193 214 216 104 79 83 77 

191 201 217 220 103 59 60 68 

195 205 216 222 113 68 69 83 

199 203 223 228 108 68 71 77 

often (row,column) 

often (column,row) 



Example 
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 Light intensity is sampled by CCD/CMOS sensor 
on a regular grid 

 Electric charge of each cell is quantized and 
gamma compressed (for historical reasons) 

                                           with  

 CRTs / monitors do the inverse 

 Almost all images are gamma compressed 

 Double brightness results only in a 37% higher 
intensity value (!) 
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Digital Images 
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Aliasing 

 High frequencies in the scene and a small fill 
factor on the chip can lead to (visually) 
unpleasing effects 

 Examples 
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Rolling Shutter 

 Most CMOS sensors have a rolling shutter 

 Rows are read out sequentially 

 Sensitive to camera and object motion 

 Can we correct for this? 
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Image Filtering 

 We want to remove unwanted sources of 
variation, and keep the information relevant for 
whatever task we need to solve 

 

 

 

 Example tasks: 
de-noising, (de-)blurring, computing 
derivatives, edge detection, … 
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Linear Filtering 

 Each output is a linear combination of all the 
input values 

 
 In matrix form 
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G = H F 

c = c 



Spatially Invariant Filtering 

 We are often interested in spatially invariant 
operations 
 

 

 Example 
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-1 2 -1 

-1 2 -1 

-1 2 -1 

111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 

189 193 214 216 104 79 83 77 

191 201 217 220 103 59 60 68 

195 205 216 222 113 68 69 83 

199 203 223 228 108 68 71 77 

? 



Spatially Invariant Filtering 

 We are often interested in spatially invariant 
operations 
 

 

 Example 
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-1 2 -1 

-1 2 -1 

-1 2 -1 

111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 

189 193 214 216 104 79 83 77 

191 201 217 220 103 59 60 68 

195 205 216 222 113 68 69 83 

199 203 223 228 108 68 71 77 

? ? ? ? ? ? ? ? 

? -5 9 -9 21 -12 10 ? 

? -29 18 24 4 -7 5 ? 

? -50 40 142 -88 -34 10 ? 

? -41 41 264 -175 -71 0 ? 

? -24 37 349 -224 -120 -10 ? 

? -23 33 360 -217 -134 -23 ? 

? ? ? ? ? ? ? ? 



Important Filters 

 Impulses 
 Shifts 
 Blurring and de-blurring 

 Gaussian 
 Bilateral filter 
 Motion blur 

 Edges 
 Finite difference filter 
 Derivative filter 
 Oriented filters 
 Gabor filter 

 … 
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Impulse 
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0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

convolution  
operator 



Image shift (translation) 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 22 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 0 0 

0 0 0 0 0 

2 pixels 



Image rotation 
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? 



Image rotation 
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? 
Image rotation is a linear operator (why?), but not a spatially 

invariant operation (why?). There is no convolution. 



Rectangular Filter 
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Rectangular Filter 
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Rectangular Filter 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 27 



Gaussian Blur 

 Gaussian distribution 

 

 

 Example of resulting kernel 
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Gaussian Blur 

Visual Navigation for Flying Robots 

s=1 

s=2 

s=4 



Image Gradient 

 The image gradient                             points in 
the direction of increasing intensity (steepest 
ascend) 
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Image Gradient 

 The image gradient                             points in 
the direction of increasing intensity (steepest 
ascend) 
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Image Gradient 
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 Gradient direction (related to edge orientation) 
 

 

 

 Gradient magnitude (edge strength) 



Image Gradient 

How can we differentiate a digital image            ? 

 Option 1: Reconstruct a continuous image, then 
take gradient 

 Option 2: Take discrete derivative (finite 
difference filter) 

 Option 3: Convolve with derived Gaussian 
(derivative filter) 
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Finite difference 

 First-order central difference 

 

 

 Corresponding convolution kernel: 
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-.5 0 .5 



Finite difference 

 First-order central difference (half pixel) 

 

 

 Corresponding convolution kernel: 
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-1 1 



Second-order Derivative 

 Differentiate again to get second-order central 
difference 
 
 
 
Corresponding convolution kernel: 
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1 -2 1 



Example 
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Example 
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-1 

1 



(Dense) Motion Estimation 

 2D motion 

 

 

 

 3D motion 
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Problem Statement 

 Given: two camera images 

 Goal: estimate the camera motion 

 

 
 

 For the moment, let’s assume that the camera 
only moves in the xy-plane, i.e.,  

 Extension to 3D follows 
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General Idea 

1. Define an error metric            that defines how 
well the two images match given a motion 
vector 

2. Find the motion vector with the lowest error 
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Error Metrics for Image Comparison 

 Sum of Squared Differences (SSD) 
 
 
 
with displacement  
and residual errors  
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Robust Error Metrics 

 SSD metric is sensitive to outliers 

 Solution: apply a (more) robust error metric 
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Robust Error Metrics 

 Sum of absolute differences (SAD, L1 norm) 

 

 

 Sum of truncated errors 

 

 

 Geman-McClure 
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Robust Error Metrics 
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Windowed SSD 

 Images (and image patches) have finite size 

 Standard SSD has a bias towards smaller 
overlaps (less error terms) 

 Solution: divide by the overlap area 

 Root mean square error 
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Exposure Differences 

 Images might be taken with different exposure 
(auto shutter, white balance, …) 

 Bias and gain model 
 

 

 With SSD we get 
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Cross-Correlation 

 Maximize the product (instead of minimizing 
the differences) 

 

 

 Normalized cross-correlation (between -1..1) 
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General Idea 

1. Define an error metric            that defines how 
well the two images match given a motion 
vector 

2. Find the motion vector with the lowest error 
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Finding the minimum 

 Full search (e.g., ±16 pixels) 

 Gradient descent 

 Hierarchical motion estimation 
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Hierarchical motion estimation 

 Construct image pyramid 

 

 

 

 

 Estimate motion on coarse level 

 Use as initialization for next finer level 
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Motion Estimation 

 Perform Gauss-Newton minimization on the 
SSD energy function (Lucas and Kanade, 1981) 

 Gauss-Newton minimization 

 Linearize residuals w.r.t. to camera motion 

 Yields quadratic cost function  

 Build normal equations and solve linear system 

 

 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 52 



Motion Estimation 

 Taylor expansion of energy function 
 
 
 
 
 

 
 
with  
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Least Squares Minimization 

 Goal: Minimize 

 
 Solution: Compute derivative and set to zero 

 
 
 
with 
 

and  
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Least Squares Minimization 

1. Compute A,b from image gradients using 
 
 

 
with 
 
and 

 

2. Solve 
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All of these computation  
are super fast! 



Covariance of the Estimated Motion 

 Assuming (small) Gaussian noise in the images 
 
 
with 

 

 … results in uncertainty in the motion estimate 
with covariance (e.g., useful for Kalman filter) 
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Optical Computer Mouse (since 1999) 

 E.g., ADNS3080 from Agilent  
Technologies, 2005 

 6400 fps 

 30x30 pixels 

 4 USD 
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Image Patches 

 Sometimes we are interested of the motion of 
a small image patches 

 Problem: some patches are easier to track than 
others 

 What patches are easy/difficult to track? 

 How can we recognize “good” patches? 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 58 



Image Patches 

 Sometimes we are interested of the motion of 
a small image patches 

 Problem: some patches are easier to track than 
others 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 59 



Example 

 Let’s look at the shape of the energy 
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Corner Detection 

 Idea: Inspect eigenvalues            of Hessian 

             small  no point of interest 

       large,       small  edge 

             large  corner 

 Harris detector (does not need eigenvalues) 

 

 Shi-Tomasi (or Kanade-Lucas) 
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Corner Detection 

1. For all pixels, computer corner strength 

2. Non-maximal suppression  
(E.g., sort by strength, strong corner 
suppresses weaker corners in circle of radius r) 
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strongest responses non-maximal suppression 



Other Detectors 

 Förstner detector (localize corner with sub-
pixel accuracy) 

 FAST corners (learn decision tree, minimize 
number of tests  super fast) 

 Difference of Gaussians / DoG (scale-invariant 
detector) 

 … 
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Kanade-Lucas-Tomasi (KLT) Tracker 

 Algorithm 
1. Find (Shi-Tomasi) corners in first frame and 

initialize tracks 

2. Track from frame to frame 

3. Delete track if error exceeds threshold 

4. Initialize additional tracks when necessary 

5. Repeat step 2-4 

 KLT tracker is highly efficient (real-time on CPU) 
but provides only sparse motion vectors 

 Dense optical flow methods require GPU 
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Example 
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Interesting Papers from ICRA 2013 
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Smartphone as a Sensor Platform 
[Li et al., ICRA ‘13] 

 Quadcore 

 Multiple cameras 

 Accelerometer 

 Gyroscopes 

 GPS 

 Wireless 

 Relatively cheap 
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Challenges  
[Li et al., ICRA ‘13] 

 Rolling shutter camera 

 Poor synchronization between camera and IMU 
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Kalman Filter 
[Li et al., ICRA ‘13] 

 Kalman state contains 

 IMU pose  

 last m camera poses 

 

 

 

 We need to define 

 Motion model 

 Observation model 
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IMU state camera poses of m last states 



Kalman Filter: Motion Model 
[Li et al., ICRA ‘13] 

 Motion model (IMU) 

 Angular velocity 

 

 

 

 Linear acceleration 
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bias noise 

bias noise gravity measure- 
ment 

true 
velocity 

measure- 
ment 

orient- 
ation 

true 
acc. 



 Read-out time of the whole image 

 Observation time of first row 

 Observation time of i-th row  

 

 

 

Rolling Shutter 
[Li et al., ICRA ‘13] 
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Kalman Filter: Observation Model 
[Li et al., ICRA ‘13] 

 Observations from KLT tracker 

 2D observations of 3D points (3D positions 
estimated by triangulation, covered next week) 

 Observation function 

 

 

 Observation function with rolling shutter comp. 
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Results 
[Li et al., ICRA ‘13] 

 Galaxy S2 (live demo at ICRA with S3) 

 IMU updates at 90 Hz (downsampled) 

 Gyroscope at 106 Hz 

 Accelerometer at 93 Hz 

 Images at 15 Hz 

 Read-out time 32msec 

 610m and 900m trajectory 

 Drift less than 0.8%, absolute scale from IMU 
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Results 
[Li et al., ICRA ‘13] 
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Commercial Solutions 

 Pix4flow from ETH/3D robotics 
1 camera, IMU, ultrasound, 150 EUR 

 Parrot Mainboard + Navigation board 
1 camera, IMU, ultrasound, 210 USD 
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Talks at ROSCon 2013 

 ROS Conference (in conjunction with ICRA) 

 Talk by Chad Rockey (Willow Garage) on 
Android sensors driver 

 Android app (Google Play store or github) 

 Provides: 
 /android/imu  

 /android/fix (GPS)  

 /camera/camera_info  

 /camera/image/compressed 
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Android Sensors Driver 
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Android Sensors Driver 
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Android Sensors Driver 
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Cool ICRA Papers 
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Tilting Propellors  
[Ryll et al., ICRA ‘13] 
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Shipdeck Tracking  
[Arora et al., ICRA ‘13] 
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Shipdeck Tracking  
[Arora et al., ICRA ‘13] 
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Cool ICRA Papers 
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Frontal Obstacle Avoidance 
[Mori and Scherer, ICRA ‘13] 
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Cool ICRA Papers 
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Learning to Avoid Obstacles 
[Ross et al., ICRA ‘13] 
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ICRA Proceedings 

 All papers of a conference are (usually) 
collected into so-called proceedings 

 Previously: One or more books 

 Today: USB sticks or online 

 

 Will put ICRA proceedings online (see website) 

 Remember password (or ask by email) 
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Ideas for Your Mini-Project 

 Person following (colored shirt or wearing a marker) 
 Flying camera for taking group pictures (possibly using 

the OpenCV face detector) 
 Fly through a hula hoop (brightly colored, white 

background) 
 Navigate through a door (brightly colored) 
 Navigate from one room to another (using ground 

markers) 
 Avoid obstacles using optical flow  
 Landing on a marked spot/moving target 
 Your own idea here – be creative! 
 ... 
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 How to estimate the translational motion from 
camera images 

 Which image patches are easier to track than 
others 

 How to estimate 2D motion from camera 
images 

 Summary of ICRA and ROSCon papers/talks 
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Lessons Learned Today 
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