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VISNAYV Oral Team Exam

Date and Time Student Name Student Name Student Name

Mon, July 29, 10am

Mon, July 29, 11am
Mon, July 29, 2pm
Mon, July 29, 3pm
Mon, July 29, 4pm
Tue, July 30, 10am

Tue, July 30, 11am

Tue, July 30, 2pm
Will put up this list in front of our
secretary’s office (02.09.052)

Tue, July 30, 3pm
Tue, July 30, 4pm
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ICRA Papers+Videos are Online

UM Computer Vision Group - %

€& = C & https://visionintum.de/teaching/ss2013/visnav2013 iy @ EhE

...........

Additional Material

» @ICRA proceedings (username: visnav, password: ask by email)

Real-Time Motion Tracking on a Cellphone Using Inertial Sensing and a Rolling-Shutter Camera & pdf @video

First Flight Tests for a Quadrotor UAV with Tilting Propellers & pdf @video

* |nfrastructure-Free Shipdeck Tracking for Autonomous Landing & pdf @video

An Open Source and Open Hardware Embedded Metric Optical Flow CMOS Camera for Indoor and Outdoor

Applications @ pdf @video

* First Results in Detecting and Avoiding Frontal Obstacles from a Monocular Camera for Micro Unmanned
Aerial Vehicles @ pdf @video

* \ision-Based State Estimation for Autonomous Rotorcraft MAVs in Complex Environments & pdf @video

* Leamning Monocular Reactive UAV Contral in Cluttered Matural Environments & pdf @video

* Fast Visual Odometry and Mapping from RGB-D Data & pdf @video
» Stereo Vision and IMU Based Real-Time Ego-Mation and Depth Image Computation on a Handheld Device H
@ pdf
* Parallel, real-time monocular visual odometry & pdf . -
4 | 1 [ »
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Agenda for Today

= This week: basic ingredients of a visual SLAM
system

= Feature detection, descriptors and matching
= Place recognition
= 3D motion estimation

= Next week: bundle adjustment, graph SLAM,
stereo cameras, Kinect

= |n two weeks: map representations, mapping
and (dense) 3D reconstruction
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Last week: KLT Tracker
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Kanade-Lucas-Tomasi (KLT) Tracker

= Algorithm

1. Find (Shi-Tomasi) corners in first frame and
initialize tracks

2. Track from frame to frame

3. Delete track if error exceeds threshold

4. Initialize additional tracks when necessary
5. Repeat step 2-4

= KLT tracker is highly efficient (real-time on CPU)
but provides only sparse motion vectors

= Can use coarse-to-fine for larger motions
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Visual Odometry

[Li et al., ICRA “13]
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Limitations

" Tracking is based on image gradients (dx/dy/dt)
= Only works for small motions
= Preferably high frame rate

= Cannot recover when tracks are lost

= How can we recognize previously seen
patches?
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Example: How to Build a Panorama Map

= We need to match (align) images

= Global methods sensitive to occlusion, lighting,
parallax effects

= How would you do it by eye?
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Matching with Features

= Detect features in both images
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Matching with Features

= Detect features in both images
" Find corresponding pairs
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Matching with Features

= Detect features in both images
" Find corresponding pairs
= Use these pairs to align images
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Matching with Features

=" Problem 1:
We need to detect the same point
independently in both images

no chance to match!

— We need a reliable detector
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Matching with Features

= Problem 2:
For each point correctly recognize the
corresponding one

- We need a reliable and distinctive descriptor
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Ideal Feature Detector

= Always finds the same point on an object,
regardless of changes to the image

" |nsensitive (invariant) to changes in:
= Scale
" Lightning
= Perspective imaging
= Partial occlusion
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Harris Detector

= Rotation invariance?

> A
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Harris Detector

7 SN
= Remember from last week

2
1 (57 5 meweonen

= Rotation invariance?

N =)
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Harris Detector

7 SN
= Remember from last week

2
A= (szfj szf{’) R =AM — k(A + M)

= Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

= Rotation invariance

N =)

— Corner response R is mvanant to rotatlon
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Harris Detector

" |nvariance to intensity change?
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Harris Detector

= Partial invariance to additive and multiplicative
intensity changes

= Only derivatives are used =2 invariance to intensity
shift 1 —1+0b

= Intensity scale [ — al:
Because of fixed intensity threshold on local

maxima, only partial invariance
A " A
threshold— &

EVVAN A

x (Image coordinafe) x (Image coordinafe)




Harris Detector

" |nvariant to scaling?
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Harris Detector

= Not invariant to image scale
AT o~
.y =

All points classified as edge Point classified as corner

N\
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Difference Of Gaussians (DoG)

= Alternative corner detector that is additionally
invariant to scale change

= Approach:
= Run linear filter (diff. of two Gaussians, o = 209)

= Do this at different scales
= Search for a maximum both in space and scale
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Example: Difference of Gaussians
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SIFT Detector

= Search for local maximum in space and scale

L L A
L T

= Corner detections are invariant to scale change

f 4

Image 1

[

»

Scale o
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SIFT Detector

Detect maxima in scale-space
Non-maximum suppression

Eliminate edge points (check ratio of
eigenvalues)

4. For each maximum, fit quadratic function and
compute center at sub-pixel accuracy
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Example

Input image 233x189 pixel

2. 832 candidates DoG minima/maxima
(visualization indicate scale, orient., location)

3. 536 keypoints remain after thresholding on
minimum contrast and principal curvature
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Feature Matching

= Now, we know how to find repeatable corners
= Next question: How can we match them?
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Template Convolution

= Extract a small as a template

o R D
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Template Convolution

Invariances

= Scaling: No

= Rotation: No (maybe rotate template?)
= [[lumination: No (use bias/gain model?)

= Perspective projection: Not really
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Scale Invariant Feature Transform (SIFT)

" Lowe, 2004: Transform patches into a canonical
form that is invariant to translation, rotation,
scale, and other imaging parameters

2 )

A

K

T

\_ J

SIFT Features
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Scale Invariant Feature Transform (SIFT)

Approach
1. Find SIFT corners (position + scale)

2. Find dominant orientation and de-rotate
patch

3. Extract SIFT descriptor (histograms over
gradient directions)
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Select Dominant Orientation

= Create a histogram of local gradient directions
computed at selected scale (36 bins)

= Assigh canonical orientation at peak of
smoothed histogram

= Each key now specifies stable 2D coordinates
(x, vy, scale, orientation) 1

ﬂ »
0 2
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SIFT Descriptor

= Compute image gradients over 16x16 window
(green), weight with Gaussian kernel (blue)

= Create 4x4 arrays of orientation histograms,
each consisting of 8 bins

" |n total, SIFT descriptor has 128 dimensions

A + AT 7 f\
71T

\$\2a - -
— 'Y T > u| N

" =5 < | > P

| 1 Axul™ ke i# | % . ) .
N 1 [ ;

\‘. <« * e = 17/

Image gradients Keypoint descriptor
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Feature Matching

Given features in I;, how to find best match in ,?

= Define distance function that compares two
features

= Test all the features in [,, find the one with the
minimal distance
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Feature Distance

How to define the difference between features?

= Simple approach is Euclidean distance (or SSD)
d(di,d2) = ||d1 — daf]
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Feature Distance

How to define the difference between features?

= Simple approach is Euclidean distance (or SSD)
d(di,d2) = ||d1 — daf]

" Problem: can give good scores to ambiguous
(bad) matche
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Feature Distance

How to define the difference between features?

= Better approach d(d;,dy) = ||d; — dy||/||[d; — dj|
with d, best matching feature from I
d, second best matching feature from I,

= Gives small values for ambiguous matches
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Efficient Matching

For feature matching, we need to answer a large
number of nearest neighbor queries

= Exhaustive search O(n?)
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Efficient Matching

For feature matching, we need to answer a large
number of nearest neighbor queries

= Exhaustive search O(n?)

" Indexing (k-d tree)

Visual Navigation for Flying Robots
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Efficient Matching

For feature matching, we need to answer a large
number of nearest neighbor queries

= Exhaustive search O(n?)
" Indexing (k-d tree)

" Localize query in tree e

= Search nearby leaves
until nearest neighbor is
guaranteed found
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Efficient Matching

For feature matching, we need to answer a large
number of nearest neighbor queries

= Exhaustive search O(n?)

" Indexing (k-d tree)
" Localize query in tree
= Search nearby leaves

until nearest neighbor is

guaranteed found
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Efficient Matching

For feature matching, we need to answer a large
number of nearest neighbor queries

= Exhaustive search O(n?)

" Indexing (k-d tree)
" Localize query in tree
= Search nearby leaves

until nearest neighbor is

guaranteed found
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Efficient Matching

For feature matching, we need to answer a large
number of nearest neighbor queries

= Exhaustive search O(n?)
" Indexing (k-d tree)

" Localize query in tree

= Search nearby leaves
until nearest neighbor is
guaranteed found

= Best-bin-first: use priority
gueue for unchecked leafs
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Efficient Matching

For feature matching, we need to answer a large
number of nearest neighbor queries

= Exhaustive search O(n?)
" Indexing (k-d tree)

= Approximate search
= Locality sensitive hashing
= Approximate nearest neighbor
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Efficient Matching

For feature matching, we need to answer a large
number of nearest neighbor queries

= Exhaustive search O(n?)
" Indexing (k-d tree)

= Approximate search
= Locality sensitive hashing
= Approximate nearest neighbor
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Efficient Matching

For feature matching, we need to answer a large
number of nearest neighbor queries

= Exhaustive search O(n?)
" Indexing (k-d tree)

= Approximate search

= Vocabulary trees
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Other Descriptors (for intensity images)

= SIFT (Scale Invariant Feature Transform)
[Lowe, 2004]

= SURF (Speeded Up Robust Feature)
[Bay et al., 2008]

= BRIEF (Binary robust independent elementary

features)
[Calonder et al., 2010]

= ORB (Oriented FAST and Rotated Brief)
[Rublee et al, 2011]
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Example: RGB-D SLAM

[Engelhard et al., 2011; Endres et al. 2012]

= Feature descriptor: SURF

" Feature matching: FLANN (approximate nearest
neighbor)
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Appearance-based Place Recognition

= How can we recognize that we have been
visiting the same place before?

."‘}f . . ‘a“"ﬂ_’,
i -
Y AR L SR -—Jq\?“ .
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e
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Appearance-based Place Recognition

= Brute-force matching with all previous images
is slow (why?)

= How can we do this faster?
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Analogy to Document Retrieval

Of all the sensory impressions proceeding to the
brain, the visual experiences are the dominant
ones. Our perception of the world around us is
based essentiallvz i that reach
the brain frog
thought th

sensory, brain,
visual, perception,
retinal, cerebral cortex,
eye, cell, optical
nerve, image

the message about the image fall
retina undergoes a step-wise anal
system of nerve cells stored in column
system each cell has its specific function
responsible for a specific detail in the patte
the retinal image.
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China is forecasting a trade surplus of S90bn
(E51bn) to S$100bn this year, a threefold
increase on 2004's S$32bn. The Commerce
Ministry said the surclaasssssad be created by a
predicted 30%

China, trade,
surplus, commerce,
exports, imports, US,
yuan, bank, domestic,

foreign, increase,
. trade, value

unfairl
yuan.
says th

Beijing has made it clear that it will takd
and tread carefully before allowing the
rise further in value.
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Object/Scene Recognition

= Analogy to documents: The content can be
inferred from the frequency of visual words

object bag of visual words
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Bag of Visual Words

= Visual words = (independent) features

face features

Visual Navigation for Flying Robots 54 Dr. Jirgen Sturm, Computer Vision Group, TUM



Bag of Visual Words

= Visual words = (independent) features
= Construct a dictionary of representative words

dictionary of visual words (codebook)
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Bag of Visual Words

= Visual words = (independent) features
= Construct a dictionary of representative words

= Represent the image based on a histogram of
word occurrences (bag)

- A Each detected
- feature is assigned
to the closest

entry in the
codebook




Overview

feature detection
and extraction
(e.g., SIFT, ...)

N\ [

NP ™ -— ™
e _TdAdFRLTE o D
- THauF sl INE IN

B codewords dictionary

LJI"'I_L nﬂi:u—l
PLONERALS N
dRIIE 18 'I II_’

image representation
. (histogram of word
occurrences)
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Learning the Dictionary

. 7 \ 7 \ 7 \ ~

descriptor vectors
(e.g., SIFT, SUREF, ...)

example patch5
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Learning the Dictionary
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r N

Learning the Dictionary

. cluster center =

\

f

\

f

\
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code words

clustering,
e.g., k-means
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Learning the Visual Vocabulary

feature
extraction
>
& clustering
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Example Image Representation

= Build the histogram by assighing each detected
feature to the closest entry in the codebook

frequency

PLOENRLS, B

codewords
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Object/Scene Recognition

= Compare histogram of new scene with those of
known scenes, e.g., using

= simple histogram intersection

score(p, q) me (pis i)
" naive Bayes

= more advanced statistical methods

10 -
M Parking lot

5 - W Highway
?
0 |
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Example: FAB-MAP

[Cummins and Newman, 2008]
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Timing Performance

= |Inference: 25 ms for 100k locations
= SURF detection + quantization: 483 ms

(A}
m

Time (ms)

m
T

[

| 1 | 1 | 1 1 1
3 4 5 B 7 g 9 10

2
Number of Locations .«

1
1

o
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Summary: Bag of Words

[Fei-Fei and Perona, 2005; Nister and Stewenius, 2006]

= Compact representation of content
= Highly efficient and scalable
= Requires training of a dictionary

" |nsensitive to viewpoint changes/image
deformations (inherited from feature
descriptor)
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Structure From Motion (SfM)

= Now we can retrieve relevant images and
compute point correspondences between

them

= \What can we use them for?
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Four Important SfM Problems

= Camera calibration / resection

Known 3D points, observe corresponding 2D points, compute
camera pose

= Point triangulation
Known camera poses, observe 2D point correspondences,
compute 3D point

" Motion estimation

Observe 2D point correspondences, compute camera pose (up
to scale)

= Bundle adjustment / visual SLAM (next week!)

Observe 2D point correspondences, compute camera pose and
3D points (up to scale)

Visual Navigation for Flying Robots 68 Dr. Jurgen Sturm, Computer Vision Group, TUM



Four Important SfM Problems

= Each of these problems has many solution
algorithms

= Approaches differ in:

= Number of minimum points and assumptions of
their configuration

= Effect of noise (bias)
= Conditioning
= Simplicity vs. accuracy (linear vs. non-linear)
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Camera Calibration
(Perspective n-Point Problem)

P1

P2

P3

% world origin
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Camera Calibration
(Perspective n-Point Problem)

P1

P2

-
S
% world origin
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Camera Calibration

= Given: n 2D/3D correspondences x; <> p;

" Wanted: A = K(R t)
such that %, = Mp;

= Question: How many DOFs does M have?

" The algorithm has two parts:
1. Compute M € R**
2. Decompose M into K, R,t via QR decomposition
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Step 1: Estimate M

" X; = Mp;
= Each correspondence generates two equations

'mllX + Tnng -+ 'ﬂ113Z + -mMVV . ?'n-ng -+ Tﬂggy 4+ m23Z + ?’T?»24H’;

Mg X + MygsY + Mg +mg W Y Mg X + MygsY + MgsZ +mg, W

= Multiplying out gives equations linear in the
elements of M
(ms1 X +ms3Y +mssZ +maW)r =my X + mppY +mysZ +myyW
(msg1 X +msY +masZ +may W)y, = mor X + mooY +magZ + moy W

= Re-arrange in matrix form =2
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Step 1: Estimate M

= Re-arranged in matrix form

XY Z 10 0 00 —aX —a¥ —aZ —x\__
0 0 0 0X Y Z 1 —yX —yY —yZ —y) 7

withm = (my; mys ... mgy) € R'?
= Concatenate equations for n>6 correspondences
Am =0
"= Wanted vectorm is in the null space of A

" |nitial solution using SVD (vector with least
singular value), refine using non-linear min.
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Step 2: Recover K,R,t

= Remember M = K(R t)

" The first 3x3 submatrix is the product of an
upper triangular and orthogonal (rot.) matrix

Jo S Cp
K=1|0 f, ¢
0O 0 1

Procedure:
1. Factor M into KR using QR decomposition

2. Compute translation as t = K (pi4, pos, psa) |
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Example: ARToolkit Markers (1999)

1. Threshold image

Detect edges and fit lines
Intersect lines to obtain corners
Estimate projection matrix M

A

Extract camera pose R,t (assume
K is known)

The final error between measured and projected
points is typically less than 0.02 pixels

Visual Navigation for Flying Robots 76 Dr. Jurgen Sturm, Computer Vision Group, TUM



Triangulation

= Given: n cameras {M; = K;(R; t;)}
Point correspondence x, x;
* Wanted: Corresponding 3D point p
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Triangulation

= Where do we expecttosee p= (XY Z W)'?

'mnX + *mng -} m13Z + -mMW' i — ?’Tlng + mgzy 4+ ?’TEQ:}Z + ?’T?»24ﬂf
Mg X + MygoY + Mg +mg W Y Mg X + MygsY + MgsZ +mg, W

T =

= Minimize the residuals

" = argmin d(x;,%;)?
P & S zj: (3 .?)
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Triangulation

= Multiply with denominator gives

0= (zjm31 —myi1)X + (zymg2 — mi2)Y + (zymss — mi3)Z + (x;maq — mig) W

0 = (yjmg1 —ma1)X + (yjmaz — ma2)Y + (yjms3 — ma3z)Z + (y;mas — mag)W

Solve for p= (XY Z W)' using:
" Linear least squares with W=1
" Linear least squares using SVD

"= Non-linear least squares of the residuals
(most accurate)
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Epipolar Geometry

= | et’s consider two cameras that observe a 3D
world point
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Epipolar Geometry

= The line connecting both camera centers is
called the baseline

t

baseline
(line joining both camera centers)
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Epipolar Geometry

= Given the image of a point in one view, what
can we say about its position in another?

1, «— epipolar line of x

= A point in one image “generates” a line in
another image (called the epipolar line)
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Epipolar Geometry

= Left line in left camera frame p; = d1X;
= Right line in right camera frame p2 = daX
where %; = K 'x; are the (local) ray directions
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Epipolar Geometry

= Left line in right camera frame p| = Rd;%X; +t
= Right line in right camera frame p2 = daX
where %; = K 'x; are the (local) ray directions

= |ntersection of both lines
dgﬁg — Rdlﬁl + t [t]x

] R R =0 R
d,g }XXQ — dl[t RXl —|—/LH></t X;—'
0= doXo 15K = di%, [t]« R
0==%,[t ]XRxl

this is called the

T 12
= X, b’X : ;
0 2 1 epipolar constraint
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Epipolar Geometry
Note: The epipolar constraint holds for every pair
of corresponding points x;, X
%, B%, =0
where F is called the essential matrix

E = [t] R € R
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3D Motion Estimation

= Given: 2 camera images
n point correspondences

= Wanted: Camera motion R,t (up to scale)

= Solutions:
= 8-point algorithm
" normalized 8-point algorithm
" 6-point algorithm
= 5-point algorithm
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8-Point Algorithm: General Idea

1. Estimate the essential matrix E from at least
eight point correspondences

2. Recover the relative pose R,t from E (up to
scale)
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Step 1: Estimate E

= Epipolar constraint %, F%; = 0

= Written out (with X; = (2;,Y;, 1)T )
T1T2€11 + Y1T2€e12 + Tae1z +
T1Y2€21 + Y1Y2€22 + Y2623 +
r1€31 Y1€32 les3 = 0

= Stack the elements into two vectors

Z:(£E1$2 ynxry ... 1)T j|' T
92(611 612...633)T z e=0
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Step 1: Estimate E

= Each correspondence gives us one constraint

z,e=0
z,e =0

- Ze=0
z e =0

n —

" Linear system with n equations
" ejsin the null-space of Z
= Solve using SVD (assuming |le|| =1)
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Normalized 8-Point Algorithm
[Hartley 1997]

= Noise in the point observations is unequally
distributed in the constraints, e.g.,

double noise
1 T YiT2€12 T+ XT2€13 T

T1Y2€21 T Y1Y2€22 T Y2€23 T

normal noise — 0
31 T Y€z T 33 =
noise free

= Estimation is sensitive to scaling

= Normalize all points to have zero mean and
unit variance
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Step 2: Recover R,t

= Note: The absolute distance between the two
cameras can never be recovered from pure
images measurements alone!!!

= ||lustration

Rt
= We can only recover the translation t up to scale
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Step 2a: Recovert

= Remember: FE = [t].R
= Therefore, t'isin the null space of E

t'E=t'[t], R=0
=()

- Recover t (up to scale) using SVD
E=[t],R=UxXV"

1
:(uo u, E) 1 )(VJ VlT VQT)
0
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Step 2b: Recover R

Remember, the cross-product [t].

= ... projects a vector onto a set of orthogonal basis
vectors including t

= ... zeros out the t component
= ... rotates the other two by 90°

t] = SZRg-S"
1 0 —1 Sy
— (89 51 t) 1 1 0 s
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Step 2b: Recover R

= Plug this into the essential matrix equation

E=[t|xR=SZRyS'R=UXV"

" By identifying S = U and Z = ¥, we obtain

RypU'R=V"
R=URgy.V'
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= Matrices
rotations

= |dentify t
= Select t
" Triangu
" Selectt

Step 2b: Recover R

U,V are not guaranteed to be
(sign flip still yields a valid SVD)

— ::URIQUD VT

ne correct solution using
hose two solutions with det R =1
ate points in 3D

ne solution with the largest number of

points in front of the camera
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Summary: 8-Point Algorithm

Given: Image pair
-

~ A

| »n,'. “ ;
Find: Camera motion R,t (up to scale)

= Compute correspondences
= Compute essential matrix
= Extract camera motion
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Lessons Learned Today

= ... how to detect and match feature points
= ... how to efficiently recognize places

= ... how to estimate the camera pose and to
triangulate points
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