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VISNAV Oral Team Exam 
Date and Time Student Name Student Name Student Name 

Mon, July 29, 10am   

Mon, July 29, 11am 

Mon, July 29, 2pm 

Mon, July 29, 3pm 

Mon, July 29, 4pm 

Tue, July 30, 10am 

Tue, July 30, 11am 

Tue, July 30,  2pm 

Tue, July 30,  3pm 

Tue, July 30,  4pm 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 2 

Will put up this list in front of our 
secretary’s office (02.09.052) 



ICRA Papers+Videos are Online 
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Agenda for Today 

 This week: basic ingredients of a visual SLAM 
system 

 Feature detection, descriptors and matching 

 Place recognition 

 3D motion estimation 

 Next week: bundle adjustment, graph SLAM, 
stereo cameras, Kinect 

 In two weeks: map representations, mapping 
and (dense) 3D reconstruction 
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Last week: KLT Tracker 
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Kanade-Lucas-Tomasi (KLT) Tracker 

 Algorithm 
1. Find (Shi-Tomasi) corners in first frame and 

initialize tracks 

2. Track from frame to frame 

3. Delete track if error exceeds threshold 

4. Initialize additional tracks when necessary 

5. Repeat step 2-4 

 KLT tracker is highly efficient (real-time on CPU) 
but provides only sparse motion vectors 

 Can use coarse-to-fine for larger motions 
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Visual Odometry  
[Li et al., ICRA ‘13] 
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Limitations 

 Tracking is based on image gradients (dx/dy/dt) 

 Only works for small motions 

 Preferably high frame rate 

 Cannot recover when tracks are lost 

 

 How can we recognize previously seen 
patches? 
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Example: How to Build a Panorama Map 

 We need to match (align) images 

 Global methods sensitive to occlusion, lighting, 
parallax effects 

 How would you do it by eye? 
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Matching with Features 

 Detect features in both images 
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Matching with Features 

 Detect features in both images 

 Find corresponding pairs 
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Matching with Features 

 Detect features in both images 

 Find corresponding pairs 

 Use these pairs to align images 
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Matching with Features 

 Problem 1:  
We need to detect the same point 
independently in both images 

 

 

 

 

 

 We need a reliable detector 
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no chance to match! 



Matching with Features 

 Problem 2: 
For each point correctly recognize the 
corresponding one 

 

 

 

 

 

 We need a reliable and distinctive descriptor 
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? 



Ideal Feature Detector 

 Always finds the same point on an object, 
regardless of changes to the image 

 Insensitive (invariant) to changes in: 

 Scale 

 Lightning 

 Perspective imaging 

 Partial occlusion 
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Harris Detector 

 Rotation invariance? 
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Harris Detector 

 Rotation invariance? 

 

 

 Remember from last week 
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Harris Detector 

 Rotation invariance 

 

 

 Remember from last week 

 

 

 Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same  

 Corner response R is invariant to rotation 
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Harris Detector 

 Invariance to intensity change? 
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Harris Detector 

 Partial invariance to additive and multiplicative 
intensity changes 

 Only derivatives are used  invariance to intensity 
shift 

 Intensity scale                : 
Because of fixed intensity threshold on local 
maxima, only partial invariance 

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 



Harris Detector 

 Invariant to scaling? 
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Harris Detector 

 Not invariant to image scale 
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All points classified as edge Point classified as corner 



Difference Of Gaussians (DoG) 

 Alternative corner detector that is additionally 
invariant to scale change 

 Approach: 

 Run linear filter (diff. of two Gaussians,                  ) 

 Do this at different scales 

 Search for a maximum both in space and scale 
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Example: Difference of Gaussians 
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SIFT Detector 

 Search for local maximum in space and scale 

 

 

 

 Corner detections are invariant to scale change 
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scale = 1/2 

f 

Scale 

Image 1 f 

Scale 

Image 2 



SIFT Detector 

1. Detect maxima in scale-space 

2. Non-maximum suppression 

3. Eliminate edge points (check ratio of 
eigenvalues) 

4. For each maximum, fit quadratic function and 
compute center at sub-pixel accuracy 
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Blur 

Resample

Subtract



Example 

1. Input image 233x189 pixel 

2. 832 candidates DoG minima/maxima 
(visualization indicate scale, orient., location) 

3. 536 keypoints remain after thresholding on 
minimum contrast and principal curvature 
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Feature Matching 

 Now, we know how to find repeatable corners 

 Next question: How can we match them? 
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Template Convolution 

 Extract a small as a template 

 

 

 

 Convolve image with this template 
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Template Convolution 

Invariances 

 Scaling: No 

 Rotation: No (maybe rotate template?) 

 Illumination: No (use bias/gain model?) 

 Perspective projection: Not really 
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Scale Invariant Feature Transform (SIFT) 

 Lowe, 2004: Transform patches into a canonical 
form that is invariant to translation, rotation, 
scale, and other imaging parameters 
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SIFT Features 



Scale Invariant Feature Transform (SIFT) 

Approach 

1. Find SIFT corners (position + scale) 

2. Find dominant orientation and de-rotate 
patch 

3. Extract SIFT descriptor (histograms over 
gradient directions) 
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Select Dominant Orientation 

 Create a histogram of local gradient directions 
computed at selected scale (36 bins) 

 Assign canonical orientation at peak of 
smoothed histogram 

 Each key now specifies stable 2D coordinates 
(x, y, scale, orientation) 
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SIFT Descriptor 

 Compute image gradients over 16x16 window 
(green), weight with Gaussian kernel (blue) 

 Create 4x4 arrays of orientation histograms, 
each consisting of 8 bins 

 In total, SIFT descriptor has 128 dimensions 
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Feature Matching 

Given features in    , how to find best match in    ? 

 Define distance function that compares two 
features 

 Test all the features in    , find the one with the 
minimal distance 
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Feature Distance 

How to define the difference between features? 

 Simple approach is Euclidean distance (or SSD) 
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Feature Distance 

How to define the difference between features? 

 Simple approach is Euclidean distance (or SSD) 

 

 Problem: can give good scores to ambiguous 
(bad) matches 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 37 



Feature Distance 

How to define the difference between features? 

 Better approach 
with      best matching feature from  
              second best matching feature from  

 Gives small values for ambiguous matches 
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q 

Efficient Matching 

For feature matching, we need to answer a large 
number of nearest neighbor queries 

 Exhaustive search 
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Efficient Matching 

For feature matching, we need to answer a large 
number of nearest neighbor queries 

 Exhaustive search 

 Indexing (k-d tree) 
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For feature matching, we need to answer a large 
number of nearest neighbor queries 

 Exhaustive search 

 Indexing (k-d tree) 

 Localize query in tree 

 Search nearby leaves 
until nearest neighbor is 
guaranteed found 

Efficient Matching 
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For feature matching, we need to answer a large 
number of nearest neighbor queries 

 Exhaustive search 

 Indexing (k-d tree) 

 Localize query in tree 

 Search nearby leaves 
until nearest neighbor is 
guaranteed found 

Efficient Matching 
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For feature matching, we need to answer a large 
number of nearest neighbor queries 

 Exhaustive search 

 Indexing (k-d tree) 

 Localize query in tree 

 Search nearby leaves 
until nearest neighbor is 
guaranteed found 

Efficient Matching 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 43 



For feature matching, we need to answer a large 
number of nearest neighbor queries 

 Exhaustive search 

 Indexing (k-d tree) 

 Localize query in tree 

 Search nearby leaves 
until nearest neighbor is 
guaranteed found 

 Best-bin-first: use priority 
queue for unchecked leafs 

Efficient Matching 
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For feature matching, we need to answer a large 
number of nearest neighbor queries 

 Exhaustive search 

 Indexing (k-d tree) 

 Approximate search  

 Locality sensitive hashing 

 Approximate nearest neighbor 

Efficient Matching 
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For feature matching, we need to answer a large 
number of nearest neighbor queries 

 Exhaustive search 

 Indexing (k-d tree) 

 Approximate search 

 Locality sensitive hashing 

 Approximate nearest neighbor 

 

Efficient Matching 
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Efficient Matching 
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For feature matching, we need to answer a large 
number of nearest neighbor queries 

 Exhaustive search 

 Indexing (k-d tree) 

 Approximate search 

 Vocabulary trees 



Other Descriptors (for intensity images) 

 SIFT (Scale Invariant Feature Transform) 
[Lowe, 2004] 

 SURF (Speeded Up Robust Feature) 
[Bay et al., 2008] 

 BRIEF (Binary robust independent elementary 
features) 
[Calonder et al., 2010] 

 ORB (Oriented FAST and Rotated Brief) 
[Rublee et al, 2011] 

 … 
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Example: RGB-D SLAM  
[Engelhard et al., 2011; Endres et al. 2012] 

 Feature descriptor: SURF 

 Feature matching: FLANN (approximate nearest 
neighbor) 
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Appearance-based Place Recognition 

 How can we recognize that we have been 
visiting the same place before? 
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This is the same location! 

= 



Appearance-based Place Recognition 

 Brute-force matching with all previous images 
is slow (why?) 

 How can we do this faster? 
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Analogy to Document Retrieval 
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Of all the sensory impressions proceeding to the 
brain, the visual experiences are the dominant 
ones. Our perception of the world around us is 
based essentially on the messages that reach 
the brain from our eyes. For a long time it was 
thought that the retinal image was transmitted 
point by point to visual centers in the brain; the 
cerebral cortex was a movie screen, so to speak, 
upon which the image in the eye was projected. 
Through the discoveries of Hubel and Wiesel we 
now know that behind the origin of the visual 
perception in the brain there is a considerably 
more complicated course of events. By following 
the visual impulses along their path to the 
various cell layers of the optical cortex, Hubel 
and Wiesel have been able to demonstrate that 
the message about the image falling on the 
retina undergoes a step-wise analysis in a 
system of nerve cells stored in columns. In this 
system each cell has its specific function and is 
responsible for a specific detail in the pattern of 
the retinal image. 

sensory, brain,  
visual, perception,  

retinal, cerebral cortex, 
eye, cell, optical  

nerve, image 
Hubel, Wiesel 

China is forecasting a trade surplus of $90bn 
(£51bn) to $100bn this year, a threefold 
increase on 2004's $32bn. The Commerce 
Ministry said the surplus would be created by a 
predicted 30% jump in exports to $750bn, 
compared with a 18% rise in imports to $660bn. 
The figures are likely to further annoy the US, 
which has long argued that China's exports are 
unfairly helped by a deliberately undervalued 
yuan.  Beijing agrees the surplus is too high, but 
says the yuan is only one factor. Bank of China 
governor Zhou Xiaochuan said the country also 
needed to do more to boost domestic demand 
so more goods stayed within the country. China 
increased the value of the yuan against the 
dollar by 2.1% in July and permitted it to trade 
within a narrow band, but the US wants the 
yuan to be allowed to trade freely. However, 
Beijing has made it clear that it will take its time 
and tread carefully before allowing the yuan to 
rise further in value. 

China, trade,  
surplus, commerce,  

exports, imports, US,  
yuan, bank, domestic,  

foreign, increase,  
trade, value 



Object/Scene Recognition 

 Analogy to documents: The content can be 
inferred from the frequency of visual words 
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object bag of visual words 



Bag of Visual Words 

 Visual words = (independent) features 
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face features 



Bag of Visual Words 

 Visual words = (independent) features 

 Construct a dictionary of representative words 
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dictionary of visual words (codebook) 



Bag of Visual Words 

 Visual words = (independent) features 

 Construct a dictionary of representative words 

 Represent the image based on a histogram of 
word occurrences (bag) 

Each detected 
feature is assigned 
to the closest 
entry in the 
codebook 
 



Overview 
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codewords dictionary 

image representation 
(histogram of word 
occurrences) 

feature detection  
and extraction 
(e.g., SIFT, …) 

... ... 



Learning the Dictionary 
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… 

descriptor vectors 
(e.g., SIFT, SURF, …) 

example patch 



Learning the Dictionary 
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… 



Learning the Dictionary 
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clustering,  
e.g., k-means 

… 
cluster center = 
code words 



Learning the Visual Vocabulary 
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feature 
extraction  

& clustering 



Example Image Representation 

 Build the histogram by assigning each detected 
feature to the closest entry in the codebook 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 62 

fr
eq

u
e

n
cy

 

codewords 



Object/Scene Recognition 

 Compare histogram of new scene with those of 
known scenes, e.g., using 

 simple histogram intersection 

 

 naïve Bayes 

 more advanced statistical methods 
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Example: FAB-MAP 
[Cummins and Newman, 2008] 
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Timing Performance 

 Inference: 25 ms for 100k locations 
 SURF detection + quantization: 483 ms 
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Summary: Bag of Words 
[Fei-Fei and Perona, 2005; Nister and Stewenius, 2006] 

 Compact representation of content 

 Highly efficient and scalable 

 Requires training of a dictionary 

 Insensitive to viewpoint changes/image 
deformations (inherited from feature 
descriptor) 
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Structure From Motion (SfM) 

 Now we can retrieve relevant images and 
compute point correspondences between 
them 

 

 What can we use them for? 
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Four Important SfM Problems 

 Camera calibration / resection 
Known 3D points, observe corresponding 2D points, compute 
camera pose 

 Point triangulation 
Known camera poses, observe 2D point correspondences, 
compute 3D point 

 Motion estimation 
Observe 2D point correspondences, compute camera pose (up 
to scale) 

 Bundle adjustment  / visual SLAM (next week!) 
Observe 2D point correspondences, compute camera pose and 
3D points (up to scale) 
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Four Important SfM Problems 

 Each of these problems has many solution 
algorithms 

 Approaches differ in: 

 Number of minimum points and assumptions of 
their configuration 

 Effect of noise (bias) 

 Conditioning 

 Simplicity vs. accuracy (linear vs. non-linear) 
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Camera Calibration  
(Perspective n-Point Problem) 
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world origin 

 



Camera Calibration  
(Perspective n-Point Problem) 
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world origin 

camera 



Camera Calibration 

 Given:       2D/3D correspondences 

 Wanted:                                
such that 

 

 Question: How many DOFs does     have? 

 The algorithm has two parts: 

1. Compute 

2. Decompose        into                via QR decomposition 
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ideally 5 intrinsic 
and 6 extrinsic 
DOFs 



Step 1: Estimate M 

   

 Each correspondence generates two equations 
 

 

 Multiplying out gives equations linear in the 
elements of  

 

 

 Re-arrange in matrix form  
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Step 1: Estimate M 
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 Re-arranged in matrix form 
 
 
with 

 Concatenate equations for n≥6 correspondences 

 

 Wanted vector     is in the null space of  

 Initial solution using SVD (vector with least 
singular value), refine using non-linear min. 



Step 2: Recover K,R,t 

 Remember 

 The first 3x3 submatrix is the product of an 
upper triangular and orthogonal (rot.) matrix 

 
 

Procedure: 

1. Factor       into          using QR decomposition 

2. Compute translation as 
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Example: ARToolkit Markers (1999) 
1. Threshold image 

2. Detect edges and fit lines 

3. Intersect lines to obtain corners  

4. Estimate projection matrix M 

5. Extract camera pose R,t (assume 
K is known) 

 

The final error between measured and projected 
points is typically less than 0.02 pixels 
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Triangulation 

 Given: n cameras 

                 Point correspondence 

 Wanted: Corresponding 3D point 
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Triangulation 

 Where do we expect to see                                ? 

 

 

 

 Minimize the residuals 
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Triangulation 

 Multiply with denominator gives 

 

 

Solve for                                   using: 

 Linear least squares with W=1 

 Linear least squares using SVD 

 Non-linear least squares of the residuals  
(most accurate) 
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Epipolar Geometry 
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 Let’s consider two cameras that observe a 3D 
world point 



Epipolar Geometry 

 The line connecting both camera centers is 
called the baseline 
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baseline 
(line joining both camera centers) 



Epipolar Geometry 

 Given the image of a point in one view, what 
can we say about its position in another? 

 

 

 

 

 

 A point in one image “generates” a line in 
another image (called the epipolar line) 
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epipolar line of x 



Epipolar Geometry 

 Left line in left camera frame 

 Right line in right camera frame 

where                       are the (local) ray directions 
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Epipolar Geometry 

 Left line in right camera frame 

 Right line in right camera frame 

where                       are the (local) ray directions 

 Intersection of both lines 
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=0 

0= 

this is called the  
epipolar constraint 



Epipolar Geometry 

Note: The epipolar constraint holds for every pair 
of corresponding points 
 
 
where      is called the essential matrix 
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3D Motion Estimation 

 Given: 2 camera images 
       n point correspondences 

 Wanted: Camera motion R,t (up to scale) 

 

 Solutions: 

 8-point algorithm 

 normalized 8-point algorithm 

 6-point algorithm 

 5-point algorithm 
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8-Point Algorithm: General Idea 

1. Estimate the essential matrix E from at least 
eight point correspondences 

2. Recover the relative pose R,t from E (up to 
scale) 
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Step 1: Estimate E 

 Epipolar constraint 
 

 Written out (with                             ) 

 

 
 

 Stack the elements into two vectors 
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Step 1: Estimate E 

 Each correspondence gives us one constraint 

 

 

 

 

 Linear system with n equations 

 e is in the null-space of Z 

 Solve using SVD (assuming                ) 
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Normalized 8-Point Algorithm 
[Hartley 1997] 

 Noise in the point observations is unequally 
distributed in the constraints, e.g.,  

 

 

 

 Estimation is sensitive to scaling 

 Normalize all points to have zero mean and 
unit variance 
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normal noise 

double noise 

noise free 



Step 2: Recover R,t 

 Note: The absolute distance between the two 
cameras can never be recovered from pure 
images measurements alone!!! 

 Illustration 

 

 

 

 

 We can only recover the translation   up to scale 
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Step 2a: Recover t 

 Remember: 

 Therefore,       is in the null space of  

 

 

 Recover     (up to scale) using SVD 
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singular values should 
be similar, but not necessarily 
one, as E does not have scale 

SVD gives 
U,V orthonormal 
matrices 



Step 2b: Recover R 

Remember, the cross-product 

 … projects a vector onto a set of orthogonal basis 
vectors including   

 … zeros out the     component 

 … rotates the other two by 90° 
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Step 2b: Recover R 

 Plug this into the essential matrix equation 

 

 

 

 By identifying             and            , we obtain 
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= 

= 



Step 2b: Recover R 

 Matrices U,V are not guaranteed to be 
rotations (sign flip still yields a valid SVD) 

 

 

 Identify the correct solution using 

 Select those two solutions with  

 Triangulate points in 3D 

 Select the solution with the largest number of 
points in front of the camera 
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Summary: 8-Point Algorithm 

Given: Image pair 

 

 

 

Find: Camera motion R,t (up to scale) 

 Compute correspondences 

 Compute essential matrix 

 Extract camera motion 
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Lessons Learned Today 

 … how to detect and match feature points 

 … how to efficiently recognize places 

 … how to estimate the camera pose and to 
triangulate points 
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