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Agenda for Today 

 Outlier rejection using RANSAC 

 Laser-based motion estimation 

 The SLAM problem 

 Pose graph SLAM 

 Map optimization 
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Remember: 8-Point Algorithm 

Given: Image pair 

 

 

 

Find: Camera motion R,t (up to scale) 

 Compute correspondences 

 Compute essential matrix 

 Extract camera motion 
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How To Deal With Outliers? 

Problem: No matter how good the feature 
descriptor/matcher is, there is always a chance 
for bad point correspondences (=outliers) 
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Example: Fit a line to 2D data containing outliers 

 

 

 

 

 Input data is a mixture of 

 Inliers (perturbed by Gaussian noise) 

 Outliers (unknown distribution) 

 Let’s fit a line using least squares… 

 

Robust Estimation 
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Example: Fit a line to 2D data containing outliers 

 

 

 

 

 Input data is a mixture of 

 Inliers (perturbed by Gaussian noise) 

 Outliers (unknown distribution) 

 Least squares fit gives poor results! 

 

Robust Estimation 
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RANdom SAmple Consensus (RANSAC) 
[Fischler and Bolles, 1981] 

Goal: Robustly fit a model to a data set     which 
contains outliers 

Algorithm: 

1. Randomly select a (minimal) subset  

2. Instantiate the model from it 

3. Using this model, classify the all data points as  
inliers or outliers 

4. Repeat 1-3 for     iterations 

5. Select the largest inlier set, and re-estimate the 
model from all points in this set 
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Example 

 Step 1: Sample a random subset 
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Example 

 Step 2: Fit a model to this subset 
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Example 

 Step 3: Classify points as inliers and outliers 
(e.g., using a threshold distance) 
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 10 inliers, 2 outliers 



Example 

 Step 4: Repeat steps 1-3 for N iterations 
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Iteration 2: 
 5 inliers, 7 outliers 



Example 

 Step 4: Repeat steps 1-3 for N iterations 
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Iteration 3: 
 2 inliers, 10 outliers 



Example 

 Step 5: Select the best model (most inliers), the 
re-fit model using all inliers 
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Best model: 
Iteration 1 
(10 inliers, 2 outliers) 



How Many Iterations Do We Need? 

 For a probability of success    , we need 
 
 
 

for subset size    and outlier ratio  

 E.g., for p=0.99: 
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iterations 

Required points 
s 

Outlier ratio ε 

10 % 20 % 30 % 40 % 50 % 60 % 70 % 

Line 2 3 5 7 11 17 27 49 

Plane 3 4 7 11 19 35 70 169 

Essential matrix 8 9 26 78 272 1177 7025 70188 



Summary on RANSAC 

 Efficient algorithm to estimate a model from 
noisy and outlier-contaminated data 

 RANSAC is used today very widely 

 Often used in feature matching / visual motion 
estimation 

 Many improvements/variants (e.g., PROSAC, 
MLESAC, …) 
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Laser-based Motion Estimation 

 So far, we looked at motion estimation (and 
place recognition) from visual sensors 

 Today, we cover motion estimation from range 
sensors 

 Laser scanner (laser range finder, ultrasound) 

 Depth cameras (time-of-flight, Kinect …) 
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Laser Scanner 

 Measures phase shift or time-of-flight 

 Pro: High precision, wide field of view, safety 
approved for collision detection 

 Con: Relatively expensive + heavy 
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Laser Scanner 

 2D scanners 

 

 

 

 3D scanners 

18 



Laser Triangulation 

Idea: 

 Well-defined light pattern (e.g., point or line) 
projected on scene 

 Observed by a line/matrix camera or a 
position-sensitive device (PSD) 

 Simple triangulation to compute distance 
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Laser Triangulation 
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 Function principle 

 

 

 

 

 
 Depth triangulation 

 

 

Laser 
C

C
D

 

Pin-hole baseline 

disparity 

focal length depth 



Example: Neato XV-11 
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 K. Konolige, “A low-cost laser distance sensor”, 
ICRA 2008 

 Specs: 360deg, 10Hz, 30 USD  

laser 

camera 



How Does the Data Look Like? 
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Laser Scanner 

 Measures angles and distances to closest obstacles 

 

 Alternative representation: 2D point set (cloud) 

 

 Probabilistic sensor model 
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true distance x 

max 
range 



Laser-based Motion Estimation 

How can we best align two laser scans? 
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Laser-based Motion Estimation 

How can we best align two laser scans? 

 Exhaustive search 

 Iterative minimization (ICP) 
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Exhaustive Search 

 Estimate a map using first scan and sensor model 

 

 

 

 Sweep second scan over map, compute 
correlation and select best pose 
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Example: Exhaustive Search [Olson, ICRA ‘09] 

 Multi-resolution correlative scan matching 

 Real-time by using GPU 

 Remember: SE(2) has 3 DOFs 
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Does Exhaustive Search  
Generalize To 3D As Well? 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 28 



Iterative Closest Point (ICP) 

 Given: Two corresponding point sets (clouds) 

 
 

 Wanted: Translation    and rotation     that 
minimize the sum of the squared error 
 

 
 
where       and      are corresponding points 
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Known Correspondences 

Note: If the correct correspondences are known, 
both rotation and translation can be calculated in 
closed form. 
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Known Correspondences 

 Idea: The center of mass of both point sets has 
to match  

 

 

 Subtract the corresponding center of mass 
from every point 

 Afterwards, the point sets are zero-centered, 
i.e., we only need to recover the rotation… 
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Known Correspondences 

 Decompose the matrix 
 

 
using singular value decomposition (SVD) 

 Theorem 
If                       , the optimal solution of  
is unique and given by 
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(for proof, see http://hss.ulb.uni-bonn.de/2006/0912/0912.pdf, p.34/35) 

http://hss.ulb.uni-bonn.de/2006/0912/0912.pdf
http://hss.ulb.uni-bonn.de/2006/0912/0912.pdf
http://hss.ulb.uni-bonn.de/2006/0912/0912.pdf
http://hss.ulb.uni-bonn.de/2006/0912/0912.pdf


Unknown Correspondences 

 If the correct correspondences are not known, 
it is generally impossible to determine the 
optimal transformation in one step 
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ICP Algorithm  
[Besl & McKay, 92] 

 Algorithm: Iterate until convergence 

 Find correspondences  

 Solve for R,t 

 Converges if starting position is “close enough” 
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Example: ICP 
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ICP Variants 

Many variants on all stages of ICP have been 
proposed: 

 Selecting and weighting source points 

 Finding corresponding points 

 Rejecting certain (outlier) correspondences 

 Choosing an error metric 

 Minimization 
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Performance Criteria 

 Various aspects of performance 

 Speed 

 Stability (local minima) 

 Tolerance w.r.t. noise and/or outliers 

 Basin of convergence (maximum initial 
misalignment) 

 Choice depends on data and application 
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Selecting Source Points 

 Use all points 

 Random sampling  

 Spatially uniform sub-sampling 

 Feature-based sampling 
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Spatially Uniform Sampling 

 Density of points usually depends on the 
distance to the sensor  no uniform 
distribution 

 Can lead to a bias in ICP 
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Feature-based Sampling 

Detect interest points (same as with images) 

 Decrease the number of correspondences 

 Increase efficiency and accuracy 

 Requires pre-processing 
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3D Scan (~200.000 Points) Extracted Features (~5.000 Points) 



Closest Point Matching 

 Find closest point in the other point set 

 Distance threshold 

 
 

 

 

 Closest-point matching generally stable, but 
slow 
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Speeding Up Correspondence Search 

Finding closest point is most expensive stage of 
the ICP algorithm 

 Build index for one point set (kd-tree) 

 Use simpler algorithm (e.g., projection-based 
matching) 
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Projection-based Matching 

 Slightly worse performance per iteration 

 Each iteration is one to two orders of 
magnitude faster than closest-point 

 Requires point-to-plane error metric 
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Error Metrics 

 Point-to-point 

 Point-to-plane lets flat regions slide along each 
other 

 

 

 

 

 Generalized ICP: Assign individual covariance to 
each data point [Segal, RSS 2009] 
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normal 
point-to-plane  
distance 

point-to-point 
distance 



Minimization 

 Only point-to-point metric has closed form 
solution(s) 

 Other error metrics require non-linear 
minimization methods 
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Example: Real-Time ICP on Range Images 
[Rusinkiewicz and Levoy, 2001] 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 46 

 Real-time scan alignment 

 Range images from structure light system 
(projector and camera, temporal coding) 



ICP: Summary 

 ICP is a powerful algorithm for calculating the 
displacement between point clouds 

 The overall speed depends most on the choice 
of matching algorithm 

 ICP is (in general) only locally optimal  can 
get stuck in local minima 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 47 



The SLAM Problem 

SLAM is the process by which a robot builds a 
map of the environment and, at the same time, 
uses the map to compute its location: 

 

 Localization: inferring location given a map 

 Mapping: inferring a map given a location 

 

The acronym SLAM stands for “simultaneous 
localization and mapping”. 
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The SLAM Problem 

Given: 

 The robot’s controls 

 (Relative) observations 

 

Wanted: 

 Map of features 

 Trajectory of the robot 
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SLAM Applications 

SLAM is central to a range of indoor, outdoor, in-air 
and underwater applications for both unmanned 
and autonomous vehicles. 

 

Examples 

 At home: vacuum cleaner, lawn mower 

 Air: inspection, transportation, surveillance 

 Underwater: reef/environmental monitoring 

 Underground: search and rescue 

 Space: terrain mapping, navigation 
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SLAM with Ceiling Camera  
(Samsung Hauzen RE70V, 2008) 
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Localization, Path planning, Coverage 
(Neato XV11, $300) 
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SfM vs. SLAM 

 Structure from Motion (SfM) 

 Monocular/stereo camera 

 Sometimes uncalibrated sensors (e.g., Flickr 
images) 

 Simultaneous Localization and Mapping (SLAM) 

 Multiple sensors: Laser scanner, ultrasound, 
monocular/stereo camera, GPS, … 

 Typically in combination with an odometry sensor 

 Typically pre-calibrated sensors 
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Remember: 3D Transformations 

 Representation as a homogeneous matrix 

 

 

 

 Representation as a twist coordinates 
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Pro: easy to concatenate  
and invert 
Con: not minimal 

Pro: minimal 
Con: need to convert 
to matrix for concat- 
enation and inversion angular 

velocity 
linear 

velocity 



Remember: 3D Rotation as Axis/Angle 

 Represent rotation by 

 rotation axis      and 

 rotation angle 

 4 parameters 

 3 parameters                 

 length is rotation angle 

 also called the angular velocity 

 minimal representation 
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Remember: 3D Transformations 

 From twist coordinates to twist 

 

 

 

 

 Exponential map between se(3) and SE(3) 
 
 
(or compute using Rodriguez’ formula) 
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Notation 

 Camera poses in a minimal representation 
(e.g., twists) 

 

 … as transformation matrices 

 

 … as rotation matrices and translation vectors 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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 Idea: Estimate camera motion from frame to 
frame 

 Motion concatenation (for twists) 

 

 Motion composition operator (in general) 

Incremental Motion Estimation 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Loop Closures 

 Idea: Estimate camera motion from frame to 
frame 

 Problem: 

 Estimates are inherently noisy 

 Error accumulates over time  drift 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 

 Two ways to compute     : 
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Loop Closures 

 Solution: Use loop-closures to minimize the 
drift / minimize the error over all constraints 
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Graph SLAM 
[Thrun and Montemerlo, 2006; Olson et al., 2006] 

 Use a graph to represent the model 

 Every node in the graph corresponds to a pose 
of the robot during mapping 

 Every edge between two nodes corresponds to 
a spatial constraint between them 

 Graph-based SLAM: Build the graph and find 
the robot poses that minimize the error 
introduced by the constraints 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 66 



Example: Graph SLAM on Intel Dataset 
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Graph SLAM Architecture 

 Interleaving process of front-end and back-end 

 A consistent map helps to determine new 
constraints by reducing the search space 
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Constraint/graph 
generation 
(Front-end) 

Graph optimization 
(Back-end) graph 

(nodes and edges) 

camera poses 

raw sensor  
data 

map 



Problem Definition 

 Given: Set of relative pose observations 

 

 Wanted: Set of camera poses 
 State vector 
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Map Error 

 Observation 

 Expected relative pose 

 

 Difference between observation and expectation 

 

 

 Given the correct map   , this difference is the 
result of observation/sensor noise… 
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Error Function 

 Assumption: Observation noise is normally 
distributed 
 

 

 Error term for one observation  
(proportional to negative loglikelihood) 

 

 

 Note: error is a scalar 
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Error Function 

 Map error (over all observations) 

 

 
 

 Minimize this error by optimizing the camera 
poses 

 

 

 How can we solve this optimization problem? 
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Non-Linear Optimization Techniques 

 Gradient descend 

 Gauss-Newton 

 Levenberg-Marquardt 
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Gauss-Newton Method 

1. Linearize the error function 

2. Compute its derivative 

3. Set the derivative to zero 

4. Solve the linear system 

5. Iterate this procedure until convergence 
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Linearization and Derivation 

 Error function 

 
 

 

 Linearize the error function around the initial 
guess 
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Let’s look at this term first… 



Linearizing the Error Function 

 Approximate the error function around an 
initial guess                using Taylor expansion 
 
 
with increment 
 
 
and Jacobian 
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 

 No,               depends only on       and   
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 

 No,               depends only on       and   

 Is there any consequence on the structure of 
the Jacobian? 
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 

 No,               depends only on       and   

 Is there any consequence on the structure of 
the Jacobian? 

 Yes, it will be non-zero only in the columns 
corresponding to       and 

 Jacobian is sparse 
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Linearizing the Error Function 

Linearize 

 
 
 

with 
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(Linear) Least Squares Minimization 

1. Linearize error function 

 

2. Compute the derivative 

 
 

3. Set derivative to zero 

 

4. Solve this linear system of equations, e.g.,  
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Gauss-Newton Method 

Problem:          is non-linear! 

Algorithm: Repeat until convergence 

1. Compute the terms of the linear system 

 

2. Solve the linear system to get new increment 

 

3. Update previous estimate 
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Structure of the Minimization Problem 

Linearize 

 
 
 

with 

 
 

 What is the structure of       and     ? 
(Remember: all       ‘s are sparse) 
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this quickly gets huge! 



Illustration of the Structure 

Non-zero only  
at       and  



Illustration of the Structure 

Non-zero only  
at       and  

Non-zero on the main  
diagonal at       and 



Illustration of the Structure 

Non-zero on the main  
diagonal at       and 

... and 
at the 
blocks  
ij,ji 

Non-zero only  
at       and  



Illustration of the Structure 

+ + … + 

+ + … + 

b: dense vector 

H: sparse block structure  
with main diagonal 



Sparsity of the Hessian 

 Remember: We have to solve 

 The Hessian is  
 positive semi-definit 

 symmetric 

 sparse 

 This allows the use of efficient solvers 
 Sparse Cholesky decomposition (~100M matrix 

elements) 

 Preconditioned conjugate gradients (~1.000M matrix 
elements) 

 … many others 
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Example in 1D 

 Two camera poses 

 State vector 

 One (distance) observation 

 

 Initial guess 

 Observation 

 Sensor noise 
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Example in 1D 

 Error 

 

 Jacobian 

  Build linear system of equations 

 

 
 Solve the system 
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but ??? 



What Went Wrong? 

 The constraint only specifies a relative 
constraint between two nodes 

 Any poses for the nodes would be fine as long 
as their relative pose fits 

 One node needs to be fixed 

 Option 1: Remove one row/column corresponding 
to the fixed pose 

 Option 2: Add to          a linear constraint 

 Option 3: Add the identity matrix to       (Levenberg-
Marquardt) 
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Fixing One Node 

 The constraint only specifies a relative 
constraint between two nodes 

 Any poses for the nodes would be fine as long 
as their relative pose fits 

 One node needs to be fixed (here: Option 2) 
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additional constraint 
that sets  



Levenberg-Marquardt Algorithm 

 Observations:  

 Gauss-Newton method typically converges very 
quickly 

 Sometimes diverges when initial solution is far off 

 Gradient descent (with line search) never diverges 

 How can we combine the advantages of both 
minimization methods? 
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Levenberg-Marquardt Algorithm 

 Idea: Add a damping factor 

 

 

 What is the effect of this damping factor? 

 Small     same as least squares 

 Large     steepest descent (with small step size) 

 Algorithm 

 If error decreases, accept        and reduce 

 If error increases, reject        and increase  
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Non-Linear Minimization 

 One of the state-of-the-art solution to compute 
the maximum likelihood estimate 

 Various open-source implementations available  
 g2o [Kuemmerle et al., 2011] 

 sba [Lourakis and Argyros, 2009] 

 iSAM [Kaess et al., 2008] 

 Ceres [Google, 2012] 

 Other extensions: 
 Robust error functions  

 Alternative parameterizations 
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Google Street View 
Map Optimization with Ceres Solver 

[Google, 2012] 
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Ceres Solver is used at Google to estimate the 
pose of Street View cars, aircrafts, and 
satellites; to build 3D models for PhotoTours; 
to estimate satellite image sensor 
characteristics, and more. For example, the 
video below shows three instances of Ceres 
Solver fusing data from the sensors mounted 
on a Street View car to estimate its correct 
position and orientation on the surface of 
earth.  

http://www.google.com/help/maps/streetview/learn/cars-trikes-and-more.html
http://maps.google.com/maps?hq=http://maps.google.com/help/maps/phototours/mapleft.xml&h=1100


Lessons Learned Today 

 How to separate inliers from outliers using 
RANSAC 

 How to align point clouds using ICP 

 How to model the SLAM problem in a graph 

 How to optimize the map using non-linear least 
squares 
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