

Computer Vision Group Prof. Daniel Cremers

Visual Navigation for Flying Robots Bundle Adjustment and

Dense 3D Reconstruction

Dr. Jürgen Sturm

Agenda for Today

- Bundle adjustment
- Depth cameras
- Occupancy grid maps
- Signed distance functions

Reminder: Pose Graph SLAM

- Given: Set of relative pose observations $\mathbf{z}_{ij} \in \mathbb{R}^6$
- Wanted: Set of camera poses $\mathbf{c}_1, \ldots, \mathbf{c}_n \in \mathbb{R}^6$

Reminder: Pose Graph SLAM

Goal: Minimize the error over all constraints

Bundle Adjustment

- Each camera sees several points
- Each point is seen by several cameras
- Cameras are independent of each other (given the points), same for the points

Bundle Adjustment

Graph SLAM: Optimize (only) the camera poses

$$\mathbf{x} = (\mathbf{c}_1^{\top}, \dots, \mathbf{c}_n^{\top})^{\top} \in \mathbb{R}^{6n}$$

 Bundle Adjustment: Optimize both 6DOF camera poses and 3D (feature) points

$$\mathbf{x} = (\underbrace{\mathbf{c}_1^\top, \dots, \mathbf{c}_n^\top}_{\mathbf{c} \in \mathbb{R}^{6n}}, \underbrace{\mathbf{p}_1^\top, \dots, \mathbf{p}_m^\top}_{\mathbf{p} \in \mathbb{R}^{3m}})^\top \in \mathbb{R}^{6n+3m}$$

• Typically $m \gg n$ (why?)

Visual Navigation for Flying Robots

Error Function

- Camera pose $\mathbf{c}_i \in \mathbb{R}^6$
- Feature point $\mathbf{p}_j \in \mathbb{R}^3$
- Observed feature location $\mathbf{z}_{ij} \in \mathbb{R}^2$
- Expected feature location

$$g(\mathbf{c}_i, \mathbf{p}_j) = R_i^{\top}(\mathbf{t}_i - \mathbf{p}_j)$$
$$h(\mathbf{c}_i, \mathbf{p}_j) = g_{x,y}(\mathbf{c}_i, \mathbf{p}_j) / g_z(\mathbf{c}_i, \mathbf{p}_j)$$

Error Function

 Difference between observation and expectation

$$\mathbf{e}_{ij} = \mathbf{z}_{ij} - h(\mathbf{c}_i, \mathbf{p}_j)$$

Error function

$$f(\mathbf{c}, \mathbf{p}) = \sum_{ij} \mathbf{e}_{ij}^{\top} \Sigma^{-1} \mathbf{e}_{ij}$$

Covariance Σ is often chosen isotropic and on the order of one pixel

Primary Structure

Characteristic structure

$$\begin{pmatrix} J_{\mathbf{c}}^{\top} J_{\mathbf{c}} & J_{\mathbf{c}}^{\top} J_{\mathbf{p}} \\ J_{\mathbf{p}}^{\top} J_{\mathbf{c}} & J_{\mathbf{p}}^{\top} J_{\mathbf{p}} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{c} \\ \Delta \mathbf{p} \end{pmatrix} = \begin{pmatrix} -J_{\mathbf{c}}^{\top} \mathbf{e}_{\mathbf{c}} \\ -J_{\mathbf{p}}^{\top} \mathbf{e}_{\mathbf{p}} \end{pmatrix}$$
$$\begin{pmatrix} H_{\mathbf{cc}} & H_{\mathbf{cp}} \\ H_{\mathbf{pc}} & H_{\mathbf{pp}} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{c} \\ \Delta \mathbf{p} \end{pmatrix} = \begin{pmatrix} -J_{\mathbf{c}}^{\top} \mathbf{e}_{\mathbf{c}} \\ -J_{\mathbf{p}}^{\top} \mathbf{e}_{\mathbf{p}} \end{pmatrix}$$

Primary Structure

 Insight: H_{cc} and H_{pp} are block-diagonal (because each constraint depends only on one camera and one point)

$$\begin{pmatrix} \boldsymbol{\Delta} \mathbf{c} \\ \boldsymbol{\Delta} \mathbf{p} \end{pmatrix} \begin{pmatrix} \boldsymbol{\Delta} \mathbf{c} \\ \boldsymbol{\Delta} \mathbf{p} \end{pmatrix} = \begin{pmatrix} -J_{\mathbf{c}}^{\top} \mathbf{e}_{\mathbf{c}} \\ -J_{\mathbf{p}}^{\top} \mathbf{e}_{\mathbf{p}} \end{pmatrix}$$

 This can be efficiently solved using the Schur Complement

Schur Complement

Given: Linear system

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$

- If D is invertible, then (using Gauss elimination) $(A - BD^{-1}C)\mathbf{x} = \mathbf{a} - BD^{-1}\mathbf{b}$ $\mathbf{y} = D^{-1}(\mathbf{b} - C\mathbf{x})$
- Reduced complexity, i.e., invert one p × p and p × p matrix instead of one (p + q) × (p + q) matrix

Visual Navigation for Flying Robots

Visual Navigation for Flying Robots

Two Examples

PTAM

G. Klein and D. Murray, Parallel Tracking and Mapping for Small AR Workspaces, International Symposium on Mixed and Augmented Reality (ISMAR), 2007 http://www.robots.ox.ac.uk/~gk/publications/KleinMurray2007ISMAR.pdf

Photo Tourism

N. Snavely, S. M. Seitz, R. Szeliski, Photo tourism: Exploring photo collections in 3D, ACM Transactions on Graphics (SIGGRAPH), 2006 http://phototour.cs.washington.edu/Photo_Tourism.pdf

PTAM (2007)

Architecture optimized for dual cores

- Tracking thread runs in real-time (30Hz)
- Mapping thread is not real-time

PTAM – Tracking Thread Compute pyramid **Tracking Thread Detect FAST corners** Mapping thread **Project points** Project points Measure points Measure points Update Camera Pose Update Camera Pose **Fine stage Coarse stage** Draw Graphics

PTAM – Feature Tracking

- Generate 8x8 matching template (warped from key frame to current pose estimate)
- Search a fixed radius around projected position
 - Using SSD
 - Only search at FAST corner points

PTAM – Mapping Thread

Visual Navigation for Flying Robots

PTAM – Example Timings

Tracking thread

Total	19.2 ms	
Key frame preparation	2.2 ms	
Feature Projection	3.5 ms	
Patch search	9.8 ms	
Iterative pose update	3.7 ms	

Mapping thread

Key frames	2-49	50-99	100-149
Local Bundle Adjustment	170 ms	270 ms	440 ms
Global Bundle Adjustment	380 ms	1.7 s	6.9 s

PTAM Video

Parallel Tracking and Mapping for Small AR Workspaces

Extra video results made for ISMAR 2007 conference

Georg Klein and David Murray Active Vision Laboratory University of Oxford

Photo Tourism (2006) / Bundler

Overview

Relative camera positions and orientations Point cloud

Sparse correspondence

Photo Tourism – Scene Reconstruction

Processing pipeline

Automatically estimate

- Position, orientation and focal length of all cameras
- 3D positions of point features

Photo Tourism – Input Images

Photo Tourism – Feature Detection

Photo Tourism – Feature Matching

Incremental Structure From Motion

- To help get good initializations, start with two images only (compute pose, triangulate points)
- Non-linear optimization
- Iteratively add more images

Photo Tourism – Video

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski University of Washington Microsoft Research

SIGGRAPH 2006

From Sparse Maps to Dense Maps

- So far, we only looked at sparse 3D maps
 - We know where the (sparse) cameras are
 - We know where the (sparse) 3D feature points are
- How can we turn these models into volumetric 3D models?

Human Stereo Vision

Stereo Correspondence Constraints

Given a point in the left image, where can the corresponding point be in the right image?

Reminder: Epipolar Geometry

- A point in one image "generates" a line in another image (called the epipolar line)
- Epipolar constraint $\hat{\mathbf{x}}_2^{\top} E \hat{\mathbf{x}}_1 = 0$

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Epipolar Constraint

 This is useful because it reduces the correspondence problem to a 1D search along an epipolar line

Example: Converging Cameras

Example: Parallel Cameras

Rectification

- In practice, it is convenient if the image scanlines (rows) are the epipolar lines
- → Reproject image planes onto a common plane parallel to the baseline (two 3x3 homographies)
- Afterwards pixel motion is horizontal

Example: Rectification

Visual Navigation for Flying Robots

Basic Stereo Algorithm

- For each pixel in the left image
 - Compare with every pixel on the same epipolar line in the right image
 - Pick pixel with minimum matching cost (noisy)
 - Better: match small blocks/patches (SSD, SAD, NCC)

left image Visual Navigation for Flying Robots
Block Matching Algorithm

Input: Two images and camera calibrations Output: Disparity (or depth) image Algorithm:

- Geometry correction (undistortion and rectification)
- 2. Matching cost computation along search window
- **3**. Extrema extraction (at sub-pixel accuracy)
- 4. Post-filtering (clean up noise)

Example

Input

Output

What is the Influence of the Block Size?

- Common choices are 5x5 .. 11x11
- Smaller neighborhood: more details
- Larger neighborhood: less noise

3x3

Suppress pixels with low confidence (e.g., check ratio best match vs. 2nd best match)

Problems with Stereo

- Block matching typically fails in regions with low texture
 - Global optimization/regularization (speciality of our research group)
 - Additional texture projection

Example: PR2 Robot with Projected Texture Stereo

wide-angle stereo pair

Sensor Principle of Kinect

- Kinect projects a diffraction pattern (speckles) in near-infrared light
- CMOS IR camera observes the scene

Example Data

- Kinect provides color (RGB) and depth (D) video
- This allows for novel approaches for (robot) perception

Sensor Principle of Kinect

Sensor Principle of Kinect

- Pattern is memorized at a known depth
- For each pixel in the IR image
 - Extract 9x9 template from memorized pattern
 - Correlate with current IR image over 64 pixels and search for the maximum
 - Interpolate maximum to obtain sub-pixel accuracy (1/8 pixel)
 - Calculate depth by triangulation

Technical Specs

- Infrared camera has 640x480 @ 30 Hz
 - Depth correlation runs on FPGA
 - 11-bit depth image
 - 0.8m 5m range
 - Depth sensing does not work in direct sunlight (why?)
- RGB camera has 640x480 @ 30 Hz

Impact of the Kinect Sensor

- Sold >18M units
- Has become a "standard" sensor in robotics
- Several variants (Asus Xtion Pro, PrimeSense)

Time-of-Flight Cameras

- Direct time-of-flight measurement
 - Emit short light pulse (flash)
 - Every pixel counts time until signal is detected

Time-of-Flight Cameras

- Indirect measurement (phase shift)
 - Emit modulated light (e.g., at 30 MHz → 10m wave length)
 - Every pixel measures the phase shift

Decoding the Phase

- Take four intensity measurements at 90° angle
- Integrate over several waves to reduce noise
- Decode amplitude, offset, phase shift

Decoding the Phase

- Amplitude (=quality) $A = \frac{1}{2}\sqrt{(A_3 A_1)^2 + (A_2 A_0)^2}$
- Offset (=intensity) $B = A_0 + A_1 + A_2 + A_3$
- Phase shift (=distance) $\phi = \arctan \frac{A_3 A_1}{A_2 A_0}$

Commercial Time-Of-Flight Sensors

- Mesa SwissRanger (\$4300), 176x144
- PMDTec: 200x200
- Intel Creative Camera (\$150), 320x240
- Xbox One Kinect, 512x424, 13-bit depth

Xbox Kinect One

Intel Perceptual Computing Challenge

- https://perceptualchallenge.intel.com/
- API for raw data + hand gesture recognition
- This Saturday (22.6.2013): Hacknight
 - Every participating team gets a sensor for free
 - WERK1, Kultfabrik, Grafinger Str. 6, 81671 München
 - Sign up on Facebook page: <u>http://www.facebook.com/groups/154028434769715/</u>
- Cash Prizes for the Hacknight
 - €2.500 for the Best app
 - €1.000 for the Most Innovative app
 - €1.000 for the Best User Experience app

Project with Ardrones?

- fly races with friends without touching any controller
- fly through obstacle courses and test your skilfulness
- AR.Drone video transmission and time-races included
- no 3D graphics card needed it's real!

http://kwwark.intic.com/bites/defaut/Hes/bites/banner_carousel_953x400_forced/public/landing_page_banners/IDZ_UB_perceptualComputing.jpg?tok=ZWUVLOn0 http://wwalapatebus.net/wp-content/uploads/2010/01/http:rmpage_3D_Tunnet_Bite_bog http://www.ascodata.kt/wp-content/uploads/2010/01/Parmit_AR_Drone_09_ug

Pictures taken from

Agenda for Today

- Bundle adjustment
- Depth cameras
- Occupancy grid maps
- Signed distance functions

Mapping and 3D Reconstruction

So far: We have camera poses and 3D points

- Robot needs a map for:
 - Path planning and collision-free navigation
 - Exploration of unmapped areas
- How can we estimate such a map?

Occupancy Grid

Idea:

- Represent the map m using a grid
- Each cell is either free or occupied

$$\mathbf{m} = (m_1, \ldots, m_n) \in \{\text{empty}, \text{occ}\}^n$$

Robot maintains a belief $Bel(\mathbf{m})$ on map state

Goal: Estimate the belief from sensor observations

$$Bel(\mathbf{m}) = P(\mathbf{m} \mid \mathbf{z}_1, \dots, \mathbf{z}_t)$$

Occupancy Grid - Assumptions

- Map is static
- Cells have binary state (empty or occupied)
- All cells are independent of each other

- As a result, each cell m_i can be estimated independently from the sensor observations
- Will also drop index i (for the moment)

Mapping

Goal: Estimate

$$Bel(m) = P(m \mid z_1, \ldots, z_n)$$

How can this be computed?

Binary Bayes Filter

Goal: Estimate

$$Bel(m) = P(m \mid z_1, \ldots, z_n)$$

- How can this be computed?
- Using the (binary) Bayes Filter from Lecture 3

$$P(m \mid z_{1:t}) = \left(1 + \frac{1 - P(m \mid z_t)}{P(m \mid z_t)} \frac{1 - P(m \mid z_{1:t-1})}{P(m \mid z_{1:t-1})} \frac{P(m)}{1 - P(m)}\right)^{-1}$$

Binary Bayes Filter

- Prior probability that cell is occupied P(m) (often 0.5)
- Inverse sensor model P(m | z_t) is specific to the sensor used for mapping
- The log-odds representation can be used to increase speed and numerical stability

$$L(x) := \log \frac{p(x)}{p(\neg x)} = \log \frac{p(x)}{1 - p(x)}$$

Binary Bayes Filter using Log-Odds

In each time step, compute

inverse previous belief sensor model map prior $L(m \mid z_{1:t}) = L(m \mid z_{1:t-1}) + L(m \mid z_t) + L(m)$

When needed, compute current belief as

$$Bel_t(m) = 1 - \frac{1}{1 + \exp L(m \mid z_{1:t})}$$

Clamping Update Policy

- Often, the world is not "fully" static
- Consider an appearing/disappearing obstacle
- To change the state of a cell, the filter needs as many positive (negative) observations
- Idea: Clamp the beliefs to min/max values

 $L'(m \mid z_{1:t}) = \max(\min(L(m \mid z_{1:t}), l_{\max}), l_{\min})$

Sensor Model

 For the Bayes filter, we need the inverse sensor model

 $p(m \mid z)$

- Let's consider an ultrasound sensor
 - Located at (0,0)
 - Measures distance of 2.5m
 - How does the inverse sensor model look like?

Typical Sensor Model for Ultrasound

 Combination of a linear function (in xdirection) and a Gaussian (in y-direction)

Question: What about a laser scanner?

Example: Updating the Occupancy Grid

+	X	+		+	$\langle \mathbf{X} \rangle$		
+	$\langle \Sigma \rangle$	+		+	>		
+		+		+			
+	<u>s</u>)	+	2	+	.25		
+	.25)	+	.20	+	2)		
+	(A)	+	20	+	2)	\rightarrow	(Te

Resulting Map

Note: The maximum likelihood map is obtained by clipping the occupancy grid map at a threshold of 0.5

Memory Consumption

- Consider we want to map a building with 40x40m at a resolution of 0.05cm
- How much memory do we need?

Memory Consumption

- Consider we want to map a building with 40x40m at a resolution of 0.05cm
- How much memory do we need?

$$\left(\frac{40}{0.05}\right)^2 = 640.000 \text{ cells} = 4.88 \text{mb}$$

And for 3D?

$$\left(\frac{40}{0.05}\right)^3 = 512.000.000 \text{ cells} = 3.8\text{gb}$$

And what about a whole city?

Map Representation by Octtrees

- Tree-based data structure
- Recursive subdivision of space into octants
- Volumes can be allocated as needed
- Multi-resolution

Example: OctoMap

[Wurm et al., 2011]

Freiburg, building 79
44 x 18 x 3 m³, 0.05m resolution, 0.7mb on disk

[Wurm et al., 2011]

Freiburg computer science campus
 292 x 167 x 28 m³, 0.2m resolution, 2mb on disk

Signed Distance Field (SDF)

[Curless and Levoy, 1996]

- Idea: Instead of representing the cell occupancy, represent the distance of each cell to the surface
- Occupancy grid maps: explicit representation

Signed Distance Field (SDF)

[Curless and Levoy, 1996]

Algorithm:

- **1**. Estimate the signed distance field
- Extract the surface using interpolation (surface is located at zero-crossing)

Distance and Weighting Functions

- Weight each observation according to its confidence
- Weight can additionally be influenced by other modalities (reflectance values, ...)

Dense Mapping: 2D Example

Camera with known pose

Dense Mapping: 2D Example

- Camera with known pose
- Grid with signed distance function

Dense Mapping: 2D Example

For each grid cell, compute its projective distance to the surface

Dense Mapping: 3D Example

- Generalizes directly to 3D
- But: memory usage is cubic in side length

Data Fusion

- Idea: Compute weighted average
- Each voxel cell x in the SDF stores two values
 - Weighted sum of signed distances $D_t(\mathbf{x})$
 - Sum of all weights $W_t(\mathbf{x})$
- When new range image arrives, update every voxel cell according to

$$D_{t+1}(\mathbf{x}) = D_t(\mathbf{x}) + w_{t+1}(\mathbf{x})d_{t+1}(\mathbf{x})$$
$$W_{t+1}(\mathbf{x}) = W_t(\mathbf{x}) + w_{t+1}(\mathbf{x})$$

Two Nice Properties

Noise cancels out over multiple measurements

 Zero-crossing can be extracted at sub-voxel accuracy (least squares estimate)

1D Example:
$$x^* = \frac{\sum D_t(x)x}{\sum W_t(x)x}$$

Visual Navigation and 3D Reconstruction

Visualizing Signed Distance Fields

Common approaches to iso surface extraction:

- Ray casting (GPU, fast)
 For each camera pixel, shoot a ray and search for zero crossing
- Poligonization (CPU, slow)
 E.g., using the marching cubes algorithm Advantage: outputs triangle mesh

Ray Casting

- For each camera pixel, shoot a ray and search for the first zero crossing in the SDF
- Value in the SDF can be used to skip along when far from surface

Marching Cubes

First in 2D, marching squares:

- Evaluate each cell separately
- Check which edges are inside/outside
- Generate triangles according to lookup table
- Locate vertices using least squares

Marching Cubes

KinectFusion

[Newcombe et al., 2011]

- Projective ICP with point-to-plane metric
- Truncated signed distance function (TSDF)
- Ray Casting

3D model built from the first k frames

Visual Navigation and 3D Reconstruction

Minimize distance between depth image and SDF

Visual Navigation and 3D Reconstruction

3D Reconstruction from a Quadrocopter [Bylow et al., RSS 2013]

- AscTec Pelican quadrocopter
- Real-time 3D reconstruction, position tracking and control

external view

estimated pose

Visual Navigation and 3D Reconstruction

Resulting 3D Model [Bylow et al., RSS 2013]

Visual Navigation and 3D Reconstruction

Let's Scan a Person! [Sturm et al., GCPR 2013]

3D Color Printing

Can We Print These Models in 3D?

FabliTec 3D scanning made easy!

Who wants to get a 3D scan of him/herself?

Visual Navigation and 3D Reconstruction

Jürgen Sturm, Computer Vision Group, TUM

Lessons Learned Today

- How to estimate the camera poses and 3D points from monocular images using bundle adjustment
- How depth cameras work
- How to estimate occupancy maps
- What signed distance functions are
- How to reconstruct triangle meshes from SDFs