Visual Navigation for Flying Robots D. Cremers, J. Sturm, J. Engel, C. Kerl Summer Term 2013 Computer Vision Group Department of Informatics Technical University of Munich

ROS Setup

18.04.2013

Install ROS

If you use a PC in the lab we already did this for you. Otherwise, follow the instructions on the ROS web site:

http://www.ros.org/wiki/fuerte/Installation/Ubuntu

Note: We test our code with ROS Fuerte, if you use a different version we will not provide support.

Install the AR.Drone driver

- 1. Open a terminal
- 2. Create your ROS workspace folder

```
$ mkdir ~/fuerte_workspace
```

- 3. Add the folder permanently to your \$ROS_PACKAGE_PATH
 - (a) Open your ~/.bashrc, i.e.,

\$ gedit ~/.bashrc

(b) Insert the following line at the end

```
export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:~/
fuerte_workspace
```

(c) Restart the terminal

4. Download the AR.Drone driver source code

- \$ cd ~/fuerte_workspace
- \$ git clone https://github.com/tum-vision/ ardrone_autonomy.git

5. Build the driver

- \$ cd ardrone_autonomy
- \$./build_sdk.sh
- \$ rosmake

Connect to the AR.Drone

- 1. Plug in the WLAN stick
- 2. Connect the AR.Drone battery
- 3. Connect to the AR.Drone WLAN

\$ sudo ardrone-connect

4. Start the ROS master (in a new terminal)

\$ roscore

5. Start the AR.Drone driver (in a new terminal)

\$ rosrun ardrone_autonomy ardrone_driver

6. Start RVIZ (in a new terminal)

\$ rosrun rviz rviz

- 7. Add an "Image" display to RVIZ
- 8. Change the "Image Topic" to /ardrone/front/image_raw