
Second Session

Visual Navigation for Flying Robots Workshop

Jürgen Sturm, Jakob Engel, Daniel Cremers

Computer Vision Group, Technical University of Munich

Bergendal Meetings
17.06.2013

In this session, we will implement position control for the AR.Drone. We provide
two alternative exercises that you can follow depending on your interests:

� In continuation of the morning session, we use the pose estimate from the EKF
and feed it into a simple PID controller. The PID controller generates motion
commands that it sends to the quadrocopter. As a result, the AR.Drone can
hover robustly above a visual marker.

� Alternatively, you can try out the tum_ardrone package that features a marker-
less visual SLAM front-end (based on PTAM), an EKF that properly handles
time delays, and a PID controller. A high-level controller allows you to specify
a �ight �gure using a simple scripting language.

Exercise 1: Simple position control using a PID controller

In this exercise, you will enable the quadrocopter to hover on the spot without accu-
mulating drift. To get started, open the �le controller.cpp in the visnav_exercise
package and inspect its functions.

(a) Check out to which topics the controller subscribes to and to which topics it
publishes.

(b) The PID controller is implemented in the function PidController::getCommand.
Inspect this function.

(c) The function ArdroneController::calculateContolCommand computes the
next control command for three axes (x/y/yaw) based on the current pose
estimate. Check out which error signal is fed into the three PID controllers.

(d) Start RVIZ and add a marker display for cmd_marker. On this topic, the con-
troller will publish an arrow pointing in the direction of the steering command.

1



(e) Start your controller using

$ rosrun visnav_exercise ardrone_controller

(f) Replay the control_flight.bag �le using

$ rosbag play control_flight.bag

Check visually in RVIZ whether the arrows point in the right direction.

(g) Run rxplot to visualize the current pose estimate and the current command.
Replay the bag �le again. You can use the following line for accomplishing
this for the xy-pose and velocity commands

$ rxplot /quadcopter_state/x:y /cmd_vel/linear/x:y

(h) Run rosrun dynamic_reconfigure reconfigure_gui to inspect and change
the coe�cients of your controllers. Play around with di�erent values to un-
derstand their e�ect on the control commands.

(i) Now try your controller on the quadrocopter. Connect to the quadrocopter
via wi� and launch the ROS driver as explained on the previous exercise sheet.
Start with a P-gain of 0.5 for the translational controllers, a P-gain of 0.1 for
the yaw controller, and set the I- and D-gains (initially) to zero. Modify the
coe�cients until you are satis�ed with the resulting behavior.

(j) Optional: Instead of using a static goal location, implement a function
that slowly shifts the goal location from the �rst marker to the second marker.
Alternatively, implement a function that slowly moves the goal location around
the �rst marker along a (small) circle. To update the goal location, you can
use the setGoalPose method.

Exercise 2: Marker-less autonomous �ight

In this exercise, we will use the tum_ardrone package which provides (1) a visual
SLAM module based on PTAM, (2) implements an EKF which considers the time
delays, and (3) a simple PID controller to keep positions or follow waypoints. More
information on the approach can be found in the following paper1 and on the corre-
sponding ROS wiki page2:

J. Engel, J. Sturm, D. Cremers. Camera-Based Navigation of a

Low-Cost Quadrocopter, In Proc. of the International Conference on
Intelligent Robot Systems (IROS), 2012.

1http://vision.in.tum.de/_media/spezial/bib/engel12iros.pdf
2http://www.ros.org/wiki/tum_ardrone

2

http://vision.in.tum.de/_media/spezial/bib/engel12iros.pdf
http://www.ros.org/wiki/tum_ardrone


Abstract In this paper, we describe a system that enables a low-cost quadro-
copter coupled with a ground-based laptop to navigate autonomously in previously
unknown and GPS- denied environments. Our system consists of three components:
a monocular SLAM system, an extended Kalman �lter for data fusion and state
estimation and a PID controller to generate steering commands. Next to a work-
ing system, the main contribution of this paper is a novel, closed-form solution to
estimate the absolute scale of the generated visual map from inertial and altitude
measurements. In an extensive set of experiments, we demonstrate that our system
is able to navigate in previously unknown environments at absolute scale without
requiring arti�cial markers or external sensors. Furthermore, we show (1) its robust-
ness to temporary loss of visual tracking and signi�cant delays in the communication
process, (2) the elimination of odometry drift as a result of the visual SLAM system
and (3) accurate, scale-aware pose estimation and navigation.

Installation This sheet assumes that all preparatory steps from the �installation
instructions� sheet have been done (i.e., a working ROS environment, pre-compiled
AR.Drone drivers, etc). In particular, you should have the tum_ardrone package
contained in the git repository - you only need to build it:
$ rosmake tum_ardrone

The following is a condensed version of the full documentation available at the ROS
wiki pages3. An o�ine-version is saved in tum_ardrone/doku:

Run

(a) Start a ROS core
$ roscore

(b) Open four new consoles, and run the following four ROS nodes
$ rosrun ardrone_autonomy ardrone_driver

$ rosrun tum_ardrone drone_stateestimation

$ rosrun tum_ardrone drone_autopilot

$ rosrun tum_ardrone drone_gui

Manual Keyboard control

� Focus the drone_gui window

� Press ESC to activate keyboard control

� Fly around with the keyboard (q,a: �y up and down; i,j,k,l: �y horizontally;
u,o: rotate yaw ; F1: toggle emergency; s: takeo�; d: land)

3http://www.ros.org/wiki/tum_ardrone

3

http://www.ros.org/wiki/tum_ardrone


Manual Joystick control Assuming a plugged-in PS3 six-axis controller, with
set rights, run $ rosrun joy joy_node

� left joystick is horizontal position control

� right joystick is height and yaw control.

� L1 to take o�, release L1 to land.

� R1 to toggle emergency state.

By moving any of the two joysticks, the Control Source is immediately set to Joy-
stick. This can be used for safety (autopilot does wired stu� → immediately take
over by hand, disabling the autopilot and enabling manual control).

Using the Autopilot

� Place the quadrocopter on the ground, with enough open space around it.
There should be some structure with enough keypoints in front of it, ideally
at a distance of 2m to 10m.

� Load contents of �le initDemo.txt (left, below the big text �eld in the GUI)
click Clear and Send (best to click Reset �rst). The quadrocopter will takeo�
and initialize PTAM, then �y a small �gure (1m up, 1m down, 1x1m horizontal
square).

� You can interrupt the �gure anytime by interactively setting a relative target:
click on video (relative to current position); see here. First �y up at least 1m
to facilitate a good scale estimate, do not start e.g. by �ying horizontally over
uneven terrain.

� Always have a �nger on ESC or on the joystick for emergency-keyboard control.

4


