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Welcome 

 Morning session 

 Talk: Introduction to quadrocopters 

 Hands-on Session: Manual flight 

 Afternoon session 

 Talk: Visual navigation and 3D reconstruction 

 Hands-on Session: Autonomous flight 
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Motivation of our Research 

 Imagine you have a flying camera 

 What would you use it for? 
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Motivation 

 Aerial visual inspection 
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Motivation 

 Mapping of buildings 

 Architecture 

 Factory planning 
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Motivation 

 Search and rescue missions 
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Motivation 

 Building inspections after earth quakes 
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Flying Cameras 

 Potential:  

 Many useful tasks 

 Large commercial potential 

 

 Challenge:  

 Requires a skilled human pilot 

 High cognitive load 

 Safety and privacy issues 
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Motivation 

 Our research goal: 
Enable flying robots to operate autonomously 
in 3D environments using onboard cameras 

 Use cameras because light weight and rich data 

 Navigation, localization, mapping, exploration, 
people following, … 
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Who Are We? 

 Computer Vision Group at the Technical 
University of Munich 

 1 professor, 3 postdocs, 11 PhD students 

 Research topics: 

 Quadrocopters 

 Kinect / RGB-D 

 3D reconstruction 

 Image segmentation 

 Convex optimization 
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Outline of the Talk 

 Morning session 

 Motivation  

 Brief history of aviation 

 Quadrocopter tutorial 

 Afternoon session 

 Dense visual odometry 

 Dense mapping 

 Dense SLAM 
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Fixed-Wing Airplanes 

 First motorized flight: 1903 (Wright brothers) 

 Generate lift through forward airspeed and the 
shape of the wings 

 Attitude controlled by flaps 
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Quadrocopters 

 First successful flight: 1924 

 Vertical take-off and landing (VTOL) 

 Problems: stability, control 
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Helicopters 

 First successful flight: 1936 

 Swash plate adjusts pitch of propeller cyclically, 
controls pitch and roll 

 Torque is compensated by tail rotor 
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Micro-Aerial Vehicles (MAVs) 

 Attitude stabilization using MEMS sensors 

 Remote-controlled quadrocopters 

 Renaissance in the early 2000’s 
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Remote Controlled Flight (2001-) 
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Video Goggles 
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Autonomous Quadrocopters 

 Initially with external motion capture 

 200-500 fps 

 1mm accuracy 
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Learning of Flight Parameters  
[Schoellig et al., ETH, 2012] 
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Aggressive Flight Maneuvers 
[Mellinger et al., UPenn, 2010] 
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Aerial Construction  
[Lindsey et al., UPenn, 2011] 
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Quadrocopter Ball Juggling 
[Müller et al., ETH, 2011] 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 25 



Miniaturization  
[Kushleyev et al., UPenn, 2012] 
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Interaction using a Kinect 
[Ambühl, ETH, 2011] 
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Camera-Based Navigation 

 Very cool results, but external motion capture 
systems are unpractical 

 Is this also possible with onboard sensors? 

 Laser scanner 

 Cameras 

 Kinect 
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Challenges 

 Limited payload 

 Limited computational power 

 Limited sensors 

 Limited battery life 

 Fast dynamics, needs electronic stabilization 

 Quadrocopter is always in motion 

 Safety considerations 
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Platform: Parrot Ardrone 

 Price: $300 

 Controllable via smartphone 

 Onboard attitude and  
drift stabilization 

 Sensors 
 Front camera (320x240@18Hz) 

 Ground camera (176x144@18Hz) 

 Gyroscope and accelerometer (IMU) 

 Ultrasound altimeter (height) 
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Quadrocopter 

Keep position: 
 Torques of all four rotors sum to zero 
 Thrust compensates for earth gravity 
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Quadrocopter: Basic Motions 

Ascend Descend 
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Quadrocopter: Basic Motions 

Turn Left Turn Right 
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Quadrocopter: Basic Motions 

Accelerate  
Forward 

Accelerate 
Backward 
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Quadrocopter: Basic Motions 

Accelerate  
to the Right 

Accelerate 
to the Left 
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Lecture at TUM 

 “Visual Navigation for Flying Robots” 

 State estimation and linear control 

 Mapping, SLAM, 3D reconstruction 

 Obstacle avoidance and path planning 

 Exploration and multi-robot coordination 

 Website: http://vision.in.tum.de/ 

 Lecture recordings, slides, exercises, source 
code 
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First Exercise: Self Portrait 
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Team Brezel Team Dragonsheep Team Crash Pilots Team Red One 

Team Roter Baron Team Beer Team Weissbier Team Weisswurst 



Step 1: Manual Flight 

 Ardrone 

 Laptop 

 Joystick 

 ROS 
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What is ROS? 

 Robot Operating System 

 Middleware for robots 

 Drivers, communication, package management, 
visualization and debugging tools 

 C++, Python, Java, JavaScript, … 

 Open Source Robotics Foundation 
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ROS in Numbers 

 Currently most widely used robotics middleware 

 Support for more than 90 robots 

 More than 175 software repositories 
(universities, research institutes, private 
developers) 

 More than 3500 software packages, mostly BSD 
licensed 
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ROS Example 
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RVIZ Visualization Tool 
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Manual Flight with Ardrone 
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Camera-based Localization 

 The quadrocopter provides 

 Odometry (xy velocities, absolute height) 

 Image stream 

 Odometry  

 Subject to drift 

 Marker-based localization  

 3D pose observations 

 Noisy, potentially missing 

 Artoolkit library 
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Problem Description 

Given: 

 Odometry readings 

 Pose observations 
 

Wanted: 

 Estimate robot pose 
 

How can we estimate the robot pose? What else 
do we need? 
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Motion and Observation Models 

 Motion model 

 

 

 

 

 

 Observation model 
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Extended Kalman Filter 

For each time step, do 

1. Apply motion model 
 

 
                                           with 

2. Apply sensor model 

 
 

with                                                  and 
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Example: Pure Odometry 
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Example: With Landmark 
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Example: Wrong Initial Pose 
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Example: Ardrone 
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Position Control 

 We have: 

 Estimate of current pose (from EKF) 

 Goal location (from user) 

 Which controls do we have to issue to move 
the robot to the goal? 
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Feedback Control 

 Given: 

 Estimated state (from EKF) 

 Goal state 

 Wanted: 

 Control signal      to reach goal state 

 

 How to compute the control signal? 
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Feedback Control - Generic Idea 
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Desired  
value 
35° 



Feedback Control - Generic Idea 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 55 

Plant 

Desired  
value 
35° 

Controller 



Feedback Control - Generic Idea 
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Plant 

Desired  
value 
35° 

How hot is it? 
Measured  
temperature 

25° 

35° 

45° 

Sensor 

Controller 



Feedback Control - Generic Idea 
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Plant 

Desired  
value 
35° 

How hot is it? 
Measured  
temperature 

25° 

35° 

45° 

Sensor 

Controller 

25° 

35° 

45° 

Error 

How can we correct? 

Turn hotter 



P-Control 
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Controller Plant 

Measurement 



P-Control on the Ardrone 
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Intermediate Result 

 Exercise sheets with more information  

 Code available (C++) 

 Pro: 

 Autonomous, camera-based flight 

 Simple approach 

 Con: 

 Needs visual markers 

 Overshoots 

 Afternoon session: How to improve on this 
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Hands-On: Morning Session 

 Team up (2-3 persons in each team) 

 Goal for the morning: Manual Flight 

 This includes: 

 Setting up your laptop 

 Connect the Ardrone over wireless 

 Show video stream and navigation data 

 Fly 

 Record cool flight video (or make a self-portrait) 
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Setup 

 Website: 
http://vision.in.tum.de/teaching/ss2013/visnav_sweden 

 Software 

 Option 1: VirtualBox + disk image (11GB) 

 Option 2: Ubuntu + ROS + git repository 

 Hardware 

 Laptop / computer with WLAN 

 Ardrone, Batteries, Charger 

 PS3 Joystick 
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Let’s go! 
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Computer Vision Group  
Prof. Daniel Cremers 

Visual Navigation Workshop 
Afternoon Session 

Jürgen Sturm 

Joint work with Jakob Engel,  
Frank Steinbrücker, Christian Kerl, Erik Bylow, 

Tayyab Naseer, and Daniel Cremers 



Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 

Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 
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Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 

Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

 Based on PTAM [Klein and Murray, ISMAR ‘07] 
Key-frame based SLAM, efficient, open-source 
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Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 

 Based on PTAM [Klein and Murray, ISMAR ‘07] 
Key-frame based SLAM, efficient, open-source 

 Our contributions: 

 Enhanced reliability by incorporating IMU into PTAM 

 Maximum likelihood scale estimation from 
ultrasound altimeter and IMU 
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Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

 Input: PTAM estimate, IMU, controls 

 Output: pose estimate 

 State vector: 

 Full, calibrated model of the flight dynamics 

 Delay compensation (~200ms) 

 

 

Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 
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Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

 

Last visual 
observation 

Last IMU 
observation 

Now 
Command 
received 
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Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 



 

 

Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 

 Based on predicted state from EKF 

 Approach and hold target position 

 High level control: 

 Keep position 

 Assisted control (joystick in metric space) 

 Follow waypoints 

Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 
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Results 
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Results (cont.d) 
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Wrap-Up: Camera-Based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

 Capabilities 
 Fast & accurate navigation (with up to 2 m/s) 

 Robust to temporary loss of visual tracking 

 No drift 

 Accurate scale estimation (2% RMSE) 

 Complete & working system (for only $300) 

 Open source 

 Limitations 
 No obstacle recognition / path-planning 

 Requires sufficient keypoints in field of view 
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Feature-Based Visual SLAM 

 Video feed from quadrocopter 
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Feature-Based Visual SLAM 

 What PTAM actually sees 
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Dense Visual Odometry 

 Problem: Keypoint-based approaches only use 
a small fraction of the available data 

 Keypoint detection 

 Visual features 

 

 Question: How can we use most/all 
information to maximize the performance? 
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 Lucas and Kanade  
(IJCAI’81) 

 

 Lovegrove et al. 
(IV’11) 

 

 Newcombe et al. (ICCV’11) 

 

 Comport et al. (ICCV’11) 

 

Related Work on Dense Tracking 
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RGB-D Cameras 

 Kinect projects a diffraction pattern (speckles) 
in near-infrared light 

 Infrared camera observes the scene 
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Infrared 
pattern 

projector Color 
camera 

Infrared 
camera 

“stereo” Baseline 



Sensor Principle of Kinect 
Infrared pattern  

(known) 

Infrared image  
(with distorted pattern) 

Standard 
block matcher 

(9x9) 

Depth image 
(color encodes distance from 

camera) 

Disparity image 
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Example Data 
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 Kinect provides color (RGB) and depth (D) video 

 Dense depth video allows for completely novel 
approaches (will show two examples) 



Dense Visual Odometry 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 How can we exploit all data of an RGB-D image? 

 Idea 

 

 

 

 
 Photo-consistency constraint 

for all pixels  
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How to deal with noise? 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Photo-consistency constraint will not perfectly 
hold 

 Sensor noise 

 Pose error 

 Reflections, specular surfaces 

 Dynamic objects (e.g., walking people) 

 Residuals will be non-zero 

 

 Residual distribution 
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Residual Distribution 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Zero-mean, peaked distribution 

 Example: Correct camera pose 
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Residual Distribution 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Zero-mean, peaked distribution 

 Example: Wrong camera pose 
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Residual Distribution 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Goal: Find the camera pose that maximizes the 
observation likelihood 
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Motion Estimation 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Goal: Find the camera pose that maximizes the 
observation likelihood 

 

 

 

 Assume pixel-wise residuals are conditionally 
independent 

 How can we solve this optimization problem? 

compute over all pixels 
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Approach 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Take negative logarithm 

 

 

 Set derivative to zero 
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Approach (cont.d) 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 This can be rewritten as a weighted least 
squares problem 
 
 
 
with weights   

 

           is non-linear in  

 Need to linearize, solve, and iterate 
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Iteratively Reweighted Least Squares 

Problem: 
 

Algorithm: 

1. Compute weights 

2. Linearize in the camera motion  

 

3. Build and solve normal equations 

 

4. Repeat until convergence 
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Example 

First input image Second input image 

Residuals Image Jacobian for 
camera motion  along x axis 
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What is a Good Model for the  
Residual Distribution? 
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Weighted Error 
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Example Weights 

 Robust sensor model allows to down-weight 
outliers (dynamic objects, motion blur, 
reflections, …) 

 

Scene Residuals Weights 
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Coarse-to-Fine 

 Linearization only holds for small motions 

 Coarse-to-fine scheme 

 Image pyramids 
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Dense Visual Odometry: Results 
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Dense Visual Odometry: Results 
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Wrap-Up: Dense Visual Odometry 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Direct matching of consecutive RGB-D images 

 Pro 

 Super fast, highly accurate (30 Hz on CPU) 

 Robust to outliers 

 Low, constant memory consumption 

 Con 

 Accumulates drift over time, no fixed reference 

 Available as open-source 
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Dense Tracking and Mapping 
[Bylow et al., RSS 2013] 

 Idea: Instead of tracking from frame-to-frame, 
track frame-to-model to reduce the drift 

 

 

 
 

 Question: Where do we get the model from? 
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Dense Tracking and Mapping 
[Bylow et al., RSS 2013] 

 Idea: Compute an iterative solution 

1. Reconstruct model with known poses 

2. Track camera with respect to known model 

 

 Next question: How to represent the model? 
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 Idea: Instead of representing the cell 
occupancy, represent the distance of each cell 
to the surface 

 Occupancy grid maps 

 

 

 Signed distance function (SDF) 

Representation of the 3D Model 
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Wrap-Up: Dense Mapping 
[Bylow et al., RSS 2013] 

 Pro 
 Real-time 

 Accuracy similar to RGB-D SLAM on small indoor 
scenes 

 Nice models 

 Con 
 Needs GPU 

 Still drifts (although less) 

 High memory consumption 

 How to eliminate the drift? 
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 Idea: Instead of representing the cell 
occupancy, represent the distance of each cell 
to the surface 

 Occupancy grid maps: explicit representation 

 

 

 SDF: implicit representation 

Signed Distance Field (SDF) 
[Curless and Levoy, 1996] 
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Signed Distance Field (SDF) 
[Curless and Levoy, 1996] 

Algorithm: 

1. Estimate the signed distance field 

2. Extract the surface using interpolation 
(surface is located at zero-crossing) 
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Distance and Weighting Functions 

 Weight each observation according to its 
confidence 

 Weight can additionally be influenced by other 
modalities (reflectance values, …) 
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distance 
measured 
depth 

weight 
(=confidence) 

truncated signed distance 
to surface  



Dense Mapping: 2D Example 

 Camera with known pose 
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Dense Mapping: 2D Example 

 Camera with known pose 

 Grid with signed distance function 
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Dense Mapping: 2D Example 

 For each grid cell, compute its projective 
distance to the surface 
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projective distance 



Dense Mapping: 3D Example 

 Generalizes directly to 3D 

 But: memory usage is cubic in side length 
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Data Fusion 

 Idea: Compute weighted average 

 Each voxel cell     in the SDF stores two values 

 Weighted sum of signed distances 

 Sum of all weights 

 When new range image arrives, update every 
voxel cell according to 
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Data Fusion 

 3D model built from the first k frames 
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Two Nice Properties 

 Noise cancels out over multiple measurements 

 

 

 

 

 Zero-crossing can be extracted at sub-voxel 
accuracy (least squares estimate) 
 

1D Example: 
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Surface Reconstruction 

 We have: 3D signed distance field 

 We want: Triangle mesh for rendering 

 How can we extract a 3D triangle mesh from 
the SDF? 
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Marching Cubes 

First in 2D, marching squares: 

 Evaluate each cell separately 

 Check which edges are inside/outside 

 Generate triangles according to lookup table 

 Locate vertices using least squares 
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Marching Cubes 

 In 3D, the principle is the same 

 Generate triangles instead of lines 
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Marching Cubes 
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Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 3D model built from the first k frames 
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Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 Minimize distance between depth image and 
SDF 
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Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 Minimize distance between depth image and 
SDF 
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Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 Minimize distance between depth image and 
SDF 
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Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 Minimize distance between depth image and 
SDF 
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3D Reconstruction from a Quadrocopter 
[Bylow et al., RSS 2013] 

 AscTec Pelican quadrocopter 

 Real-time 3D reconstruction, position tracking 
and control 
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Resulting 3D Model 
[Bylow et al., RSS 2013] 
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Dense SLAM 
[under review] 

 Dense Visual Odometry 

 Input: Two RGB-D frames 

 Output: Relative pose 

 Use this in pose graph SLAM 

 Select keyframes 

 Detect loop-closures 

 Build and optimize pose graph 
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Results: 3D Pose Graph 
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High-Quality 3D Reconstruction 

 We have: Optimized pose graph 

 We want: High-resolution 3D map 

 

 Problem: High-resolution voxel grids consume 
much memory (grows cubically) 

 512^3 voxels, 24 byte per voxel  3.2 GB 

 1024^3 voxels, 24 byte per voxel  24 GB 

 … 
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High-Resolution 3D Reconstruction 

 Idea: Only allocate voxels that are close to the 
surface (narrow band) 

 Before: 
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High-Resolution 3D Reconstruction 

 Idea: Only allocate voxels that are close to the 
surface (narrow band) 

 After: 
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High-Resolution 3D Reconstruction 

 Save data in oct-tree data structure 

 Leafs are only allocated when needed 

 Tree can grow dynamically (no fixed size) 
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Example: Triangle Mesh 
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Example: Allocated Leafs 
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Example: Tree 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 131 



Resulting 3D Model 
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Let’s Scan a Person! 
[Sturm et al., GCPR 2013] 
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3D Color Printing 
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Can We Print These Models in 3D? 

 Who wants to get a 3D scan of him/herself? 
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Hands-On: Afternoon Session 

 Team up (2-3 persons in each team) 

 Goal for the afternoon: Autonomous Flight 

 Two options, full code available for both 

1. Marker-based flight 

 Kalman filter, PID controller 

 Easy to understand and to extend 

2. Marker-less flight 

 Based on PTAM 

 Really nice demo 
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Conclusion 

 Visual navigation for quadrocopters 

 Much open-source software  easy entry 

 Dense methods bear a large potential 

 Dense camera tracking 

 Dense 3D reconstruction 

 Dense SLAM 

 Many directions for future research 

 Contact us if you are interested in collaboration 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 137 


