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Welcome 

 Morning session 

 Talk: Introduction to quadrocopters 

 Hands-on Session: Manual flight 

 Afternoon session 

 Talk: Visual navigation and 3D reconstruction 

 Hands-on Session: Autonomous flight 
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Motivation of our Research 

 Imagine you have a flying camera 

 What would you use it for? 
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Motivation 

 Aerial visual inspection 
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Motivation 

 Mapping of buildings 

 Architecture 

 Factory planning 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 8 



Motivation 

 Search and rescue missions 
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Motivation 

 Building inspections after earth quakes 
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Flying Cameras 

 Potential:  

 Many useful tasks 

 Large commercial potential 

 

 Challenge:  

 Requires a skilled human pilot 

 High cognitive load 

 Safety and privacy issues 
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Motivation 

 Our research goal: 
Enable flying robots to operate autonomously 
in 3D environments using onboard cameras 

 Use cameras because light weight and rich data 

 Navigation, localization, mapping, exploration, 
people following, … 
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Who Are We? 

 Computer Vision Group at the Technical 
University of Munich 

 1 professor, 3 postdocs, 11 PhD students 

 Research topics: 

 Quadrocopters 

 Kinect / RGB-D 

 3D reconstruction 

 Image segmentation 

 Convex optimization 
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Outline of the Talk 

 Morning session 

 Motivation  

 Brief history of aviation 

 Quadrocopter tutorial 

 Afternoon session 

 Dense visual odometry 

 Dense mapping 

 Dense SLAM 
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Fixed-Wing Airplanes 

 First motorized flight: 1903 (Wright brothers) 

 Generate lift through forward airspeed and the 
shape of the wings 

 Attitude controlled by flaps 
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Quadrocopters 

 First successful flight: 1924 

 Vertical take-off and landing (VTOL) 

 Problems: stability, control 
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Helicopters 

 First successful flight: 1936 

 Swash plate adjusts pitch of propeller cyclically, 
controls pitch and roll 

 Torque is compensated by tail rotor 
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Micro-Aerial Vehicles (MAVs) 

 Attitude stabilization using MEMS sensors 

 Remote-controlled quadrocopters 

 Renaissance in the early 2000’s 
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Remote Controlled Flight (2001-) 
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Video Goggles 
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Autonomous Quadrocopters 

 Initially with external motion capture 

 200-500 fps 

 1mm accuracy 
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Learning of Flight Parameters  
[Schoellig et al., ETH, 2012] 
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Aggressive Flight Maneuvers 
[Mellinger et al., UPenn, 2010] 
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Aerial Construction  
[Lindsey et al., UPenn, 2011] 
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Quadrocopter Ball Juggling 
[Müller et al., ETH, 2011] 
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Miniaturization  
[Kushleyev et al., UPenn, 2012] 
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Interaction using a Kinect 
[Ambühl, ETH, 2011] 
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Camera-Based Navigation 

 Very cool results, but external motion capture 
systems are unpractical 

 Is this also possible with onboard sensors? 

 Laser scanner 

 Cameras 

 Kinect 
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Challenges 

 Limited payload 

 Limited computational power 

 Limited sensors 

 Limited battery life 

 Fast dynamics, needs electronic stabilization 

 Quadrocopter is always in motion 

 Safety considerations 
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Platform: Parrot Ardrone 

 Price: $300 

 Controllable via smartphone 

 Onboard attitude and  
drift stabilization 

 Sensors 
 Front camera (320x240@18Hz) 

 Ground camera (176x144@18Hz) 

 Gyroscope and accelerometer (IMU) 

 Ultrasound altimeter (height) 
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Quadrocopter 

Keep position: 
 Torques of all four rotors sum to zero 
 Thrust compensates for earth gravity 
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Quadrocopter: Basic Motions 

Ascend Descend 
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Quadrocopter: Basic Motions 

Turn Left Turn Right 
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Quadrocopter: Basic Motions 

Accelerate  
Forward 

Accelerate 
Backward 
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Quadrocopter: Basic Motions 

Accelerate  
to the Right 

Accelerate 
to the Left 
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Lecture at TUM 

 “Visual Navigation for Flying Robots” 

 State estimation and linear control 

 Mapping, SLAM, 3D reconstruction 

 Obstacle avoidance and path planning 

 Exploration and multi-robot coordination 

 Website: http://vision.in.tum.de/ 

 Lecture recordings, slides, exercises, source 
code 
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First Exercise: Self Portrait 
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Team Brezel Team Dragonsheep Team Crash Pilots Team Red One 

Team Roter Baron Team Beer Team Weissbier Team Weisswurst 



Step 1: Manual Flight 

 Ardrone 

 Laptop 

 Joystick 

 ROS 
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What is ROS? 

 Robot Operating System 

 Middleware for robots 

 Drivers, communication, package management, 
visualization and debugging tools 

 C++, Python, Java, JavaScript, … 

 Open Source Robotics Foundation 
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ROS in Numbers 

 Currently most widely used robotics middleware 

 Support for more than 90 robots 

 More than 175 software repositories 
(universities, research institutes, private 
developers) 

 More than 3500 software packages, mostly BSD 
licensed 
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ROS Example 
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RVIZ Visualization Tool 
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Manual Flight with Ardrone 
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Camera-based Localization 

 The quadrocopter provides 

 Odometry (xy velocities, absolute height) 

 Image stream 

 Odometry  

 Subject to drift 

 Marker-based localization  

 3D pose observations 

 Noisy, potentially missing 

 Artoolkit library 
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Problem Description 

Given: 

 Odometry readings 

 Pose observations 
 

Wanted: 

 Estimate robot pose 
 

How can we estimate the robot pose? What else 
do we need? 
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Motion and Observation Models 

 Motion model 

 

 

 

 

 

 Observation model 
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Extended Kalman Filter 

For each time step, do 

1. Apply motion model 
 

 
                                           with 

2. Apply sensor model 

 
 

with                                                  and 
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Example: Pure Odometry 
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Example: With Landmark 
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Example: Wrong Initial Pose 
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Example: Ardrone 
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Position Control 

 We have: 

 Estimate of current pose (from EKF) 

 Goal location (from user) 

 Which controls do we have to issue to move 
the robot to the goal? 
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Feedback Control 

 Given: 

 Estimated state (from EKF) 

 Goal state 

 Wanted: 

 Control signal      to reach goal state 

 

 How to compute the control signal? 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 53 



Feedback Control - Generic Idea 
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Desired  
value 
35° 



Feedback Control - Generic Idea 
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Plant 

Desired  
value 
35° 

Controller 



Feedback Control - Generic Idea 
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Plant 

Desired  
value 
35° 

How hot is it? 
Measured  
temperature 

25° 

35° 

45° 

Sensor 

Controller 



Feedback Control - Generic Idea 
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Plant 

Desired  
value 
35° 

How hot is it? 
Measured  
temperature 

25° 

35° 

45° 

Sensor 

Controller 

25° 

35° 

45° 

Error 

How can we correct? 

Turn hotter 



P-Control 
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Controller Plant 

Measurement 



P-Control on the Ardrone 
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Intermediate Result 

 Exercise sheets with more information  

 Code available (C++) 

 Pro: 

 Autonomous, camera-based flight 

 Simple approach 

 Con: 

 Needs visual markers 

 Overshoots 

 Afternoon session: How to improve on this 
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Hands-On: Morning Session 

 Team up (2-3 persons in each team) 

 Goal for the morning: Manual Flight 

 This includes: 

 Setting up your laptop 

 Connect the Ardrone over wireless 

 Show video stream and navigation data 

 Fly 

 Record cool flight video (or make a self-portrait) 
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Setup 

 Website: 
http://vision.in.tum.de/teaching/ss2013/visnav_sweden 

 Software 

 Option 1: VirtualBox + disk image (11GB) 

 Option 2: Ubuntu + ROS + git repository 

 Hardware 

 Laptop / computer with WLAN 

 Ardrone, Batteries, Charger 

 PS3 Joystick 
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Let’s go! 
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Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 

Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 
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Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 

Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

 Based on PTAM [Klein and Murray, ISMAR ‘07] 
Key-frame based SLAM, efficient, open-source 
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Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 

 Based on PTAM [Klein and Murray, ISMAR ‘07] 
Key-frame based SLAM, efficient, open-source 

 Our contributions: 

 Enhanced reliability by incorporating IMU into PTAM 

 Maximum likelihood scale estimation from 
ultrasound altimeter and IMU 
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Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

 Input: PTAM estimate, IMU, controls 

 Output: pose estimate 

 State vector: 

 Full, calibrated model of the flight dynamics 

 Delay compensation (~200ms) 

 

 

Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 
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Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

 

Last visual 
observation 

Last IMU 
observation 

Now 
Command 
received 
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Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 



 

 

Monocular SLAM 
Extended Kalman 

Filter 
PID Control 

Quadrocopter 

Control 
@100Hz 

Video 
@18Hz 

IMU 
@200Hz 

 Based on predicted state from EKF 

 Approach and hold target position 

 High level control: 

 Keep position 

 Assisted control (joystick in metric space) 

 Follow waypoints 

Camera-based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 
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Results 
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Results (cont.d) 
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Wrap-Up: Camera-Based Navigation 
[Engel, Sturm, Cremers, IROS 2012] 

 Capabilities 
 Fast & accurate navigation (with up to 2 m/s) 

 Robust to temporary loss of visual tracking 

 No drift 

 Accurate scale estimation (2% RMSE) 

 Complete & working system (for only $300) 

 Open source 

 Limitations 
 No obstacle recognition / path-planning 

 Requires sufficient keypoints in field of view 
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Feature-Based Visual SLAM 

 Video feed from quadrocopter 
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Feature-Based Visual SLAM 

 What PTAM actually sees 
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Dense Visual Odometry 

 Problem: Keypoint-based approaches only use 
a small fraction of the available data 

 Keypoint detection 

 Visual features 

 

 Question: How can we use most/all 
information to maximize the performance? 
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 Lucas and Kanade  
(IJCAI’81) 

 

 Lovegrove et al. 
(IV’11) 

 

 Newcombe et al. (ICCV’11) 

 

 Comport et al. (ICCV’11) 

 

Related Work on Dense Tracking 
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RGB-D Cameras 

 Kinect projects a diffraction pattern (speckles) 
in near-infrared light 

 Infrared camera observes the scene 

 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 78 

Infrared 
pattern 

projector Color 
camera 

Infrared 
camera 

“stereo” Baseline 



Sensor Principle of Kinect 
Infrared pattern  

(known) 

Infrared image  
(with distorted pattern) 

Standard 
block matcher 

(9x9) 

Depth image 
(color encodes distance from 

camera) 

Disparity image 
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Example Data 
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 Kinect provides color (RGB) and depth (D) video 

 Dense depth video allows for completely novel 
approaches (will show two examples) 



Dense Visual Odometry 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 How can we exploit all data of an RGB-D image? 

 Idea 

 

 

 

 
 Photo-consistency constraint 

for all pixels  
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How to deal with noise? 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Photo-consistency constraint will not perfectly 
hold 

 Sensor noise 

 Pose error 

 Reflections, specular surfaces 

 Dynamic objects (e.g., walking people) 

 Residuals will be non-zero 

 

 Residual distribution 
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Residual Distribution 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Zero-mean, peaked distribution 

 Example: Correct camera pose 
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Residual Distribution 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Zero-mean, peaked distribution 

 Example: Wrong camera pose 
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Residual Distribution 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Goal: Find the camera pose that maximizes the 
observation likelihood 
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Motion Estimation 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Goal: Find the camera pose that maximizes the 
observation likelihood 

 

 

 

 Assume pixel-wise residuals are conditionally 
independent 

 How can we solve this optimization problem? 

compute over all pixels 
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Approach 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Take negative logarithm 

 

 

 Set derivative to zero 
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Approach (cont.d) 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 This can be rewritten as a weighted least 
squares problem 
 
 
 
with weights   

 

           is non-linear in  

 Need to linearize, solve, and iterate 
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Iteratively Reweighted Least Squares 

Problem: 
 

Algorithm: 

1. Compute weights 

2. Linearize in the camera motion  

 

3. Build and solve normal equations 

 

4. Repeat until convergence 
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Example 

First input image Second input image 

Residuals Image Jacobian for 
camera motion  along x axis 
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What is a Good Model for the  
Residual Distribution? 
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Weighted Error 
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Example Weights 

 Robust sensor model allows to down-weight 
outliers (dynamic objects, motion blur, 
reflections, …) 

 

Scene Residuals Weights 
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Coarse-to-Fine 

 Linearization only holds for small motions 

 Coarse-to-fine scheme 

 Image pyramids 
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Dense Visual Odometry: Results 
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Dense Visual Odometry: Results 
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Wrap-Up: Dense Visual Odometry 
[Steinbrücker et al., ICCV 2011; Kerl et al., ICRA 2013] 

 Direct matching of consecutive RGB-D images 

 Pro 

 Super fast, highly accurate (30 Hz on CPU) 

 Robust to outliers 

 Low, constant memory consumption 

 Con 

 Accumulates drift over time, no fixed reference 

 Available as open-source 
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Dense Tracking and Mapping 
[Bylow et al., RSS 2013] 

 Idea: Instead of tracking from frame-to-frame, 
track frame-to-model to reduce the drift 

 

 

 
 

 Question: Where do we get the model from? 
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Dense Tracking and Mapping 
[Bylow et al., RSS 2013] 

 Idea: Compute an iterative solution 

1. Reconstruct model with known poses 

2. Track camera with respect to known model 

 

 Next question: How to represent the model? 
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 Idea: Instead of representing the cell 
occupancy, represent the distance of each cell 
to the surface 

 Occupancy grid maps 

 

 

 Signed distance function (SDF) 

Representation of the 3D Model 
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Wrap-Up: Dense Mapping 
[Bylow et al., RSS 2013] 

 Pro 
 Real-time 

 Accuracy similar to RGB-D SLAM on small indoor 
scenes 

 Nice models 

 Con 
 Needs GPU 

 Still drifts (although less) 

 High memory consumption 

 How to eliminate the drift? 
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 Idea: Instead of representing the cell 
occupancy, represent the distance of each cell 
to the surface 

 Occupancy grid maps: explicit representation 

 

 

 SDF: implicit representation 

Signed Distance Field (SDF) 
[Curless and Levoy, 1996] 
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Signed Distance Field (SDF) 
[Curless and Levoy, 1996] 

Algorithm: 

1. Estimate the signed distance field 

2. Extract the surface using interpolation 
(surface is located at zero-crossing) 
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Distance and Weighting Functions 

 Weight each observation according to its 
confidence 

 Weight can additionally be influenced by other 
modalities (reflectance values, …) 
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Dense Mapping: 2D Example 

 Camera with known pose 
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Dense Mapping: 2D Example 

 Camera with known pose 

 Grid with signed distance function 
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Dense Mapping: 2D Example 

 For each grid cell, compute its projective 
distance to the surface 
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projective distance 



Dense Mapping: 3D Example 

 Generalizes directly to 3D 

 But: memory usage is cubic in side length 
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Data Fusion 

 Idea: Compute weighted average 

 Each voxel cell     in the SDF stores two values 

 Weighted sum of signed distances 

 Sum of all weights 

 When new range image arrives, update every 
voxel cell according to 
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Data Fusion 

 3D model built from the first k frames 
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Two Nice Properties 

 Noise cancels out over multiple measurements 

 

 

 

 

 Zero-crossing can be extracted at sub-voxel 
accuracy (least squares estimate) 
 

1D Example: 
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Surface Reconstruction 

 We have: 3D signed distance field 

 We want: Triangle mesh for rendering 

 How can we extract a 3D triangle mesh from 
the SDF? 
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Marching Cubes 

First in 2D, marching squares: 

 Evaluate each cell separately 

 Check which edges are inside/outside 

 Generate triangles according to lookup table 

 Locate vertices using least squares 
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Marching Cubes 

 In 3D, the principle is the same 

 Generate triangles instead of lines 
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Marching Cubes 
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Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 3D model built from the first k frames 
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Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 Minimize distance between depth image and 
SDF 
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Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 Minimize distance between depth image and 
SDF 
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Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 Minimize distance between depth image and 
SDF 

 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 119 



Dense Tracking: 2D Example 
[Bylow et al., RSS 2013] 

 Minimize distance between depth image and 
SDF 
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3D Reconstruction from a Quadrocopter 
[Bylow et al., RSS 2013] 

 AscTec Pelican quadrocopter 

 Real-time 3D reconstruction, position tracking 
and control 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 121 

external view estimated pose 



Resulting 3D Model 
[Bylow et al., RSS 2013] 
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Dense SLAM 
[under review] 

 Dense Visual Odometry 

 Input: Two RGB-D frames 

 Output: Relative pose 

 Use this in pose graph SLAM 

 Select keyframes 

 Detect loop-closures 

 Build and optimize pose graph 
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Results: 3D Pose Graph 
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High-Quality 3D Reconstruction 

 We have: Optimized pose graph 

 We want: High-resolution 3D map 

 

 Problem: High-resolution voxel grids consume 
much memory (grows cubically) 

 512^3 voxels, 24 byte per voxel  3.2 GB 

 1024^3 voxels, 24 byte per voxel  24 GB 

 … 
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High-Resolution 3D Reconstruction 

 Idea: Only allocate voxels that are close to the 
surface (narrow band) 

 Before: 
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High-Resolution 3D Reconstruction 

 Idea: Only allocate voxels that are close to the 
surface (narrow band) 

 After: 
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High-Resolution 3D Reconstruction 

 Save data in oct-tree data structure 

 Leafs are only allocated when needed 

 Tree can grow dynamically (no fixed size) 
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Example: Triangle Mesh 
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Example: Allocated Leafs 
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Example: Tree 
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Resulting 3D Model 
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Let’s Scan a Person! 
[Sturm et al., GCPR 2013] 
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3D Color Printing 

Dr. Jürgen Sturm, Computer Vision Group, TUM CopyMe3D: Scanning and Printing Persons in 3D 134 



Can We Print These Models in 3D? 

 Who wants to get a 3D scan of him/herself? 
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Hands-On: Afternoon Session 

 Team up (2-3 persons in each team) 

 Goal for the afternoon: Autonomous Flight 

 Two options, full code available for both 

1. Marker-based flight 

 Kalman filter, PID controller 

 Easy to understand and to extend 

2. Marker-less flight 

 Based on PTAM 

 Really nice demo 
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Conclusion 

 Visual navigation for quadrocopters 

 Much open-source software  easy entry 

 Dense methods bear a large potential 

 Dense camera tracking 

 Dense 3D reconstruction 

 Dense SLAM 

 Many directions for future research 

 Contact us if you are interested in collaboration 

Jürgen Sturm, Computer Vision Group, TUM Visual Navigation and 3D Reconstruction 137 


