GPU Programming
in Computer Vision

Thomas Mollenhoff, Mohamed Souiai.
Maria Klodt, Jan Stuhmer

Introduction to Parallel Computing

Technical University Munich, Computer Vision Group
Summer Semester 2014, September 8 — October 10

Computer Vision Group

Research

This Course

*Parallel Programming with CUDA

*Computer Vision Basics
*image filtering (convolution, diffusion, denoising)
“regularization (dealing with noise, unique solutions)

*Optimization + Numerics

Course Goals

“Learn how to program massively parallel

processors and achieve

“high performance

*functionality and maintainability
“scalability across future generations

“Acquire technical knowledge required to achieve

above goals

*principles and patterns of parallel programming
*processor architecture features and constraints
“programming API, tools and techniques

“Apply this knowledge to implement computer
vision algorithms efficiently

Course Timeline: 08.09 -10.10

“September 8-12 (this week) : Lecture
#3h lectures (attendance mandatory)
“programming exercises
“groups of 2-3 students

»

September 15-October 3: Student project
#advanced applications
“unsupervised

®October 6-10: Presentations

Lecture Week

®Lecture
#10-13 (1h lunch pause) each day
¢ attendance mandatory to pass the course

®Exercises
“14-18 each day
“groups of 2-3 students

“Work @ Home” ™

.

You can access your computer remotely:
ssh -X pl23@atradig789.informatik. tu-muenchen.de

p123: replace with your login

atradig789: replace with your computer name
® type hostname to find out the name

Works from within Linux or Mac
® for Mac: install XQuartz first (X11 server)

Why Massively Parallel Processing?

* A quiet revolution: Performance!
computations: TFLOPs vs. 100 GFLOPs

Theoretical
GFLOP/s

4750
4500
4250
4000
3750
3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000

750

500

250 -
0 1
Apr-01 Sep-02

NVIDIA GPU Single Precision
epems NVIDIA GPU Double Precision

Intel CPU Double Precision
emg=e|ntel CPU Single Precision

Tesla K20X

Tesla C2050

Tesla C1060

Harpertow
Woodcrest

Sandy Bridge

’ Bloomfield Westmere
Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

GPU in every PC — massive volume & impact

Why Massively Parallel Processing?

A gquiet revolution: Performance!
bandwidth: ~5x

Theoretical GB/s

300

270

240 === CPU

GeForce GPU

210
Tesla GPU

Tesla M2090

Tesla C2050

Testa C1060

Sandy Bridge

Bloomfield

Harpertown
0 -Northwood
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

GPU in every PC — massive volume & impact

Common CUDA/GPU Applications

® Image Processing & Computer Vision
http://gpudvision.icg.tugraz.at/ , opency, ...

® Machine Learning, Trend: “Deep Learning”
cuda-convnet, caffe, theano, torch7, ...

¢ Computer Graphics

raytracing, voxel rendering, post-processing effects, ...

® Scientific Computing, High Performance
Computing, Engineering Sciences, ...

file:///home/thomas/Desktop/GPU_Course_SS14/Slides/cuda/

Serial Performance Scaling is Over

»

continue to scale processor frequencies
® no 10 GHz chips

)

continue to increase power consumption
* can’t melt chip

® Can continue to increase transistor density
¢ as per Moore’s Law

How to Use Transistors?

»

Larger caches ...

»

Instruction-level parallelism ...
* out-of-order execution, speculation, ...

»

Data-level parallelism ... increasing

* vector units, SIMD execution, ...
Intel SSE, GPUs, ...

®* Thread-level parallelism ... increasing
multithreading, multicore, manycore

Design Difference: CPU vs. GPU

* Different goals produce different designs
® CPU must be good at everything, parallel or not
® GPU assumes work load is highly parallel

® CPU: minimize latency experienced by 1 thread
® big on-chip caches
® sophisticated control logic

»

GPU: maximize throughput of all threads
® skip big caches, multithreading hides latency
® share control logic across many threads, SIMD
® create and run thousands of threads

Design Difference: CPU vs. GPU

* Different goals produce different designs
® CPU must be good at everything, parallel or not
® GPU assumes work load is highly parallel

Control

CPU GPU
minimize latency maximize throughput

Enter the GPU

® Massively parallel

* Affordable supercomputing

NVIDIA GPUs

® Compute Capability

=

=

version number of the hardware architecture
core architecture and incremental improvements

Arch CC GPUs Features (e.g.)
1.0 | 8800 GTX, Tesla C870 Basic functionality
(;%%I% 1.1 | 9800 GTX, Quadro FX 580 | Atomics in global mem
1.2 | GT 240, Quadro FX 1800M | Atomics in shared mem
1.3 | GTX 285, Tesla C1060 Double precision
Fermi 2.0 | GTX 480/580, Tesla C2070 | Memory cache
(2010) 2.1 | GTX 460, GTX 560 Ti More cores (hardware)
Kepler 3.0 |GTX680/770, Tesla K10 Power efficiency, Many cores
(2012) 3.5 | GTX 780/Titan, Tesla K20 Dynamic Parallelism, Hyper-Q
Maxwell | 5.0 |GTX 750, GTX 750 Ti 135% performance/core

(2014)

200% performance/watt

NVIDIA GPUs

® Compute Capability
® version number of the hardware architecture
® core architecture and incremental improvements

® List of features for each Compute Capability:
* see NVIDIA Programming Guide: Appendix G.1

NVIDIA GPUs: Current Architecture

| WarpScheduler | WarpScheduler | WarpScheduler = WarpScheduler
*———?———

Register File (65,536 x 32-bit)

i o o 5 e e e -

i - o o

Kepler e
GPU o o o o e e e -

® 15 multiprocessors (up to

® 192 Cuda Cores per SM
2880 Cores in total (up to)

Enter CUDA

(“Compute Unified Device Architecture®)

* Scalable parallel programming model
* exposes the computational horsepower of GPUs

* Abstractions for parallel computing
let programmers focus on parallel algorithms
not mechanics of a parallel programming language

* Minimal extensions to familiar C/C++
environment to run code on the GPU
low learning curve

CUDA: Scalable Parallel Programming

* Provide straightforward mapping onto hardware
® good fit to GPU architecture
* maps well to multi-core CPUs too

* Execute code by many threads in parallel

® Scale to 100s of cores & 10,000s of threads

® GPU threads are lightweight — create / switch is free
®* GPU needs 1000s of threads for full utilization

Reference: CUDA Programming Guide

® CUDA comes with excellent documentation
® doc/pdf in the CUDA folder, have a look!

® CUDA Programming Guide
® one of the best CUDA references
® covers every CUDA feature
® provides in-depth explanations

® Also: list of all CUDA functions:
¢ CUDA Runtime API.pdf

Outline of CUDA Basics

Kernels and Thread Hierarchy
Execution on the GPU
Memory Management
Error Handling And Compiling

® See the Programming Guide for the full API

BASIC KERNELS AND
THREAD HIERARCHY

CUDA Definitions

® Device: GPU
® executes code in parallel

® Host: CPU
® manages execution on the device

P

* Kernel: C/C++ function executed on the device
* executed by many threads

* each thread executes the same sequential program
® each thread is free to execute a unique code path

Quick Example

»

CPU: Process subtasks serially one by one:

for(int i=0; i<n; 1i++)
{

c[i] = a[i] + b[i]:;
}

)

GPU: Process each subtask in its own thread:

__global void vecAdd (float *a, float *b, float *c)
{
int i = threadlIdx.x + blockDim.x * blockIdx.x;

c[i] = a[i] + b[1i]; ..
} Each thread knows its index

* launch enough threads to cover all data

Thread Hierarchy

»

Kernel threads are grouped into blocks
® up to 512 or 1024 threads per block

)

ldea: Threads from the same block can cooperate
® synchronize their execution
® communicate via shared memory
® threads from blocks cooperate

)

Allows transparent scaling to different GPUs
All kernel blocks together form a grid

)

Thread Hierarchy

Grid

Block (0, 0) || Block (Block (

® #threads per block: §§§§§§§ §§§§§§§ W

Block (0, 1) Block (1,1) \8lock (2,

up to 512 (CC 1.x), gggggg W W
up to 1024 (CC>=2.0)

® Blocks can be 1D, 2D, or 3D Block (1, 1)

* Grids can be 1D, 2D, or 3D
® CC1lx:only 1D or 2D

» Dimensions set at launch
® can be different for each grid

IDs and Dimensions

Grid

Block (0, 0) = Block (Block (2, 0)

® Threads: §§§§§§§ §§§§§§§ W

Block (0, 1) Block (1,1) \8lock (2,

3D IDs, unigue within a block ggggggg g}gggggg W

* Blocks:
3D IDs, unique within a grid

Block (
® Built-in variables

® threadldx, blockldx
]]] Thread 0,1) |Thread (1, 1) [Thread (2, 1) [Threa (3 1)

Array Accesses: Index Calculation

® Obtain unique array index from block/thread IDs
® threadldx, blockldx
® blockDim, gridDim

blockDim.x = 5
1

I
blockIdx.x

threadIdx.x

array index 012 34 567 89 1011121314

[threadIdx.x + blockDim.x*blockIdx.x]

Kernel Launch

.

.

Usual C/C++ function call, with an additional
specification of grid and block sizes:

[mykernel <<< grid, block >>> (...);]

dim3 grid; dim3 block;
® three ints: block.x, block.y, block.z

Kernel is launched by the CPU

® CC >=3.5; kernels can launch other kernels

Executed on the GPU

Example: One-dimensional Kernel

__global wvoid mykernel (int *a, int n)

{
int ind = threadIdx.x + blockDim.x * blockIdx.x;
if (ind<n) a[ind] = a[ind] + 1;

int main ()

dim3 block = dim3(128,1,1); // 128 threads

// ensure enough blocks to cover n elements (round up)
dim3 grid = dim3((n + block.x - 1) / block.x, 1, 1);
mykernel <<<grid, block>>> (d_a, n);

// Also possible:
// launch 4 blocks, each with 128 threads
mykernel <<<4,128>>> (d_a, n);

Example: Two-dimensional Kernel

__global void mykernel (int *a, int w, int h)

{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int ind = x + w*y;
if (x<w && y<h) a[ind] = a[ind] + 1;

int main ()
{
dim3 block = dim3(32,8,1); // 32*8 = 256 threads
// ensure enough blocks to cover w * h elements (round up)
dim3 grid = dim3((w + block.x - 1) / block.x,
(h + block.y - 1) / block.y, 1);
mykernel <<<grid,block>>> (d_A, dimx, dimy);

Always Check Validity of Indices

® There may be more threads than array elements
. test whether the indices are within bounds

__global void mykernel (int *a, int n)

{
int ind = threadIdx.x + blockDim.x * blockIdx.x;
if (ind<n) a[ind] = a[ind] + 1;

__global void mykernel (int *a, int w, int h)

{
int x = threadlIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int ind = x + w*y;
if (x<w && y<h) a[ind] = a[ind] + 1;

Exercise: IDs of Threads and Blocks

kernel<<<4,64>>>(d _a);

__global void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
a[idx] = 7;

__global void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
a[idx] = blockIdx.x;

__global void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
a[idx] = threadldx.x;

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d _a);

__global void kernel (int *a)
{
int idx = threadlIdx.x + blockDim.x * blockIdx.x;
al[idx] = 7;
} Output: 7777 7777 7777 7777

__global void kernel (int *a)

{
int idx = threadlIdx.x + blockDim.x * blockIdx.x;

a[idx] = blockIdx.x;

Output: 0000 1111 2222 3333

__global void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;

a[idx] = threadldx.x;
} Output: 0123 0123 0123 0123

Code Executed on GPU: Functions

® Special qualifiers to declare GPU functions:

® global : kernels

launched by CPU to run on the GPU
must return void

¢ _ device__ :auxiliary GPU functions

can only be called on the GPU
called from _ global _or device _functions

¢ host : “normal” CPU C/C++ functions
can only be called on the CPU

® host device :qualifiers can be combined
callable from CPU and from GPU

Code Executed on GPU: Restrictions

® C/C++ with some restrictions

»

only access to GPU memory
® not to CPU memory
can access ,,pinned“ CPU memory (special allocation needed)
* from CUDA 6 and CC 3.0: GPU can access CPU memory

»

no access to host functions

»

no variable number of arguments

»

no static variables in functions or classes

Code Executed on GPU: Features

* Many C/C++ features available for GPU code
templates
recursion (CC >=2.0)
overloading

* function overloading
* operator overloading

classes
® stack allocation
* heap allocation (CC >=2.0)
* inheritance, virtual functions (CC >= 2.0)

function pointers (CC >= 2.0)
printf() formatted output (CC >=2.0)

* Vector variants of basic types
float2, float3, floatd4, double2, int4, char2, etcC.
float2 a=make float2(1l,2); a.x=10; a.y=a.x;

Blocks: Must Be Independent

* Any possible ordering of blocks should be valid
* presumed to run to completion without pre-emption
® can run in any order (order is unspecified)
® can run concurrently OR sequentially

* Blocks may coordinate but not synchronize
* shared queue pointer. OK
* shared lock: ... can easily deadlock

* Independence requirement gives scalability

Execution of Kernels: Asynchronous

® Kernel launches are asynchronous w.r.t. CPU
¢ after kernel launch, control immediately returns
® CPU is free to do other work while the GPU is busy

® Kernel launches are queued

¢ kernel doesn‘t start until previous kernels are
finished

concurrent kernels possible for CC >= 2.0
(given enough resources)

® Explicit synchronization if needed
® cudaDeviceSynchronize ()

EXECUTION ON GPU

||-

Lz
=
&
L
2
-
<
-
0
O
<
0
>
Z

® 16 independent multiprocessors (SMs)

® No shared resources except global memory
® No synchronization, always work in parallel

Single Fermi SM Multiprocessor

® 32 CUDA Cores per SM (512 total)
* arithmetic/logic operations

® 16 memory load/store units
* (slow) access to off-chip GPU mem

® 4 Special Function Units
* 1/X, 1/SQRT(X), SIN, COS, EXP, ...

® 64 KB on-chip shared memory
® shared amongst CUDA cores
® enables thread communication

NVIDIA GPU Architecture: Current

| WarpScheduler | WarpScheduler | WarpScheduler = WarpScheduler
*———?———

mlm le (65,536 x 32-bit)

Kepler
GPU
(CC 3.xX)

® 15 multiprocessors (up to

® 192 Cuda Cores per SM
2880 Cores in total (up to)

Warps: Key Architectural ldea

® SIMT (Single Instruction Multiple Thread) execution
® threads runin groups of 32 called warps

® All 32 threads in a warp execute the same
Instruction
¢ always, no matter what (even if threads diverge)

® Threads are executed warp-wise by the GPU
* for each warp, the 32 threads are executed in parallel
® warps are executed one after another

® but several warps can run simultaneously
® upto 2for CC 2.x,upto 6 for CC 3.x

Thread Hierarchy

Grid

Block (0, 0) || Block (Block (

WWW

Block (0, 1) Block (1,1) NBlock (2

Thread(o 0) Thread(1 0) |Thread (2, 0) Thread(3 0)

Thread 0,1) Thread(1 1) | Thread (2, 1) [Threa (3 1)
Thread(1 2) Thread (2,2) | Thread (3, %)

Execution of Kernels on the GPU

Multithreaded CUDA Program

® Blocks are distributed across
the Multiprocessors (SMs)

Block 0 Block 1 Block 2 Block 3

Block 4 Block5 Block6 Block7

* Active blocks
® are currently executed
® reside on a multiprocessor
® resources allocated
* executed until finished

GPU with 4 SMs

SMO SM 1 SM 2 SM 3

Block 0 Block 1 Block 0 Block1 Block2 Block3

® Waiting blocks Block2 Block 3
® waitto be executed
® not yet assigned to a SM

Block 4 Block5 Block6 Block7

Block 4 Block 5

Block 6 Block 7

i) g

v

Blocks Execute on Multiprocessors

® Each block is executed on one Multiprocessor (SM)
® cannot migrate
* reason for block independence

* Several blocks per SM possible
* if enough resources available
® SMresources are divided among all bloc

¢ Block threads share SM /'

* SM are divided up
among the threads
¢ SM can be —

read/written by all threads

Execution on each Multiprocessor

® Assume there are three blocks on one SM,
with 128 threads per block:

Execution on each Multiprocessor

® Threads from all blocks are divided into warps

® In our example:
® 4 warps from every block (128 threads/32)

® 12 warps overall on SM (3 blocks * 4 warps/block)
® 12*32 = 384 threads

Execution on each Multiprocessor

® Resources are allocated for all potential warps

* the state of every potentially executable warp is
always present on the Multiprocessor, until finished

overall many more potentially executable threads
than CUDA Cores possible

® Therefore:

® switching between warps is free
® any non-waiting warp can run

Execution on each Multiprocessor

® At each clock cycle
® each warp scheduler chooses a warp
which is ready to be executed

® For each chosen warp
® the next instruction is executed
for all 32 threads of the warp

® issued for execution to
® CUDA Cores
® or load/store units
® or special function units
® or texture units

e 2 5

& 2 =

k] = wn

- @ @

8= 2 2
A =

s 5 3
2 =
5 S
2|
EX 2
a

= =~ y

Execution on each Multiprocessor

MEMORY MANAGEMENT

GPU Memory

Kernel O

Kernel 1

Host memory

cudaMemcpy ()

Per-device
Global

Memory

Device 0
memory

Device 1
memory

Sequential
(CINES

GPU Memory

* CPU and GPU have separate memory spaces
data is moved across PCle bus

use functions to allocate/set/copy memory on GPU
® very similar to corresponding C functions

* Pointers are just addresses

cannot tell from pointer if memory is on GPU or CPU
* but possible for CC>=2.0: unified virtual addressing

must exercise care when dereferencing:
* crash if GPU dereferences pointer to CPU memory
® and vice versa

Allocation / Release

® Host (CPU) manages device (GPU) memory:
® cudaMalloc (void **pointer, size t nbytes)
® cudaMemset (void *pointer, int value, size_t count)
® cudaFree (void* pointer)

1024;

size t nbytes = n*sizeof (int);
int *d a = NULL;
cudaMalloc (&d _a, nbytes);
cudaMemset(d a, 0, nbytes);

int n

cudaFree(d a);

Data Copies Between GPU and CPU

® cudaMemcpy (void *dst, void *src, size t nbytes,
cudaMemcpyKind direction);

® blocks the CPU thread until all bytes have been copied
* non-blocking variants are also available
® doesn't start copying until all previous CUDA calls complete

® cudaMemcpyKind:
® cudaMemcpyHostToDevice
® cudaMemcpyDeviceToHost
® cudaMemcpyDeviceToDevice

cudaMemcpy (dev_ptr, host ptr, n*sizeof(float),
cudaMemcpyHostToDevice) ;

Example Host Code

// allocate and initialize host (CPU) memory
float *h a = ..., *h b= ...; *h ¢ = ... (empty)

// allocate device (GPU) memory

float *d_a, *d b, *d c;

cudaMalloc(&d _a, n * sizeof(float));
cudaMalloc(&d b, n * sizeof(float));
cudaMalloc(&d c, n * sizeof(float));

// copy host memory to device
cudaMemcpy(d_a, h a, n * sizeof (float), cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, h b, n * sizeof (float), cudaMemcpyHostToDevice);

// launch kernel

dim3 block = dim3(128,1,1);

dim3 grid = dim3((n + block.x - 1) / block.x, 1, 1);
vecAdd <<<grid,block>>> (d_a, d b, d ¢c);

// copy result back to host (CPU) memory
cudaMemcpy(h_ ¢, d ¢, n * sizeof(float), cudaMemcpyDeviceToHost);

// do something with the result...

// free device (GPU) memory
cudaFree (d_a) ;
cudaFree (d_Db) ;
cudaFree (d_c) ;

Use float by Default

® GPUs can handle double since CC>=1.3

® But £loat operations are still much faster

* by an order of magnitude
® so use double only if £1loat is not enough

»

Avoid using double where not needed:

Add 'f' suffix to float literals:
® 0.£, 1.0£, 3.1415f are of type float
0.0, 1.0, 3.1415 areoftype double
® Use float version of math functions:
» expf/logf/sinf/sqrtf/etc.take and return £loat
» exp /log/sin/sqrt/etc. take and return double

»

Blocks Size: How To Choose?

® Number of threads/block should be multiple of 32
® because threads are always executed in groups of 32

® Rules of thumb:
® not too small or too big: between 128 and 256 threads
® start with dim3 (32,8,1), I.e. 256 threads

® experiment with similar sized "power-of-2"-blocks:
* (64,4,1), (128,2,1), (32,4,1), (64,2,1)
* (32,16,1), (64,8,1), (128,4,1), (256,2,1)

measure the run time and choose the best block size!

»

ERROR HANDLING
AND COMPILING

Error Handling

® Checking for errors is crucial for programming GPUs

® cudaError t cudaGetLastError()
® returns the code for the last error
® resets the error flag back to cudaSuccess
® cudaPeetAtLastError () : get error code without resetting it
* if everything OK: cudaSuccess

® char* cudaGetErrorString(cudaError t code)
® returns a C-string describing the error

cudaMalloc(&d _a, n*sizeof (float));

cudaError t e = cudaGetLastError() ;

if (e!'=cudaSuccess)

{
cerr << "ERROR: " << cudaGetErrorString(e) << endl;
exit(1l);

Error Handling

* Kernel execution is asynchronous
* first wait for the kernel to finish by cudabDeviceSynchronize ()

® only then call cudaGetLastError ()
— otherwise it will be called too soon, the error may not have yet occured

¢ Kkernel launch itself may produce errors due to invalid configurations
— too many threads/block, too many blocks, too much shared memory requested

* Kernels may produce subtle memory corruption errors
® may get unnoticed even after cudaDeviceSynchronize ()

® subsequent CUDA calls may or may not fail because of such an error
¢ if they do fail, they were not the origin of the error

® It helps to keep track of the previous x CUDA calls
® x=1, or x=2, or x=10

Compiling

® CUDA files have ending .cu: squareArray.cu

* NVidia CUDA Compiler: nvce

handles the CUDA part
® hands over pure C/C++ part to host compiler

nvcc -o squareArray squareArray.cu

® Additional info about the kernels by option
--ptxas-options=-v

nvcc -o squareArray squareArray.cu -—--ptxas-options=-v

ptxas info : Compiling entry function ' Zl8cuda square kernelPfi' for 'sm 10
ptxas info : Used 2 registers, 28 bytes smem

CUDA Short Summary

Thread Hierarchy
thread - smallest executable unity

block - group of threads, shared memory for collaboration
grid - consists of several blocks
warp - group of 32 threads

Keyword extensions for C/C++

__global - kernel - function called by CPU, executed on GPU
__device - function called by GPU and executed on GPU
__host - [optional] - function called and executed by CPU
<<<L. .. >>> - kernel launch, chevrons specify grid and block sizes

Compilation:
nvcc -o <executable> <filename>.cu --ptxas-options=-v

