
GPU Programming
in Computer Vision

Optimization

Thomas Möllenhoff, Mohamed Souiai,
Maria Klodt, Jan Stühmer

Technical University Munich, Computer Vision Group
Summer Semester 2014

Outline

Branch Divergence

Shared Memory Bank Conflicts

Pitch Allocation for 2D Images

Host-Device Memory Transfer

Occupancy

See the Programming Guide for more details

BRANCH DIVERGENCE

Branch Divergence

All 32 threads in a warp execute the same

instruction

always, no matter what

__global__ void kernel (float *result, float *input)

{

 int i = threadIdx.x + blockDim.x*blockIdx.x;

 if (input[i]>0)

 result[i] = 1.f;

 else

 result[i] = 0.f;

}

What if different paths

 are taken within a warp?

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else result[i] = 0.f;

If threads diverge within a warp execution is

serialized

all 32 threads must execute the same instruction

Each path is taken by each of the 32 threads

Threads which do not correspond to this path

 are marked as inactive during execution

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else result[i] = 0.f;

threadIdx.x: 0 1 2 3 4 5 6 7 8 ... 31

input[i]: 7 23 -2 5 -1 66 24 -41 -3 ... 18

input[i]>0: T T F T F T T F F ... T

Time

active inactive

Branch Divergence: Serialization

Branch serialization occurs whenever the

execution path within a warp diverges

if / for / while / case

Potential divergence:

if (input[x]>0) {...}

for(int i=0; i<num_iters[x]; i++) {...}

Divergence in different warps: No serialization

if (threadIdx.x/32==0) {...}

SHARED MEMORY

BANK CONFLICTS

Shared Memory is Banked

Simultaneous access to shared memory by the

32 threads of each warp

Shared memory is divided into banks

consecutive 4bytes are in different banks

banks process accesses independently

each bank can service one address per cycle

Bank conflict: Two or more threads access the

same bank, but different value

accesses will be serialized

Bank Conflicts

no conflict
2-way

bank conflict
no conflict

sh[threadIdx.x] sh[2*threadIdx.x] sh[3*threadIdx.x]

Bank Conflicts

no conflict no conflict

random

permutation

threads 3,4,6,7,9

same val in bank 5

broadcast same

value within bank

no conflict

Bank Conflicts

Be careful with strided access:

sharedmem[i + k*threadIdx.x]

Bank conflicts for even k:

2-way: k = 2*1, 2*3, 2*5, 2*7, ...

4-way: k = 4*1, 4*3, 4*5, 4*7, ...

8-way: k = 8*1, 8*3, 8*5, 8*7, ...

16-way: k = 16*1, 16*3, 16*5, 16*7, ...

No bank conflicts for odd k:

k = 1, 3, 5, 9, ...

PITCHED ALLOCATION

FOR 2D IMAGES

2D Images: Linear Allocation

48 52 56 60 64 68

24 28 32 36 40 44

0 4 8 12 16 20

One can allocate 2D images as 1D-arrays and access in a
linearized way: img[x+w*y]

This works, but is in general suboptimal for CUDA

For a 6*3 float image, the addresses &img[x+6*y] are

Read/write accesses are fastest when the starting
address of each row is a multiple of a big power of 2

at least 128, or even 512

reason: requirement for memory coalescing, see later

2D Images: Pitched Allocation

Adding padding bytes at the end of each row resolves this

The total new width in bytes is called pitch
here: pitch = 32 bytes (= 8*sizeof(float))

in general, pitch != multiple of element size
example: 10*10 float3 array

sizeof(float3) = 12, w*sizeof(float3) = 120, pitch = 128

cudaMallocPitch (void **pointer, size_t *pitch,

 size_t widthInBytes, size_t height);

64 68 72 76 80 84 88 92

32 36 40 44 48 52 56 60

0 4 8 12 16 20 24 28

2D Images: Pitched Allocation

On host:

In kernel:

Copying: cudaMemcpy2D(...)
see NVIDIA Programming Guide

For 3D-Data: cudaMalloc3D()

float *d_a;

size_t pitch;

cudaMallocPitch(&d_a, &pitch, w*sizeof(float), h);

float value =

 ((float)((char*)a + x*sizeof(float) + pitch*y));

HOST-DEVICE MEMORY

TRANSFER

Host-Device Memory Transfer

Memcpy from device to host and vice versa is very slow

orders of magnitude slower than device-to-device

Minimize transfers

leave data for as long as possible on GPU for processing

only transfer main inputs to GPU, and transfer main outputs back

Group transfers

one large transfer much faster than many small ones

Overlap transfers with kernel executions

if possible by hardware

uses pinned host memory and streams (see later)

Pinned Host Memory

Enables highest memcpy performance

Enables asynchronous memcpy (CC>=1.1)

Enables direct access from GPU (CC>=1.1)

cudaMallocHost(void **pHost, size_t size,

 unsigned int flags);

cudaFreeHost(void *ptr);

page-locked, allocating too much may degrade your system

flags = cudaHostAllocMapped: direct access form GPU

 void *pDev; cudaHostGetDevicePointer(&pDev, pHost, 0);

flags = 0: default

Asynchronous Memory Copy

Usual cudaMemcpy is blocking

waits until memcpy is done

cudaMemcpyAsync(dst, src, size, dir, 0);

asynchronous, non-blocking

cudaMemcpyDeviceToHost, cudaMemcpyHostToDevice

0 is the default stream (more later)

Requirement: "pinned" host memory

allocated using cudaMallocHost

OCCUPANCY

Occupancy

Multiprocessors (SMs) can have many more

active threads than there are CUDA Cores

High occupancy is important

if some threads stall, the SM can switch to others

Pool of limited resources per SM

Occupancy determined by

Register usage per thread

Shared memory per block

Resource Limits

Registers Shared Memory Registers Shared Memory

Each block grabs registers and shared memory

If one or the other is fully utilized:

no more blocks per SM possible

Find Out Resource Usage

Compile with nvcc option -ptxas-options=-v

Per kernel registers and (static) shared memory:

Amount of resources per multiprocessor:

run deviceQuery

ptxas info : Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10'

ptxas info : Used 4 registers, 44 bytes smem

Optimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic density (math/bandwidth)

Sometimes it's better to recompute than to cache

GPU spends transistors on computation, not memory

Do more computation on the GPU to avoid costly

data transfers

Even low parallelism computations can sometimes be

faster than transfering back and forth to/from host

