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See the Programming Guide for more details 



BRANCH DIVERGENCE 



Branch Divergence 

All 32 threads in a warp execute the same 

instruction 

always, no matter what 

  
__global__ void kernel (float *result, float *input) 

{ 

    int i = threadIdx.x + blockDim.x*blockIdx.x; 

    if (input[i]>0) 

        result[i] = 1.f; 

    else 

        result[i] = 0.f; 

} 

What if different paths 

 are taken within a warp? 



Branch Divergence: Serialization 

if (input[i]>0) result[i] = 1.f; else result[i] = 0.f; 

 

If threads diverge within a warp execution is 

serialized 

all 32 threads must execute the same instruction 

 

Each path is taken by each of the 32 threads 

Threads which do not correspond to this path 

 are marked as inactive during execution 



Branch Divergence: Serialization 

if (input[i]>0) result[i] = 1.f; else result[i] = 0.f; 

 

threadIdx.x:  0   1   2   3   4   5   6   7   8   ...   31 

input[i]:     7  23  -2   5  -1  66  24 -41  -3   ...   18 

input[i]>0:   T   T   F   T   F   T   T   F   F   ...    T 

Time 

active inactive 



Branch Divergence: Serialization 

Branch serialization occurs whenever the 

execution path within a warp diverges 

if / for / while / case 

 

Potential divergence: 

if (input[x]>0) {...}  

for(int i=0; i<num_iters[x]; i++) {...} 

 

 

Divergence in different warps: No serialization 

if (threadIdx.x/32==0) {...} 

 



SHARED MEMORY 

BANK CONFLICTS 



Shared Memory is Banked 

Simultaneous access to shared memory by the 

32 threads of each warp 

 

Shared memory is divided into banks 

consecutive 4bytes are in different banks 

banks process accesses independently 

each bank can service one address per cycle 

 

Bank conflict: Two or more threads access the 

same bank, but different value 

accesses will be serialized 



Bank Conflicts 

no conflict 
2-way 

bank conflict 
no conflict 

sh[threadIdx.x] sh[2*threadIdx.x] sh[3*threadIdx.x] 



Bank Conflicts 

no conflict no conflict 

random 

permutation 

threads 3,4,6,7,9 

same val in bank 5 

broadcast same 

value within bank 

no conflict 



Bank Conflicts 

Be careful with strided access: 

sharedmem[i + k*threadIdx.x] 

 

Bank conflicts for even k: 

2-way:   k =   2*1,   2*3,   2*5,   2*7, ... 

4-way:   k =   4*1,   4*3,   4*5,   4*7, ... 

8-way:   k =   8*1,   8*3,   8*5,   8*7, ... 

16-way: k = 16*1, 16*3, 16*5, 16*7, ... 

 

No bank conflicts for odd k: 

k = 1, 3, 5, 9, ... 
 



PITCHED ALLOCATION 

FOR 2D IMAGES 



2D Images: Linear Allocation 

48 52 56 60 64 68 

24 28 32 36 40 44 

0 4 8 12 16 20 

One can allocate 2D images as 1D-arrays and access in a 
linearized way:  img[x+w*y] 

This works, but is in general suboptimal for CUDA 

For a 6*3 float image, the addresses &img[x+6*y] are 

Read/write accesses are fastest when the starting 
address of each row is a multiple of a big power of 2 

at least 128, or even 512 

reason: requirement for memory coalescing, see later 



2D Images: Pitched Allocation 

Adding padding bytes at the end of each row resolves this 

The total new width in bytes is called pitch 
here: pitch = 32 bytes  (= 8*sizeof(float)) 

in general, pitch != multiple of element size 
example:   10*10 float3  array 

sizeof(float3) = 12,  w*sizeof(float3) = 120,  pitch = 128 

 

cudaMallocPitch (void **pointer, size_t *pitch, 

           size_t widthInBytes, size_t height);  

 

64 68 72 76 80 84 88 92 

32 36 40 44 48 52 56 60 

0 4 8 12 16 20 24 28 

 



2D Images: Pitched Allocation 

On host: 

 

 

 

In kernel: 

 

 

 

Copying: cudaMemcpy2D(...) 
see NVIDIA Programming Guide 

 

 

For 3D-Data: cudaMalloc3D() 

 

float *d_a; 

size_t pitch; 

cudaMallocPitch(&d_a, &pitch, w*sizeof(float), h); 

float value = 

 *((float*)( (char*)a + x*sizeof(float) + pitch*y) ); 



HOST-DEVICE MEMORY 

TRANSFER 



Host-Device Memory Transfer 

Memcpy from device to host and vice versa is very slow 

orders of magnitude slower than device-to-device 

 

Minimize transfers 

leave data for as long as possible on GPU for processing 

only transfer main inputs to GPU, and transfer main outputs back 

 

Group transfers 

one large transfer much faster than many small ones 

 

Overlap transfers with kernel executions 

if possible by hardware 

uses pinned host memory and streams (see later) 



Pinned Host Memory 

Enables highest memcpy performance 

Enables asynchronous memcpy (CC>=1.1) 

Enables direct access from GPU (CC>=1.1) 

 

cudaMallocHost(void **pHost, size_t size, 

               unsigned int flags); 

cudaFreeHost(void *ptr); 

page-locked, allocating too much may degrade your system 

 

flags = cudaHostAllocMapped: direct access form GPU 

 void *pDev; cudaHostGetDevicePointer(&pDev, pHost, 0); 

flags = 0: default 

 



Asynchronous Memory Copy 

Usual cudaMemcpy is blocking 

waits until memcpy is done 

 

cudaMemcpyAsync(dst, src, size, dir, 0); 

asynchronous, non-blocking 

cudaMemcpyDeviceToHost, cudaMemcpyHostToDevice 

0 is the default stream (more later) 

 

Requirement: "pinned" host memory 

allocated using cudaMallocHost 

 



OCCUPANCY 



Occupancy 

Multiprocessors (SMs) can have many more 

active threads than there are CUDA Cores 

 

High occupancy is important 

if some threads stall, the SM can switch to others 

 

Pool of limited resources per SM 

 

Occupancy determined by 

Register usage per thread 

Shared memory per block 



Resource Limits 

Registers Shared Memory Registers Shared Memory 

 

 

 

 

 

 

 

Each block grabs registers and shared memory 

If one or the other is fully utilized: 

no more blocks per SM possible 



Find Out Resource Usage 

Compile with nvcc option -ptxas-options=-v 

Per kernel registers and (static) shared memory: 

 

 

 

 

Amount of resources per multiprocessor: 

run deviceQuery 

ptxas info    : Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10' 

ptxas info    : Used 4 registers, 44 bytes smem 



Optimize Algorithms for the GPU 

Maximize independent parallelism 

 

Maximize arithmetic density (math/bandwidth) 

 

Sometimes it's better to recompute than to cache 

GPU spends transistors on computation, not memory 

 

Do more computation on the GPU to avoid costly 

data transfers 

Even low parallelism computations can sometimes be 

faster than transfering back and forth to/from host 


