GPU Programming in Computer Vision

Thomas Möllenhoff, Mohamed Souiai, Maria Klodt, Jan Stühmer

Optimization

Technical University Munich, Computer Vision Group Summer Semester 2014

Outline

- Branch Divergence
- Shared Memory Bank Conflicts
- Pitch Allocation for 2D Images
- Host-Device Memory Transfer
- Occupancy

See the Programming Guide for more details

BRANCH DIVERGENCE

Branch Divergence

}

All 32 threads in a warp execute the same instruction

always, no matter what

```
__global___void kernel (float *result, float *input)
{
    int i = threadIdx.x + blockDim.x*blockIdx.x;
    if (input[i]>0)
        result[i] = 1.f;
    else
        result[i] = 0.f;
        What if different paths
        are taken within a warp?
```

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else result[i] = 0.f;

- If threads diverge within a warp execution is serialized
 - all 32 threads must execute the same instruction
- Each path is taken by each of the 32 threads
 Threads which do not correspond to this path are marked as inactive during execution

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else result[i] = 0.f;

Branch Divergence: Serialization

Branch serialization occurs whenever the execution path within a warp diverges
 if / for / while / case

Potential divergence:

- if (input[x]>0) {...}
- for(int i=0; i<num_iters[x]; i++) {...}</pre>

Divergence in different warps: No serialization o if (threadIdx.x/32==0) {...}

SHARED MEMORY BANK CONFLICTS

Shared Memory is Banked

 Simultaneous access to shared memory by the 32 threads of each warp

Shared memory is divided into banks

- consecutive 4bytes are in different banks
- banks process accesses independently
- each bank can service one address per cycle
- Bank conflict: Two or more threads access the same bank, but different value
 - accesses will be serialized

Bank Conflicts

no conflict

2-way bank conflict

no conflict

Bank Conflicts

Bank Conflicts

Be careful with strided access:

sharedmem[i + k*threadIdx.x]

Bank conflicts for even k:

- 2-way: k = 2*1, 2*3, 2*5, 2*7, ...
- 4-way: k = 4*1, 4*3, 4*5, 4*7, ...
- 8-way: k = 8*1, 8*3, 8*5, 8*7, ...
- 16-way: k = 16*1, 16*3, 16*5, 16*7, ...

No bank conflicts for odd k:

PITCHED ALLOCATION FOR 2D IMAGES

2D Images: Linear Allocation

- One can allocate 2D images as 1D-arrays and access in a linearized way: img[x+w*y]
- This works, but is in general suboptimal for CUDA
- For a 6*3 float image, the addresses &img[x+6*y] are

48	52	56	60	64	68
24	28	32	36	40	44
0	4	8	12	16	20

- Read/write accesses are fastest when the starting address of each row is a multiple of a big power of 2
 - at least **128**, or even **512**
 - reason: requirement for memory coalescing, see later

2D Images: Pitched Allocation

Adding padding bytes at the end of each row resolves this

64	68	72	76	80	84	88	92
32	36	40	44	48	52	56	60
0	4	8	12	16	20	24	28

- The total new width in bytes is called pitch
 - here: pitch = 32 bytes (= 8*sizeof(float))
 - in general, pitch != multiple of element size
 - example: 10*10 float3 array
 - sizeof(float3) = 12, w*sizeof(float3) = 120, pitch = 128
- cudaMallocPitch (void **pointer, size_t *pitch, size_t widthInBytes, size_t height);

2D Images: Pitched Allocation

On host:

```
float *d_a;
size_t pitch;
cudaMallocPitch(&d_a, &pitch, w*sizeof(float), h);
```

In kernel:

```
float value =
 *((float*)( (char*)a + x*sizeof(float) + pitch*y) );
```

Copying: cudaMemcpy2D(...)

see NVIDIA Programming Guide

For 3D-Data: cudaMalloc3D()

HOST-DEVICE MEMORY TRANSFER

Host-Device Memory Transfer

Memcpy from device to host and vice versa is very slow

orders of magnitude slower than device-to-device

Minimize transfers

- leave data for as long as possible on GPU for processing
- only transfer main inputs to GPU, and transfer main outputs back

Group transfers

one large transfer much faster than many small ones

Overlap transfers with kernel executions

- if possible by hardware
- uses pinned host memory and streams (see later)

Pinned Host Memory

- Enables highest memcpy performance
- Enables asynchronous memcpy (CC>=1.1)
- Enables direct access from GPU (CC>=1.1)
- o cudaFreeHost(void *ptr);
- page-locked, allocating too much may degrade your system
- flags = cudaHostAllocMapped: direct access form GPU void *pDev; cudaHostGetDevicePointer(&pDev, pHost, 0);
 flags = 0: default

Asynchronous Memory Copy

Usual cudaMemcpy is blocking

- waits until memcpy is done
- cudaMemcpyAsync(dst, src, size, dir, 0);
 - asynchronous, non-blocking
 - cudaMemcpyDeviceToHost, cudaMemcpyHostToDevice
 - 0 is the default stream (more later)
- Requirement: "pinned" host memory
 - allocated using cudaMallocHost

OCCUPANCY

- Multiprocessors (SMs) can have many more active threads than there are CUDA Cores
- High occupancy is important
 if some threads stall, the SM can switch to others
- Pool of limited resources per SM
- Occupancy determined by
 - Register usage per thread
 - Shared memory per block

Resource Limits

- Each block grabs registers and shared memory
- If one or the other is fully utilized:
 - no more blocks per SM possible

Find Out Resource Usage

Compile with nvcc option -ptxas-options=-v
 Per kernel registers and (static) shared memory:

ptxas info : Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10' ptxas info : Used 4 registers, 44 bytes smem

Amount of resources per multiprocessor:

run deviceQuery

Optimize Algorithms for the GPU

- Maximize independent parallelism
- Maximize arithmetic density (math/bandwidth)
- Sometimes it's better to recompute than to cache
 - GPU spends transistors on computation, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transfering back and forth to/from host