GPU Programming in Computer Vision: Day 3

Date: Wednesday, 10. September 2014

Please work in groups of $2-3$ people. We will check your solutions tomorrow after the lecture. Please be prepared to present your solution and explain the code. The general code requirements from exercise sheet 1 still apply. The bonus exercises are not mandatory.

Exercise 11: Isotropic Diffusion

Output: same number of channels as input image. Input: general number of channels.
Implement the nonlinear isotropic diffusion

$$
\partial_{t} u=\operatorname{div}(\widehat{g}(|\nabla u|) \nabla u),
$$

for different choices of \widehat{g}. This means updating u in the following way:

$$
u^{n+1}=u^{n}+\tau \operatorname{div}\left(\widehat{g}\left(\left|\nabla u^{n}\right|\right) \nabla u^{n}\right)
$$

As a initial condition, pick u^{0} as the input image. For simplicity, we consider $\widehat{g}(s)=1$ at first.

1. Use forward differences to compute the derivatives $v_{1}:=\partial_{x}^{+} u$ and $v_{2}:=\partial_{y}^{+} u$. Reuse your code from exercise 5.
2. Compute the diffusivity g from v_{1}, v_{2}. Use a "__host__ __device__" function for \widehat{g}. Hint: Note that g is scalar, there is only one value g, which is shared for all channels.
3. Multiply v_{1}, v_{2} by g, and store the result again in v_{1}, v_{2}.

If you want, you can combine steps 2 and 3 into a single kernel. Note that then you don't need an array for g, because you can compute g locally in the kernel.
4. Use backward differences to compute the divergence: $d:=\operatorname{div}\binom{v_{1}}{v_{2}}=\partial_{x}^{-} v_{1}+\partial_{y}^{-} v_{2}$. Reuse your code from exercise 5.
5. Compute the update step for u, update all of the n_{c} channels in a single kernel. You can implement this as a separate kernel, or as part of the div-kernel from step 3.
6. Compute N iterations of the diffusion and visualize the end result. Experiment with different time steps τ and different numbers of iterations N. A necessary condition for convergence is $\tau<0.25 / \widehat{g}(0)$, i.e. $\tau<0.25$ for $\widehat{g}(s)=1$. What happens is τ is chosen too big? What happens for very large N ?
7. Compare the result to Gaussian convolution $G_{\sigma} * u$ with $\sigma=\sqrt{2 \tau N}$. What do you observe?
8. Now try using a different diffusivity function:

- $\widehat{g}(s)=\frac{1}{\max (\varepsilon, s)}$,
- $\widehat{g}(s)=\exp \left(-s^{2} / \varepsilon\right) / \varepsilon$.

How do the results change in each case?

Exercise 12: Pitched Memory Allocation

Output: same number of channels as input image. Input: general number of channels.
For memory accesses of the form imgIn $[\mathrm{x}+($ size_t) $\mathrm{w} * \mathrm{y}+($ size_t) $\mathrm{w} * \mathrm{~h} * \mathrm{c}$] to be fully coalesced, both the width of the thread block and the width of the array must be a multiple of the warp size. In order to guarantee that, a trick is to introduce a border so that the total width of the array (called the "pitch") is a multiple of the warp size (as depicted in Figure 1).

Figure 1: Pitched memory allocation.

1. Rewrite the code from exercise 3 using pitched memory allocation. Allocate all arrays using cudaMallocPitch, which calculates the optimal pitch automatically. Use cudaMemcpy2D for the memory transfers.
2. Access $\operatorname{imgIn}(x, y, c)$ as imgIn[x + (size_t)pitch*y + (size_t)pitch*h*c]. As cudaMallocPitch returns the pitch in bytes, use pitch = pitchInBytes / sizeof(float) to address floating point arrays.
3. Run your code on an image which has a width which is not a mulitple of the warp size. Can you observe any speed up?

Exercise 13 (Bonus): Anisotropic Diffusion

Output: same number of channels as input image. Input: general number of channels.
Implement the anisotropic linear diffusion

$$
\partial_{t} u=\operatorname{div}(G \nabla u),
$$

by iterating the explicit forward Euler scheme

$$
u^{n+1}=u^{n}+\tau \operatorname{div}\left(G \nabla u^{n}\right) .
$$

Here, G is a 2×2 diffusion tensor which is different at every pixel in the domain and is calculated once from the input image. It aims at making the diffusion process preserve image edges.

1. Compute the diffusion tensor G from the input image:
(a) First calculate the structure tensor of the input image. Postsmooth the structure tensor with a gaussian kernel with a different standard deviation parameter ρ. Reuse parts of your code from exercise 8.
(b) Now calculate the Eigenvalues $\lambda_{1} \geq \lambda_{2}$ and corresponding eigenvectors e_{1}, e_{2} of the structure tensor G in each point. For that, extend the __device__ function from exercise 9 to also calculate and return the eigenvectors.
(c) Set the diffusion tensor to $G=\mu_{1} e_{1} e_{1}^{T}+\mu_{2} e_{2} e_{2}^{T}$ with

$$
\begin{aligned}
& \mu_{1}=\alpha \\
& \mu_{2}= \begin{cases}\alpha & \lambda_{1}=\lambda_{2} \\
\alpha+(1-\alpha) \exp \left(-\frac{C}{\left(\lambda_{1}-\lambda_{2}\right)^{2}}\right) & \text { else }\end{cases}
\end{aligned}
$$

where $C>0$ and $\alpha \in(0,1)$ are parameters.
2. Implement the diffusion as outlined in the previous exercise, except that the diffusivity is now matrix valued and constant. Perform a 2×2 matrix-vector multiplication on the gradient instead of the scalar multiplication in exercise 11.
3. Try out different choices of C, α and iteratons numbers N. Remember to chose $\tau<0.25$ small enough. Try it out on the image van-gogh.png and pick $C=5 \cdot 10^{-6}, \alpha=0.01$, $\sigma=0.5$ and $\rho=3$ as a start. Hint: for debugging purposes it might be useful to visualize the diffusion tensor!

