Image Evolutions

Image evolutions

Consider images which evolve over time

$$
u: \Omega \times[0, T] \rightarrow \mathbb{R}^{n}
$$

The image has now three parameters: $u(x, y, t)$.

Discretized view

Generate a sequence of images $u^{k}: \Omega \rightarrow \mathbb{R}^{n}$ starting with some u^{0} :

$$
u^{0}, u^{1}, u^{2}, u^{3}, \ldots
$$

by a specific algorithm. Only the result $u^{k_{0}}$ for some $k_{0} \geq 1$ is of interest.

Diffusion

We will first consider grayscale images $u: \Omega \times[0, T] \rightarrow \mathbb{R}$, and later generalize to multi-channel images.

Diffusion

Continuous-time update equation

$$
\partial_{t} u=\operatorname{div}(D \nabla u)
$$

Starting with some image $u(t=0)=u^{0}$, this tells how the image must be changed over time. ∇ and div are only w.r.t. spatial variables x, y.

Diffusion tensor

$D: \Omega \times[0, T] \rightarrow \mathbb{R}^{2 \times 2}$ is called the diffusion tensor. It gives
a symmetric, positive definite 2×2 matrix $D(x, y, t)$ for all (x, y, t). It may be different for every (x, y, t), and may depend on u.

Intuitively

Diffusion tries to locally cancel out any existing color differences, the image u gradually becomes more and more smooth over time.

Diffusion: Computation of the Update

Diffusion

$$
\left(\partial_{t} u\right)(x, y, t)=(\operatorname{div}(D \nabla u))(x, y, t)
$$

1. Start with image $u: \Omega \times[0, T] \rightarrow \mathbb{R}$, values $u(x, y, t) \in \mathbb{R}$
2. Compute the gradient

$$
g(x, y, t):=(\nabla u)(x, y, t)=\binom{\left(\partial_{x} u\right)(x, y, t)}{\left(\partial_{y} u\right)(x, y, t)} \in \mathbb{R}^{2}
$$

3. Multiply the diffusion tensor $D(x, y, t) \in \mathbb{R}^{2 \times 2}$ with the gradient $g(x, y, t) \in \mathbb{R}^{2}$:

$$
v(x, y, t):=D(x, y, t) g(x, y, t) \in \mathbb{R}^{2}
$$

4. Take divergence of v :

$$
d(x, y, t):=(\operatorname{div} v)(x, y, t)=\left(\partial_{x} v_{1}\right)(x, y, t)+\left(\partial_{y} v_{2}\right)(x, y, t) \in \mathbb{R}
$$

Diffusion: Types

Diffusion

$$
\partial_{t} u=\operatorname{div}(D \nabla u)
$$

Linear/Nonlinear

- Linear: D does not depend on u
- Nonlinear: D depends on u

Additivity property of linear diffusion:
Given the solutions u and v for starting images u^{0} and v^{0}, respectively, the solution for the starting image $u^{0}+v^{0}$ is given by $u+v$.

Diffusion: Types

Diffusion

$$
\partial_{t} u=\operatorname{div}(D \nabla u)
$$

Isotropic/Anisotropic

- Isotropic: Diffusivity matrix D is a scaled identity matrix:

$$
D(x, y, t)=g(x, y, t)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

$g(x, y, t) \in \mathbb{R}$ is called diffusivity. The diffusion equation becomes

$$
\partial_{t} u=\operatorname{div}(g \nabla u)
$$

- Anisotropic: Any diffusion which is not isotropic.

Isotropic diffusion spreads out the values u equally in every direction.
Anisotropic diffusion can selectively suppress information flow in certain directions, e.g. only smooth out u along potential edges, and not across.

Diffusion: Types

Each diffusion is either linear or nonlinear, and either isotropic or anisotropic:

	isotropic	anisotropic
linear	linear isotropic	linear anisotropic
nonlinear	nonlinear isotropic	nonlinear anisotropic

Example: Laplace Diffusion

Diffusion tensor is constant:

$$
D(x, y, t):=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Diffusion equation becomes

$$
\partial_{t} u=\operatorname{div}(D \nabla u)=\Delta u
$$

This is a linear and isotropic diffusion.
Effect: Blurry version of the input image
For $\Omega=\mathbb{R}^{2}$ one can show the explicit formula

$$
u(x, y, t)=\left(G_{\sqrt{2 t}} * u^{0}\right)(x, y)
$$

This formula is not valid for rectangular domains Ω, only for $\Omega=\mathbb{R}^{2}$, but the Laplace diffusion results are still similar to Gaussian convolution.

Multi-channel images

Process channel-wise.

Example: Laplace Diffusion

$t=10$

$t=100$
$t=20$

$t=200$

$t=4$
$t=40$

$t=400$

Example: Huber Diffusion

Diffusion tensor depends on the image u (or, more precicely, on ∇u):

$$
\begin{gathered}
D(x, y, t)=g(x, y, t)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\text { with } g(x, y, t):=\widehat{g}(|\nabla u(x, y, t)|) \quad \text { and } \quad \widehat{g}(s):=\frac{1}{\max (\varepsilon, s)} .
\end{gathered}
$$

Diffusion equation becomes

$$
\partial_{t} u=\operatorname{div}(D \nabla u)=\operatorname{div}(\widehat{g}(|\nabla u|) \nabla u)
$$

This is a nonlinear and isotropic diffusion.
Effect: Smoothing with better edge preservation:
Edges of u are points (x, y) with large gradient value $|\nabla u(x, y)|$.
The diffusivity g is small in these points, so there will be less smoothing.

Multi-channel images

Channel-wise, but with one common diffusivity $\widehat{g}(|\nabla u|)$ for all channels.

Example: Huber Diffusion with $\varepsilon=0.01$

Input at $t=0$

$t=2$

$t=0.04$

$t=4$

$t=10$

Example: Linear Anisotropic Diffusion

Diffusion tensor depends on the structure tensor T of the input image f.

$$
D(x, y, t)=\left(\begin{array}{ll}
G_{11}(x, y) & G_{12}(x, y) \\
G_{21}(x, y) & G_{22}(x, y)
\end{array}\right)
$$

where $G(x, y)=\mu_{1} e_{1} e_{1}^{T}+\mu_{2} e_{2} e_{2}^{T} \in \mathbb{R}^{2 \times 2}$ is constructed from the eigenvalues and eigenvectors of the structure tensor $T(x, y)^{1}$. In particular

$$
\mu_{1}=\alpha, \quad \mu_{2}=\alpha+(1-\alpha) \exp \left(-\frac{C}{\left(\lambda_{1}-\lambda_{2}\right)^{2}}\right) .
$$

Diffusion equation becomes

$$
\partial_{t} u=\operatorname{div}(G \nabla u) .
$$

This is a linear and anisotropic diffusion.
Effect: Smoothing along the direction of the image structures. If $\left(\lambda_{1}-\lambda_{2}\right)^{2}$ is big, μ_{2} is chosen small \Rightarrow less smoothing along e_{2}.

Example: Linear Isotropic Diffusion

Input at $t=0$

$t=20$

$t=2$

$t=40$

$t=4$

$t=100$
$t=10$

$t=200$

Example: Linear Anisotropic Diffusion

Input at $t=0$

$t=20$

$t=2$

$t=40$

$t=4$

$t=100$

$t=10$

$t=200$

Discretization: General Isotropic Diffusion

Temporal derivative

Forward differences for ∂_{t} with a time step $\tau>0$:

$$
\left(\partial_{t}^{+} u\right)(x, y, t)=\frac{u(x, y, t+\tau)-u(x, y, t)}{\tau}
$$

Spatial derivatives

Forward differences for ∇, backward differences for div:

$$
\operatorname{div}^{-}\left(g \nabla^{+} u\right)=\partial_{x}^{-}\left(g \partial_{x}^{+} u\right)+\partial_{y}^{-}\left(g \partial_{y}^{+} u\right)
$$

Diffusivity

Forward differences:

$$
g=\widehat{g}\left(\left|\nabla^{+} u\right|\right)
$$

The current image $u(t)$ is used to compute g.

Discretization: General Isotropic Diffusion

Final scheme for general isotropic diffusion

$$
u(x, y, t+\tau)=u(x, y, t)+\tau \operatorname{div}^{-}\left(g \nabla^{+} u\right) \quad \text { with } \quad g=\widehat{g}\left(\left|\nabla^{+} u\right|\right)
$$

Computation in several steps

1. Compute the gradient $G:=\nabla^{+} u$
2. Compute the diffusivity $g=\widehat{g}(|G|)$
3. Compute the product $P:=g \cdot G$
4. Compute the divergence $\operatorname{div}^{-}(P)$
5. Multiply by τ and add to u

Time step restriction

Only small τ possible. For monotonically decreasing $\widehat{g}: \tau<0.25 / \widehat{g}(0)$.

Discretization: Laplace Diffusion

Two ways to discretize the special case of Laplace diffusion, i.e. $g=1$.
Final scheme for Laplace diffusion: Multi-step
One way is to use the above general multi-step procedure.
Final scheme for Laplace diffusion: Direct
Another way is to compute the update $\operatorname{div}^{-}\left(\nabla^{+} u\right)=\Delta u$ directly in a single step, using the discretization from the previous lecture:

$$
u(x, y, t+\tau)=u(x, y, t)+\tau(\Delta u)(x, y, t)
$$

with

$$
\begin{aligned}
(\Delta u)(x, y, t)= & \mathbf{1}_{x+1<w} \cdot u(x+1, y, t)+\mathbf{1}_{x>0} \cdot u(x-1, y, t) \\
& +\mathbf{1}_{y+1<H} \cdot u(x, y+1, t)+\mathbf{1}_{y>0} \cdot u(x, y-1, t) \\
& -\left(\left(\mathbf{1}_{x+1<w}\right)+\left(\mathbf{1}_{y+1<H}\right)+\left(\mathbf{1}_{x>0}\right)+\left(\mathbf{1}_{y>0}\right)\right) \cdot u(x, y, t) .
\end{aligned}
$$

Time step restriction
Only small τ possible: $\tau<0.25$.

