
Image Evolutions

Image evolutions
Consider images which evolve over time

u : Ω× [0,T ]→ Rn

The image has now three parameters: u(x , y , t).

Discretized view
Generate a sequence of images uk : Ω→ Rn starting with some u0:

u0, u1, u2, u3, . . .

by a specific algorithm. Only the result uk0 for some k0 ≥ 1 is of interest.



Diffusion

We will first consider grayscale images u : Ω× [0,T ]→ R,
and later generalize to multi-channel images.

Diffusion
Continuous-time update equation

∂tu = div(D∇u)

Starting with some image u(t = 0) = u0, this tells how the image must
be changed over time. ∇ and div are only w.r.t. spatial variables x , y .

Diffusion tensor
D : Ω× [0,T ]→ R2×2 is called the diffusion tensor. It gives
a symmetric, positive definite 2× 2 matrix D(x , y , t) for all (x , y , t).
It may be different for every (x , y , t), and may depend on u.

Intuitively
Diffusion tries to locally cancel out any existing color differences,
the image u gradually becomes more and more smooth over time.



Diffusion: Computation of the Update

Diffusion
(∂tu)(x , y , t) =

(
div(D∇u)

)
(x , y , t)

1. Start with image u : Ω× [0,T ]→ R, values u(x , y , t) ∈ R
2. Compute the gradient

g(x , y , t) := (∇u)(x , y , t) =

(
(∂xu)(x , y , t)

(∂yu)(x , y , t)

)
∈ R2

3. Multiply the diffusion tensor D(x , y , t) ∈ R2×2 with the gradient
g(x , y , t) ∈ R2:

v(x , y , t) := D(x , y , t)g(x , y , t)∈ R2

4. Take divergence of v :

d(x , y , t) := (div v)(x , y , t) = (∂xv1)(x , y , t) + (∂yv2)(x , y , t)∈ R



Diffusion: Types

Diffusion
∂tu = div(D∇u)

Linear/Nonlinear

I Linear: D does not depend on u

I Nonlinear: D depends on u

Additivity property of linear diffusion:
Given the solutions u and v for starting images u0 and v 0, respectively,
the solution for the starting image u0 + v 0 is given by u + v .



Diffusion: Types

Diffusion
∂tu = div(D∇u)

Isotropic/Anisotropic

I Isotropic: Diffusivity matrix D is a scaled identity matrix:

D(x , y , t) = g(x , y , t)

(
1 0
0 1

)
.

g(x , y , t) ∈ R is called diffusivity. The diffusion equation becomes

∂tu = div(g∇u)

I Anisotropic: Any diffusion which is not isotropic.

Isotropic diffusion spreads out the values u equally in every direction.

Anisotropic diffusion can selectively suppress information flow in certain
directions, e.g. only smooth out u along potential edges, and not across.



Diffusion: Types

Each diffusion is either linear or nonlinear, and either isotropic or
anisotropic:

isotropic anisotropic

linear linear isotropic linear anisotropic
nonlinear nonlinear isotropic nonlinear anisotropic



Example: Laplace Diffusion
Diffusion tensor is constant:

D(x , y , t) :=

(
1 0
0 1

)

Diffusion equation becomes

∂tu = div(D∇u) = ∆ u

This is a linear and isotropic diffusion.

Effect: Blurry version of the input image
For Ω = R2 one can show the explicit formula

u(x , y , t) = (G√2t ∗ u0)(x , y).

This formula is not valid for rectangular domains Ω, only for Ω = R2,
but the Laplace diffusion results are still similar to Gaussian convolution.

Multi-channel images
Process channel-wise.



Example: Laplace Diffusion

Input at t = 0 t = 2 t = 4

t = 10 t = 20 t = 40

t = 100 t = 200 t = 400



Example: Huber Diffusion
Diffusion tensor depends on the image u (or, more precicely, on ∇u):

D(x , y , t) = g(x , y , t)

(
1 0
0 1

)

with g(x , y , t) := ĝ
(
|∇u(x , y , t)|

)
and ĝ(s) :=

1

max(ε, s)
.

Diffusion equation becomes

∂tu = div(D∇u) = div
(

ĝ(|∇u|)∇u
)

This is a nonlinear and isotropic diffusion.

Effect: Smoothing with better edge preservation:
Edges of u are points (x , y) with large gradient value |∇u(x , y)|.
The diffusivity g is small in these points, so there will be less smoothing.

Multi-channel images
Channel-wise, but with one common diffusivity ĝ(|∇u|) for all channels.



Example: Huber Diffusion with ε = 0.01

Input at t = 0 t = 0.04 0.1

t = 0.2 t = 0.4 t = 1

t = 2 t = 4 t = 10



Example: Linear Anisotropic Diffusion
Diffusion tensor depends on the structure tensor T of the input image f .

D(x , y , t) =

(
G11(x , y) G12(x , y)
G21(x , y) G22(x , y)

)
where G (x , y) = µ1e1eT

1 + µ2e2eT
2 ∈ R2×2 is constructed from the

eigenvalues and eigenvectors of the structure tensor T (x , y) 1. In
particular

µ1 = α, µ2 = α + (1− α) exp
(
− C

(λ1 − λ2)2

)
.

Diffusion equation becomes

∂tu = div(G∇u).

This is a linear and anisotropic diffusion.

Effect: Smoothing along the direction of the image structures.
If (λ1 − λ2)2 is big, µ2 is chosen small ⇒ less smoothing along e2.

1Weickert, Coherence-Enhancing Diffusion Filtering, ’99



Example: Linear Isotropic Diffusion

Input at t = 0 t = 2 t = 4 t = 10

t = 20 t = 40 t = 100 t = 200



Example: Linear Anisotropic Diffusion

Input at t = 0 t = 2 t = 4 t = 10

t = 20 t = 40 t = 100 t = 200



Discretization: General Isotropic Diffusion

Temporal derivative
Forward differences for ∂t with a time step τ > 0:

(∂+
t u)(x , y , t) =

u(x , y , t + τ)− u(x , y , t)

τ

Spatial derivatives
Forward differences for ∇, backward differences for div:

div−
(

g ∇+u
)

= ∂−x
(
g ∂+

x u
)

+ ∂−y
(
g ∂+

y u
)

Diffusivity
Forward differences:

g = ĝ
(
|∇+u|

)
The current image u(t) is used to compute g .



Discretization: General Isotropic Diffusion

Final scheme for general isotropic diffusion

u(x , y , t + τ) = u(x , y , t) + τ div−
(

g ∇+u
)

with g = ĝ
(
|∇+u|

)

Computation in several steps

1. Compute the gradient G := ∇+u

2. Compute the diffusivity g = ĝ(|G |)
3. Compute the product P := g · G
4. Compute the divergence div−(P)

5. Multiply by τ and add to u

Time step restriction
Only small τ possible. For monotonically decreasing ĝ : τ < 0.25/ĝ(0).



Discretization: Laplace Diffusion
Two ways to discretize the special case of Laplace diffusion, i.e. g = 1.

Final scheme for Laplace diffusion: Multi-step
One way is to use the above general multi-step procedure.

Final scheme for Laplace diffusion: Direct
Another way is to compute the update div−(∇+u) = ∆ u directly in a
single step, using the discretization from the previous lecture:

u(x , y , t + τ) = u(x , y , t) + τ (∆ u)(x , y , t)

with

(∆ u)(x , y , t) = 1x+1<W · u(x + 1, y , t) + 1x>0 · u(x − 1, y , t)

+ 1y+1<H · u(x , y + 1, t) + 1y>0 · u(x , y − 1, t)

−
(

(1x+1<W ) + (1y+1<H) + (1x>0) + (1y>0)
)
· u(x , y , t).

Time step restriction
Only small τ possible: τ < 0.25.


