Image Evolutions

Image evolutions
Consider images which evolve over time

u:Qx[0,T]—=R"

The image has now three parameters: u(x, y, t).

Discretized view

Generate a sequence of images u* : Q — R” starting with some u°:
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by a specific algorithm. Only the result u* for some ko > 1 is of interest.



Diffusion

We will first consider grayscale images v: Q x [0, T] = R,
and later generalize to multi-channel images.

Diffusion
Continuous-time update equation

deu = div(DVu)

Starting with some image u(t = 0) = u°, this tells how the image must
be changed over time. V and div are only w.r.t. spatial variables x, y.

Diffusion tensor

D:Q x [0, T] — R2*2 is called the diffusion tensor. It gives

a symmetric, positive definite 2 x 2 matrix D(x, y, t) for all (x,y, t).
It may be different for every (x,y,t), and may depend on wu.

Intuitively
Diffusion tries to locally cancel out any existing color differences,
the image u gradually becomes more and more smooth over time.



Diffusion: Computation of the Update

Diffusion
(Or)(x,y,t) = (div(DVu) )(X,y, t)

1. Start with image v: Q x [0, T] — R, values u(x,y,t) € R
2. Compute the gradient

g(Xfyf t) = (VU)(X,y’ t) = <(8XU)(X,y7 t)>€ ]Rz

(8}/u)(xv Y, t)

3. Multiply the diffusion tensor D(x, y,t) € R?*2 with the gradient
g(x,y, t) € R?%

v(x,y,t) = D(x,y, t)g(x,y, t)c R?
4. Take divergence of v:

d(x,y,t) = (divv)(x,y,t) = (Oxv1)(x,y, t) + (Oyv2)(x, ¥, t) € R



Diffusion: Types

Diffusion
Oru = div(DVu)

Linear/Nonlinear

» Linear: D does not depend on u

» Nonlinear: D depends on u

Additivity property of linear diffusion:
Given the solutions u and v for starting images u® and V0, respectively,
the solution for the starting image u® + v° is given by u + v.



Diffusion: Types
Diffusion

Oru = div(DVu)

Isotropic/Anisotropic

» Isotropic: Diffusivity matrix D is a scaled identity matrix:
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D(X,y,t)—g(X,}@f) (O 1)
g(x,y,t) € Ris called diffusivity. The diffusion equation becomes
Oru = div(gVu)

» Anisotropic: Any diffusion which is not isotropic.

Isotropic diffusion spreads out the values u equally in every direction.

Anisotropic diffusion can selectively suppress information flow in certain
directions, e.g. only smooth out u along potential edges, and not across.



Diffusion: Types

Each diffusion is either linear or nonlinear, and either isotropic or
anisotropic:

I isotropic anisotropic

linear linear isotropic linear anisotropic

nonlinear || nonlinear isotropic | nonlinear anisotropic




Example: Laplace Diffusion

Diffusion tensor is constant:
1 0
D(Xv}/7t):: (0 1>

Diffusion equation becomes
Oru =div(DVu) = Au
This is a linear and isotropic diffusion.

Effect: Blurry version of the input image
For Q = R? one can show the explicit formula

u(x,y,t) = (G\/ﬁ * uo)(x,y).

This formula is not valid for rectangular domains €, only for Q = R2,
but the Laplace diffusion results are still similar to Gaussian convolution.

Multi-channel images
Process channel-wise.



Example: Laplace Diffusion




Example: Huber Diffusion

Diffusion tensor depends on the image u (or, more precicely, on Vu):

D(x,y,t) = g(x,y,t) <(1) (1)>

1

with g(x,y,t) = g(|Vulx.y,6)]) and &(s) = R

Diffusion equation becomes
deu = div(DVu) = div (§(|vu|)w)

This is a nonlinear and isotropic diffusion.

Effect: Smoothing with better edge preservation:
Edges of u are points (x, y) with large gradient value |Vu(x,y)|.
The diffusivity g is small in these points, so there will be less smoothing.

Multi-channel images
Channel-wise, but with one common diffusivity g(|Vu|) for all channels.



Example: Huber Diffusion with ¢ = 0.01




Example: Linear Anisotropic Diffusion

Diffusion tensor depends on the structure tensor T of the input image f.

_ { Gu(x,y) Gua(x,y)
D(x,y,t) = (Gzl(x,y) G;(X,y))

where G(x,y) = pi1ere] + paerey € R?*? is constructed from the
eigenvalues and eigenvectors of the structure tensor T(x,y) L. In
particular

C
H1 = o, u2:a+(lfa)exp(fm)

Diffusion equation becomes
Oru = div(GVu).
This is a linear and anisotropic diffusion.

Effect: Smoothing along the direction of the image structures.
If (A1 — A\2)? is big, > is chosen small = less smoothing along es.

LWeickert, Coherence-Enhancing Diffusion Filtering, '99



Example: Linear Isotropic Diffusion




Example: Linear Anisotropic Diffusion




Discretization: General Isotropic Diffusion

Temporal derivative
Forward differences for 0; with a time step 7 > 0:

(a;ku)(x,y7 t) — U(X7y7t+7—3 - U(Xaya t)

Spatial derivatives
Forward differences for V, backward differences for div:

div™ (g V*u) =0, (gdfu) + 0, (g0;u)
Diffusivity
Forward differences:
g=2(IV'ul)

The current image u(t) is used to compute g.



Discretization: General Isotropic Diffusion

Final scheme for general isotropic diffusion

u(x,y,t+7) = u(x,y,t)+ 7div" (g V*u) with g =2(|VTul)

Computation in several steps

1. Compute the gradient G := VTu
Compute the diffusivity g = g(|G|)
Compute the product P:=g - G
Compute the divergence div™ (P)
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Multiply by 7 and add to u

Time step restriction
Only small T possible. For monotonically decreasing g: 7 < 0.25/g(0).



Discretization: Laplace Diffusion

Two ways to discretize the special case of Laplace diffusion, i.e. g = 1.

Final scheme for Laplace diffusion: Multi-step
One way is to use the above general multi-step procedure.

Final scheme for Laplace diffusion: Direct
Another way is to compute the update div™ (V*tu) = A u directly in a
single step, using the discretization from the previous lecture:

ulx,y, t+7) =u(x,y,t) + 7 (Au)(x,y,t)
with

(AU)(X,_y, t): 1X+1<W : U(X+17y7 t) + 1X>O : U(X_]-aya t)
+ 1)’+1<H . U(X’y+17t) + 1y>0 : u(Xay_]wt)

- ((lx+1<W) + (1y41<n1) + (Leso) + (1y>0)) “u(x,y,t).

Time step restriction
Only small 7 possible: 7 < 0.25.



