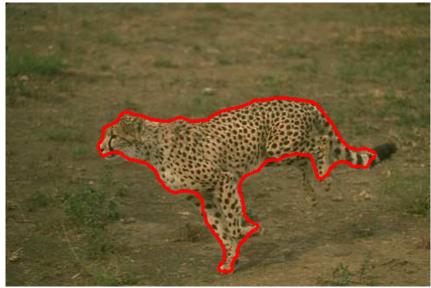
Project Presentations for the GPU Course

Thomas Möllenhoff, Mohamed Souiai, Rudolph Triebel, Emanuele Rodula, Michael Moeller, Jakob Engel, Caner Hazirbas, Jan Stühmer

Unsupervised Figure-Ground Segmentation



Solve a following variational formulation of the following problem:

$$\min_{F \subset \Omega} \operatorname{Per}(F; \Omega) - \lambda \mathcal{D}(P_F, P_G)$$

Goal: Solve above problem in parallel using a GPU in order to accelerate the algorithm towards unsupervised real time segmentation.

Random Forests on GPU **Caner Hazirbas**

Research Interest: **Object Detection/Recognition,**

Semantic Scene Understanding

Deep Learning

Input Image

Ground Truth

Pixel-wise Recognition

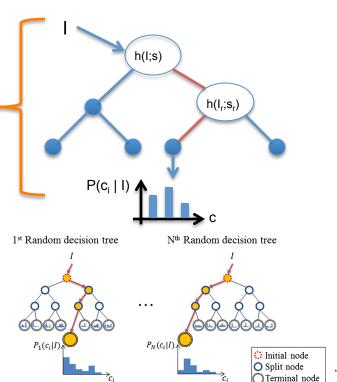
Segmented Image

Caner Hazirbas

c.hazirbas@tum.de / room: 02.09.041

Random Forests

- ♦ Ensemble of Decision Trees
- ♦ Fast Classification
- ♦ Can be parallelizable on GPU
 - each tree
 - · each node at same level



$$\begin{split} &I_1 = \{f_1,..,f_i,..,f_n \; ; \; c^1 \; \} \\ &I_2 = \{f_1,..,f_i,..,f_n \; ; \; c^2 \; \} \\ &I_m = \{f_1,..,f_i,..,f_n \; ; \; c^m \} \end{split}$$

I; training data

h; split function (weak learner)

s; split parameters

m; number of samples

c; class label of sample

i ; class index

Prediction:

$$\max_{c} \frac{1}{N} \sum_{n=1}^{N} P_n(c|I)$$

 $\verb|^*http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1653276|$

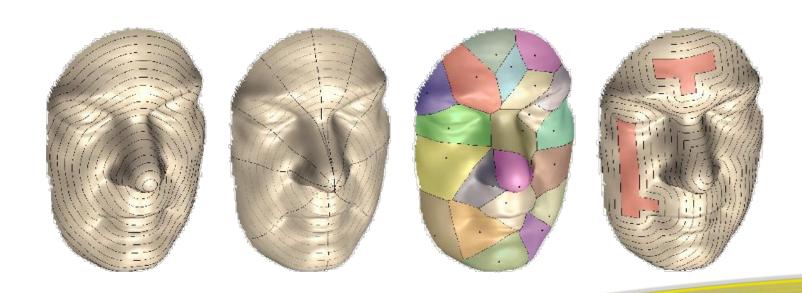
Caner Hazirbas

c.hazirbas@tum.de / room : 02.09.041

APPROXIMATED GEODESICS ON CURVED SURFACES

<u>**Problem:**</u> Compute geodesic distances and paths on arbitrary 3D surfaces.

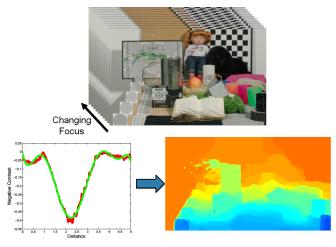
<u>Goal:</u> Implement the state-ofthe-art Parallel Marching method described in the paper.



(trailer time!)

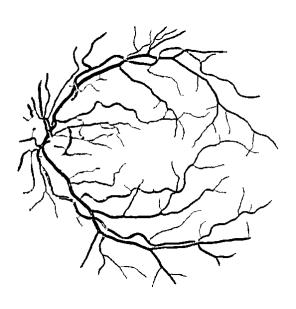
Variational Depth from Focus

Reconstruct a depth map from differently focused images

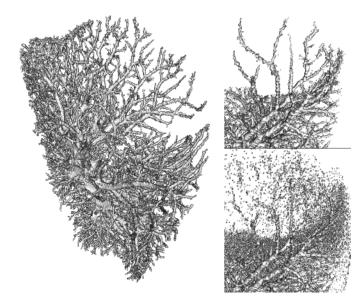


$$\min_{d} \int_{\Omega} -C(d(x,y)) + |\nabla d(x)| \, dx \, dy$$

Connectivity Constraints in Image Segmentation



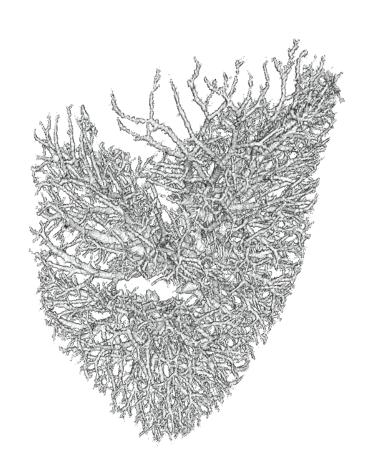
Retinal Blood Vessels

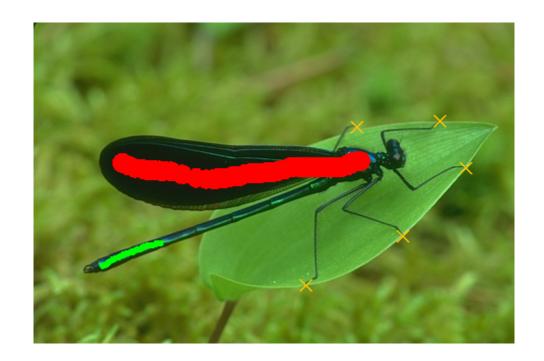


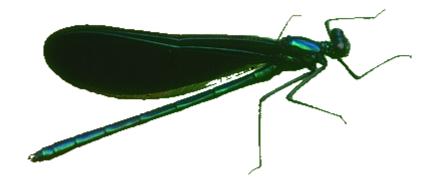
3D CT Angiography of the Lung

Connectivity Constraints in Image Segmentation

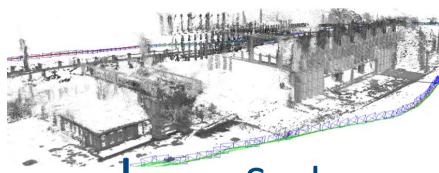
Connectivity Constraints in Image Segmentation







Porting LSD-SLAM to GPU

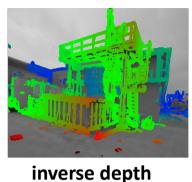


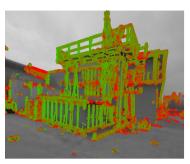
Direct

Project Proposal: Port part of LSD-SLAM to the GPU.

https://github.com/tum-vision/lsd_slam

Semi-Dense Depth map for Image Tracking



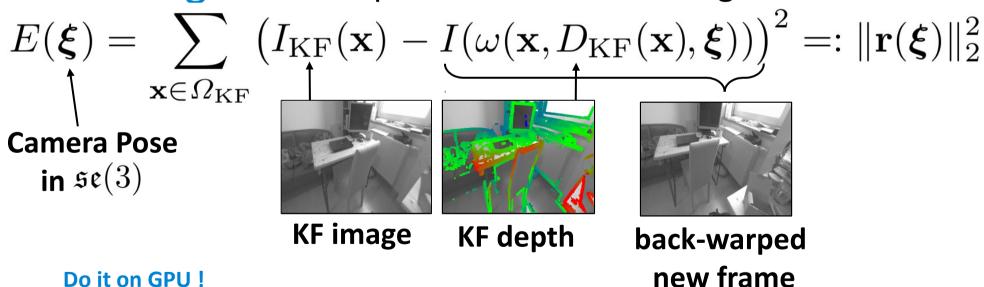


inverse depth variance

Depth estimate

- Gaussian inverse depth coding
- **Triangulation and Pixelwise** filtering
- Information selection

Tracking: Minimize photometric error using Gauss-Newton



Do it on GPU!

- Embarassingly Parrallel workload (Lot of independent projections for computing error)
- Real-time requirement limit us to 320x240 images on CPU.
- Heavy task in LSD-SLAM (used for finding loop closure constraints)
- Computationnal needs become more important with complicated projection functions.
 - (Omnidirectional Camera...)

It is already real-time on CPU...

So, why using a GPU here?

- It still needs a powerful CPU
- Speed is robustness
- Would help to offload CPU
- Could go embedded ...

Why would YOU want to do that?

- Some great improvement should be doable in three weeks.
- You will integrate your code in a state of the art system.
 (ICCV 2013, ECCV 2014, ISMAR 2014,...)
- You could end with the fastest dense SLAM system existing around.
- It might be possible, and fun, to try to port it on Tango tablet if you are still interested afterward. Yes the lab has two of them (: