Analysis of Three-Dimensional Shapes

(IN2238, TU München, Summer 2014)

Dr. Emanuele Rodolà

rodola@in.tum.de

Room 02.09.058, Informatik IX

07.04.2014

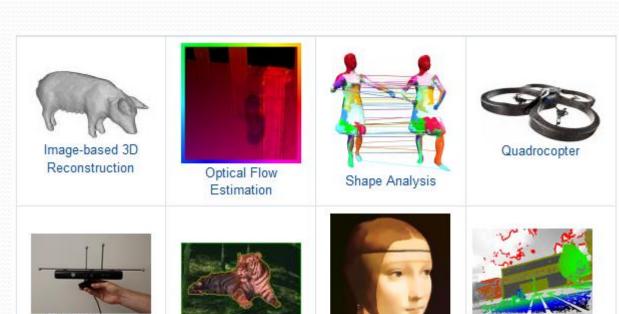
Computer Vision Group

RGB-D Sensors

(Kinect)

Prof. Dr. Daniel Cremers

4 Post-docs 14 PhD students Master and bachelor students welcome!



Convex Relaxation

Methods

Image Segmentation

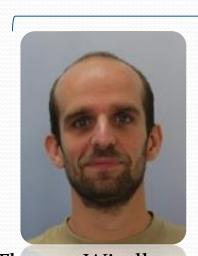
Semi-Dense SLAM for

Monocular Cameras

Formalities

• Who?

Dr. Emanuele Rodolà



TA

Thomas Windheuser

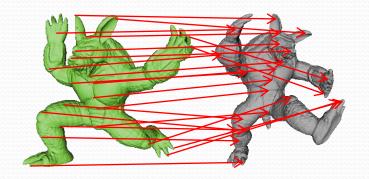
Matthias Vestner

- Where? Room 02.09.023, Informatik IX
- When? Mondays 10:00-12:00 lecture Tuesdays 14:00-15:00 exercises

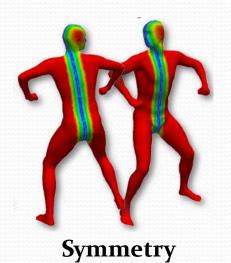
Other formalities

- Mathematical problems
- Programming exercises (Matlab, C++)
- **Final exam** (written or oral or both)
- Office hours: send me an e-mail to set up a meeting
- Textbook (just a suggestion)
- Bronstein, Bronstein, Kimmel. *Numerical geometry of non-rigid shapes*, Springer 2008
- **Scientific papers** will be suggested throughout the lecture

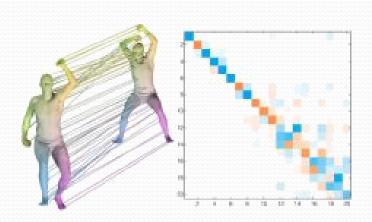
Topics



Correspondence



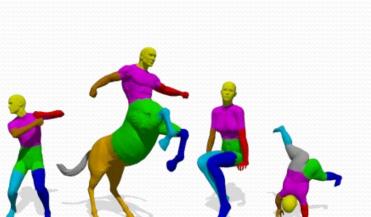
Partial similarity



Representation

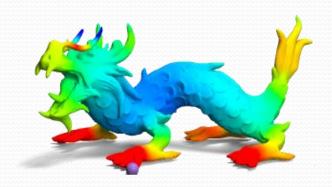
Topics

Analysis of shape collections



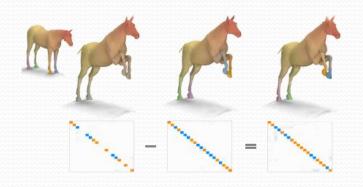
Segmentation

Feature detection

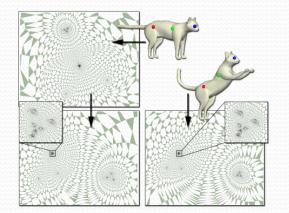


Description

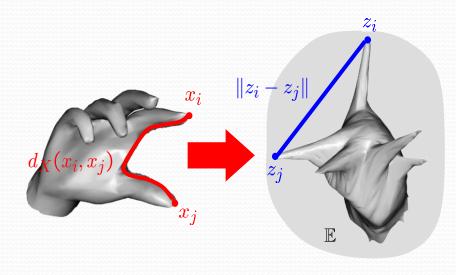
Tools



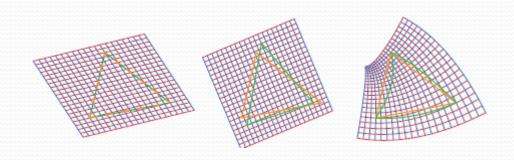
Linear algebra



Conformal geometry

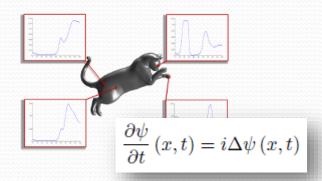


Metric spaces

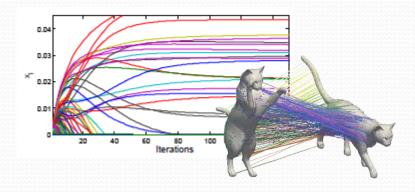


Differential geometry

Tools

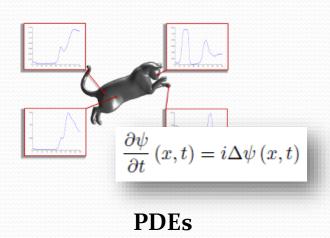


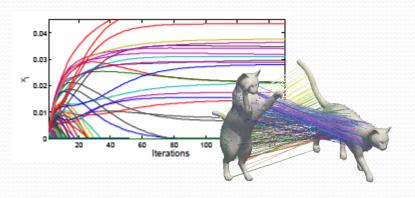
PDEs



Optimization

Tools





Optimization

Good news:

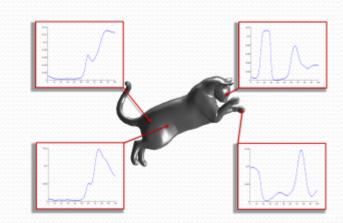
90% of the time we will be able to have a visualization of what we are doing!

Seminar

Recent Advances in the Analysis of 3D Shapes (IN2107)

When? Wednesdays, 14:00

Where? 02.09.023



First meeting: Apr 16, 14:00

Topic: Laplace-Beltrami Operator on manifolds

What is a shape?

"There can be no such thing as a mathematical theory of shape. The very notion of shape belongs to the natural sciences."

J. Koenderink. Solid Shape. MIT Press 1990.

What is a shape?

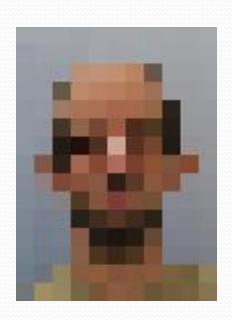
- Proteins
- Molecules
- 2D Images
- 3D models (coming from a 3D scanner)
- 3D models (coming from CAD software)
- Volumetric models (medical imaging)
- More complicated structures (things you can't even visualize)

Shapes vs images: domain

Euclidean (flat)

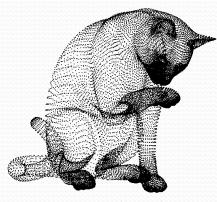
Non-Euclidean (curved)

Shapes vs images: representation

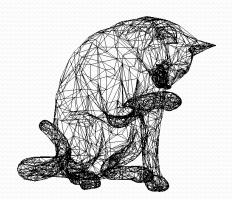


Array of pixels (uniform grid)

Splines



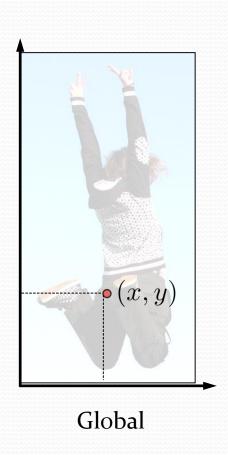
Point cloud

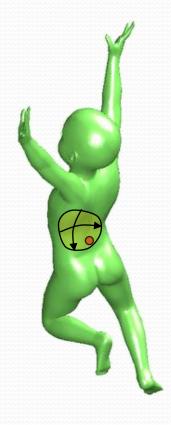


Graph

Triangular mesh

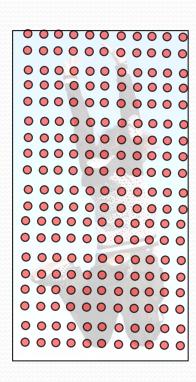
Shapes vs images: parametrization



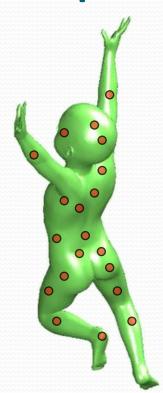


Local

Shapes vs images: sampling



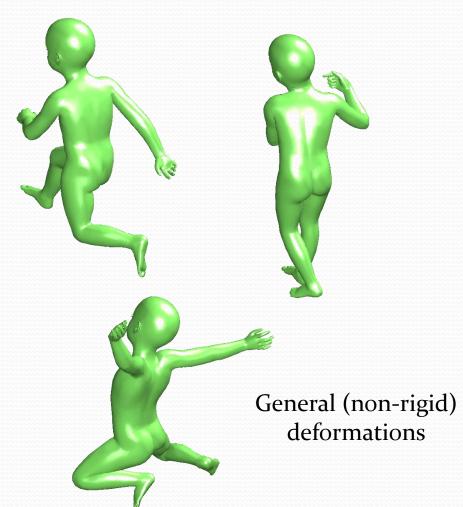
Uniform



"Uniform" is not well-defined

Shapes vs images: transformations

Perspective



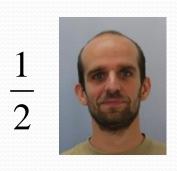
 $\frac{1}{2}$

 $\frac{1}{2}$

$$+\frac{1}{2}$$

 $\frac{1}{2}$

 $+\frac{1}{2}$

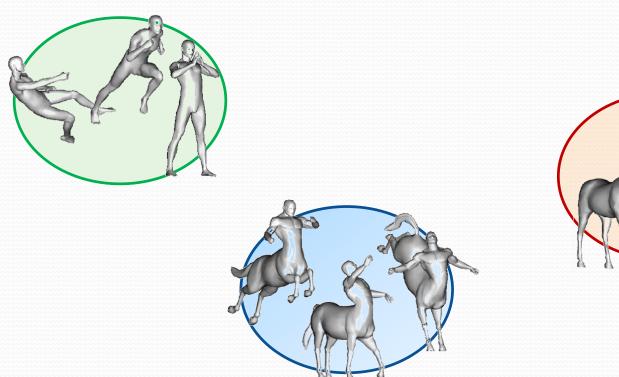


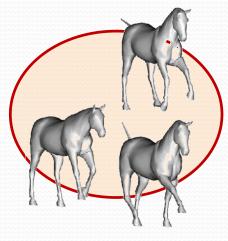
$$+\frac{1}{2}$$

$$+\frac{1}{2}$$

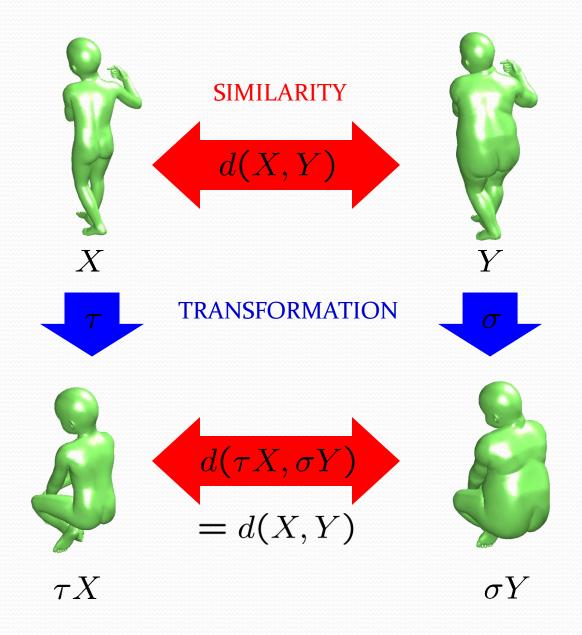
= '?

Shape similarity



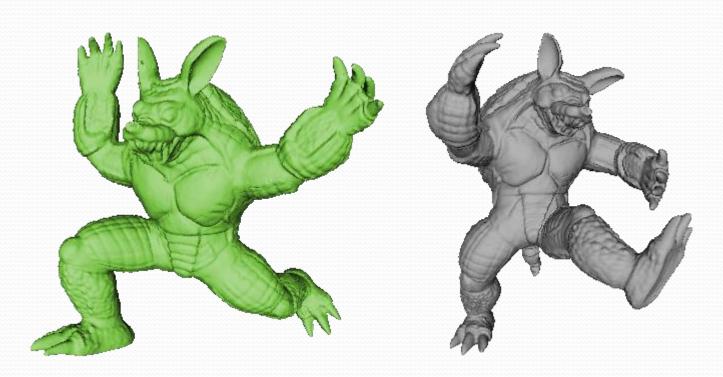


Is there something like a "space of shapes"?



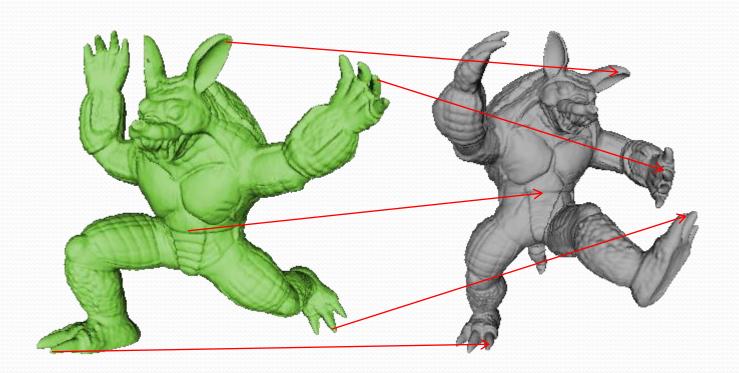
Shape matching

• Given a pair of shapes, let's try to find a **correspondence** between them.

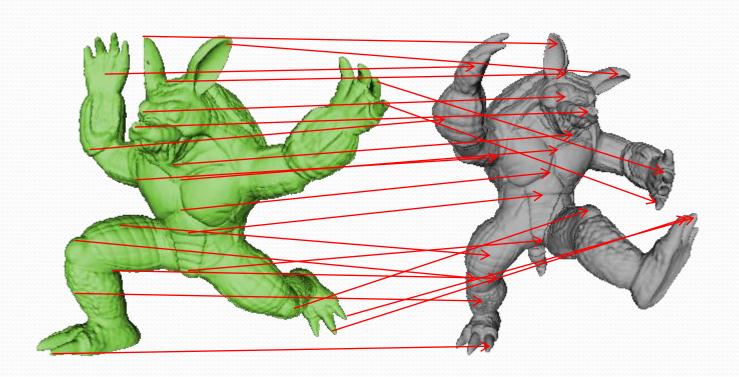


Shape matching

• Find the **best** alignment/map/correspondence.

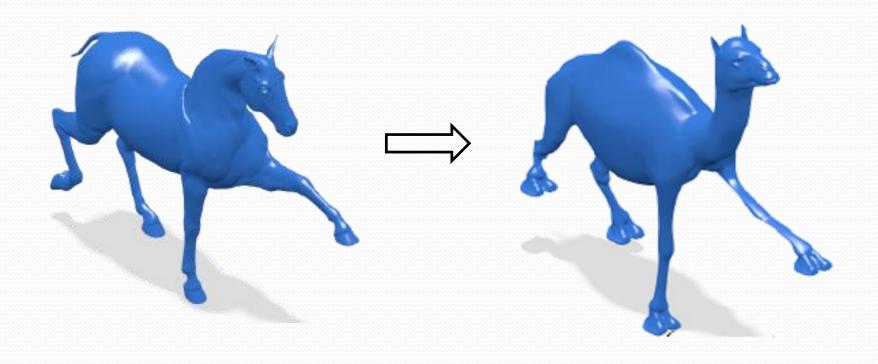


Shape matching



In the real world

In the real world



Taxonomy

Local vs. Global

refinement (e.g. ICP)

alignment (search)

Rigid vs. Deformable

rotation, translation

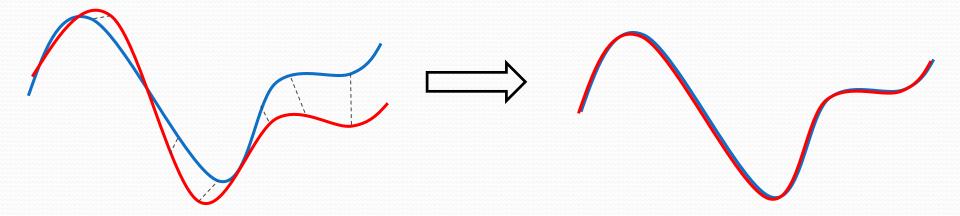
general deformation

Pair vs. Collection

two shapes

multiple shapes

Pairwise rigid correspondence



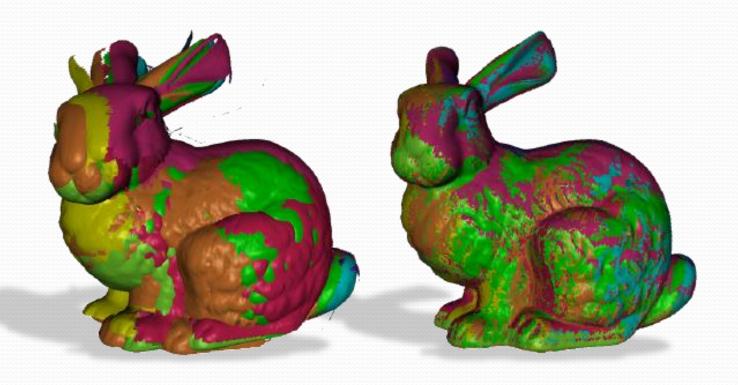
Iterative Closest Point

For a given pair of shapes *M* and *N*, **iterate**:

- 1. For each $x_i \in M$ find its nearest neighbor $y_i \in N$
- 2. Find the deformation *R*, *t* minimizing:

$$\sum_{x_i \in M} \left\| Rx_i + t - y_i \right\|$$

Pairwise rigid correspondence



Taxonomy

Local vs. Global

refinement (e.g. ICP)

alignment (search)

Rigid vs. Deformable

rotation, translation

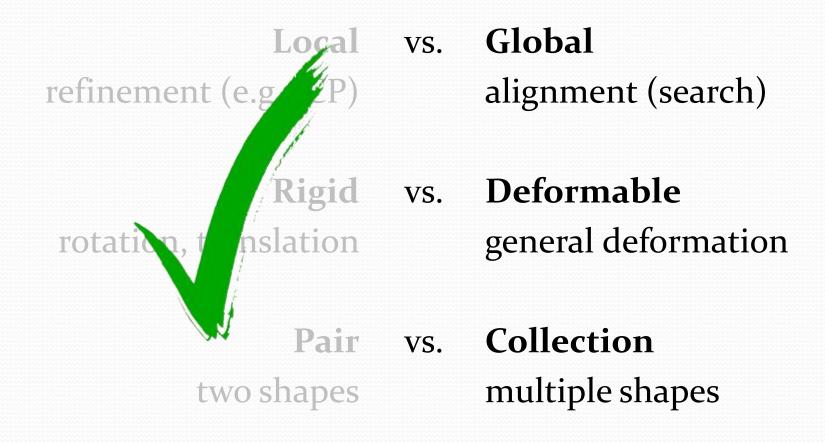
general deformation

Pair vs. Collection

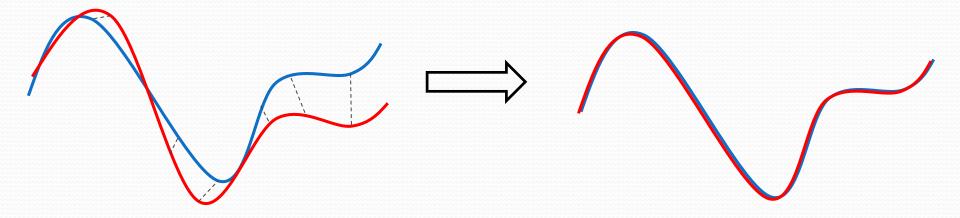
two shapes

multiple shapes

Taxonomy



Pairwise rigid correspondence

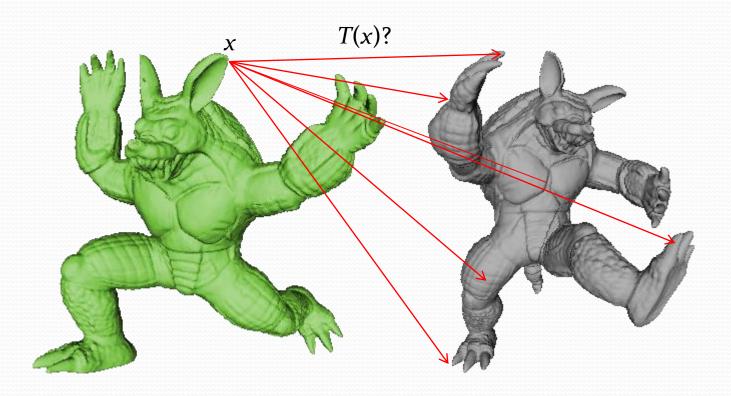


Iterative Closest Point

1. Find the deformation R, t minimizing:

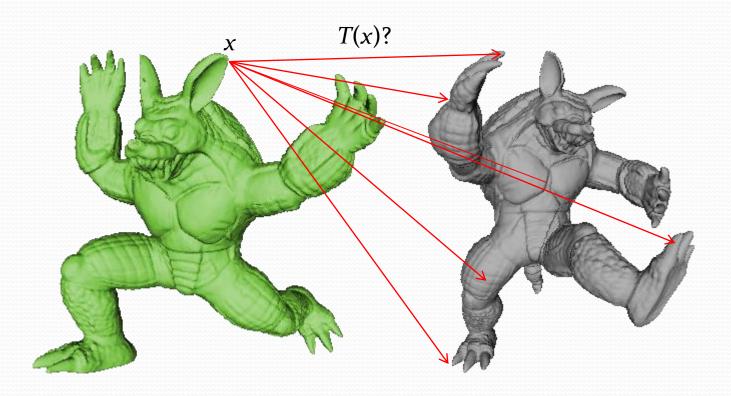
$$\sum_{x_i \in M} \left\| Rx_i + t - y_i \right\|$$

Deformable shape matching



 Unlike rigid matching (rotation/translation), there is no compact representation to optimize for.

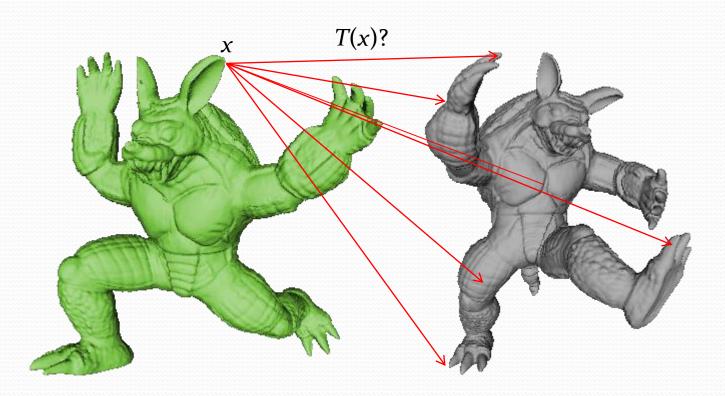
Deformable shape matching



 Instead, directly optimize over all possible point-to-point correspondences.

Signature preservation

$$T_{opt} = \underset{T:M \to N}{\arg\min} \sum_{x_i \in M} ||S(x_i) - S(T(x_i))||$$



What signature?

One possibility: Look for similar textures

What signature?

Another possibility: Let's look at the geometry!

$$\left(\Delta_X + \frac{\partial}{\partial t}\right)u = 0$$

Heat equation governs the diffusion of heat on manifold *X* over time

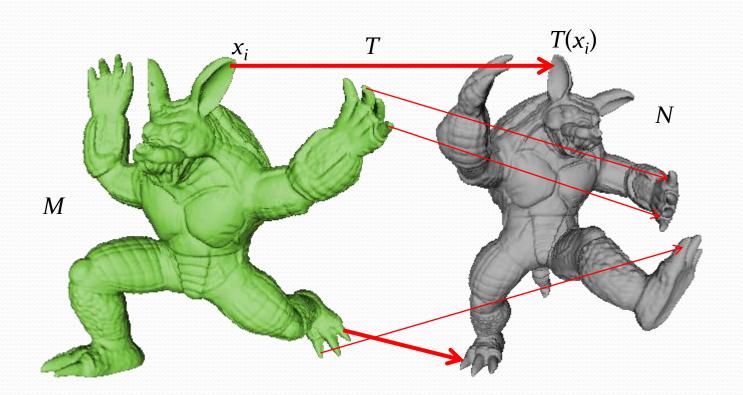
Heat diffusion on manifolds

Heat Kernel Signature

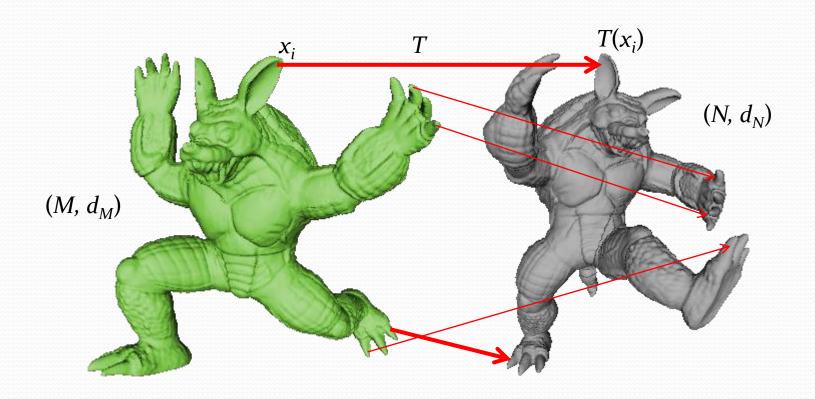
Robust to pose variations

Signature preservation

$$T_{opt} = \underset{T:M \to N}{\arg\min} \sum_{x_i \in M} ||S(x_i) - S(T(x_i))||$$

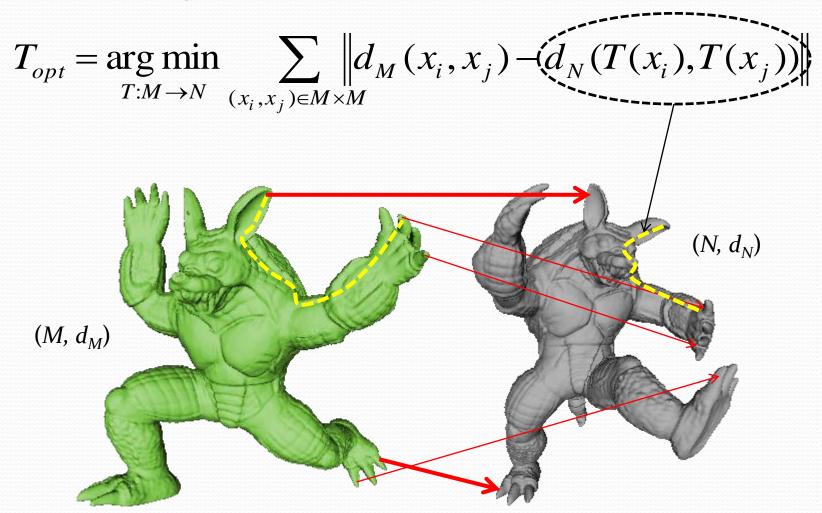


$$T_{opt} = \underset{T:M \to N}{\arg \min} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

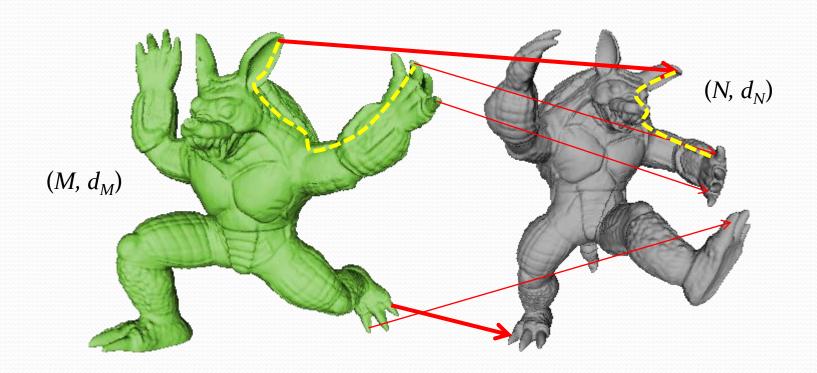


$$T_{opt} = \underset{T:M \to N}{\operatorname{arg \, min}} \sum_{(x_i, x_j) \in M \times M} \left| d_M(x_i, x_j) + d_N(T(x_i), T(x_j)) \right|$$

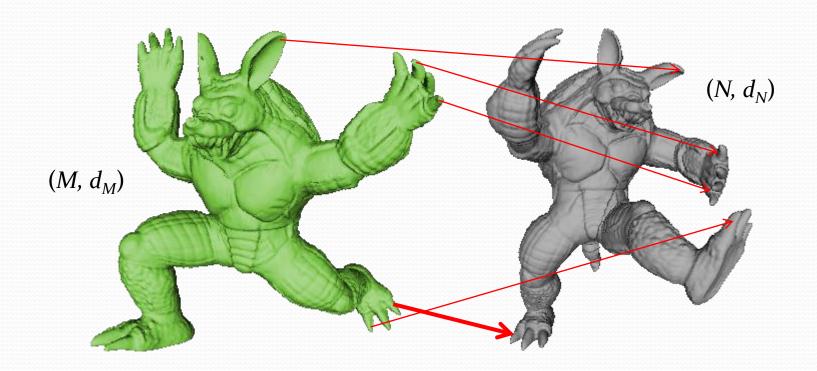
$$(M, d_M)$$



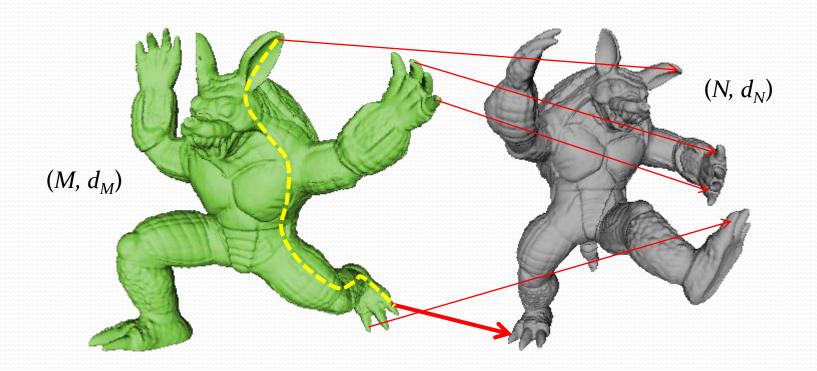
$$T_{opt} = \underset{T:M \to N}{\arg \min} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$



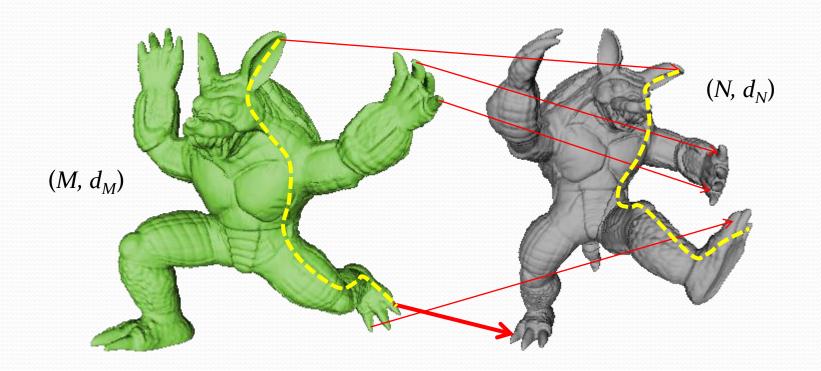
$$T_{opt} = \underset{T:M \to N}{\arg \min} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$



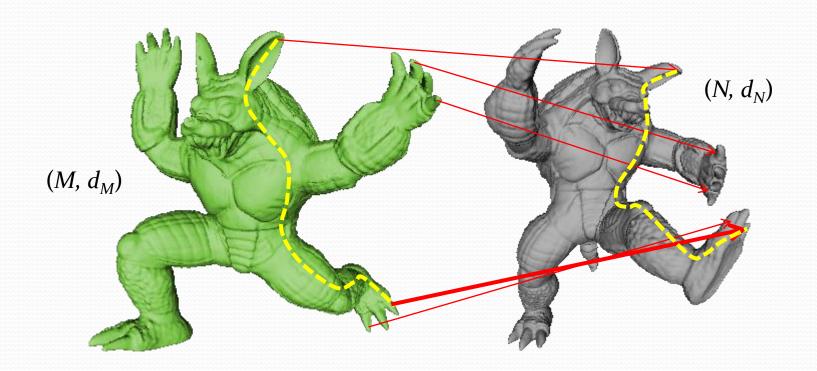
$$T_{opt} = \underset{T:M \to N}{\arg \min} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$



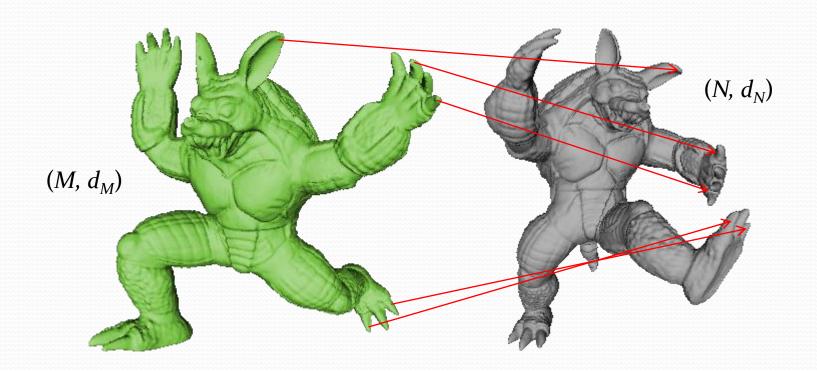
$$T_{opt} = \underset{T:M \to N}{\arg \min} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$



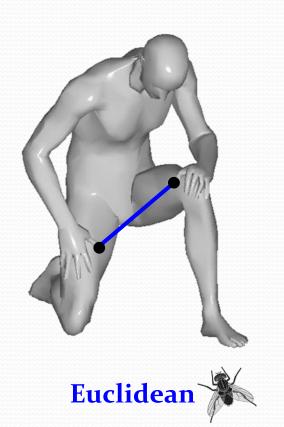
$$T_{opt} = \underset{T:M \to N}{\arg \min} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

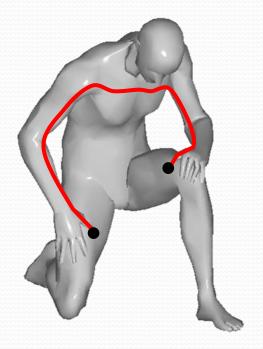


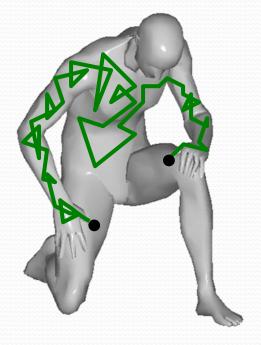
$$T_{opt} = \underset{T:M \to N}{\arg \min} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

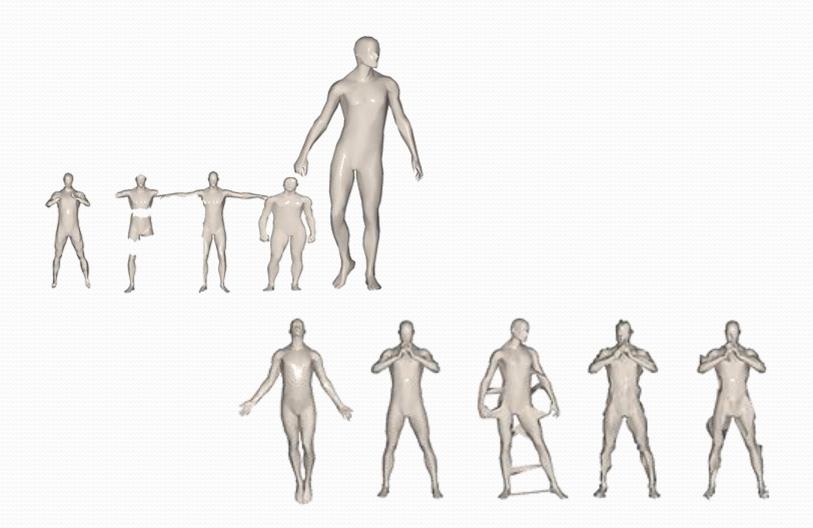


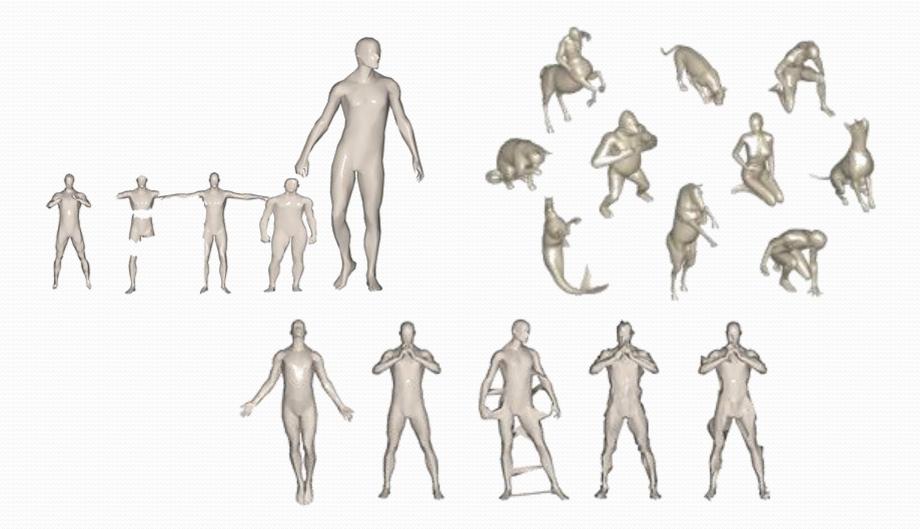
Examples of metrics

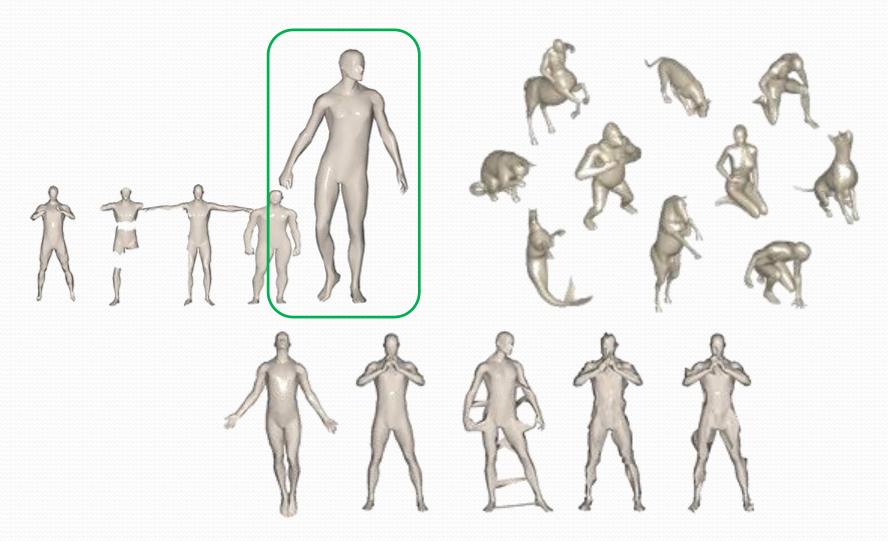


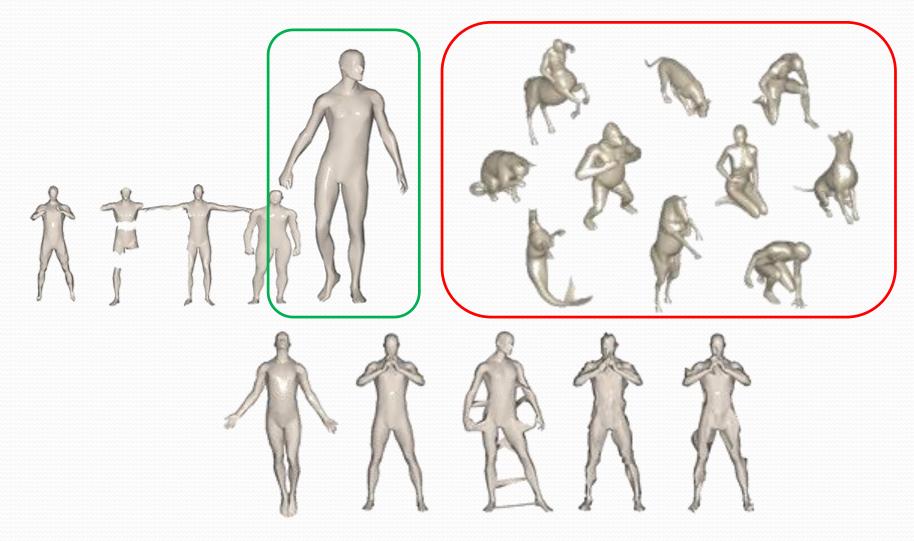




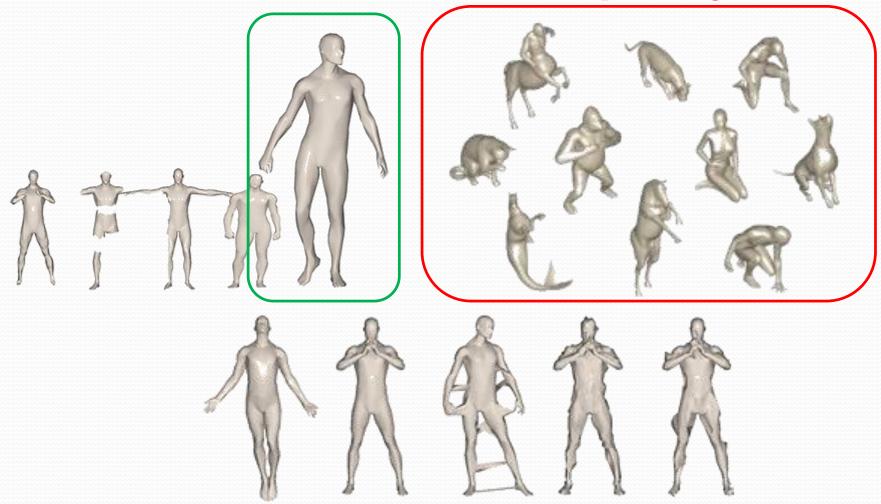








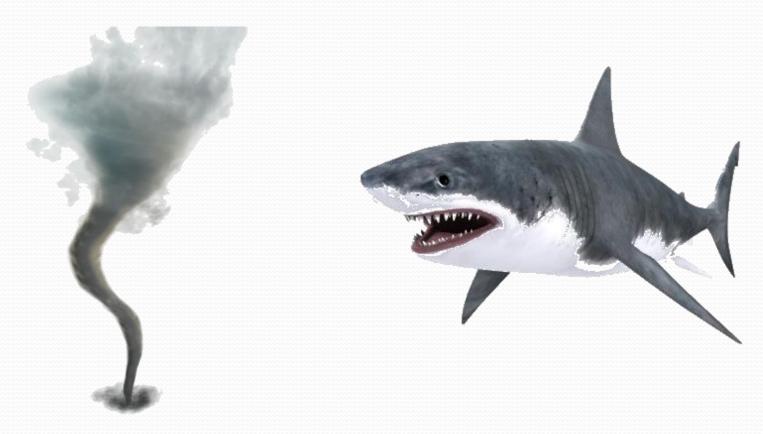
Shapes belong to other classes!



Inter-class matching, or...

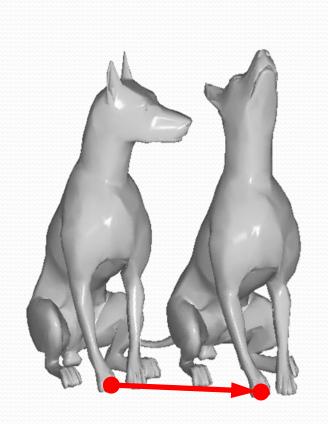
Inter-class matching, or...

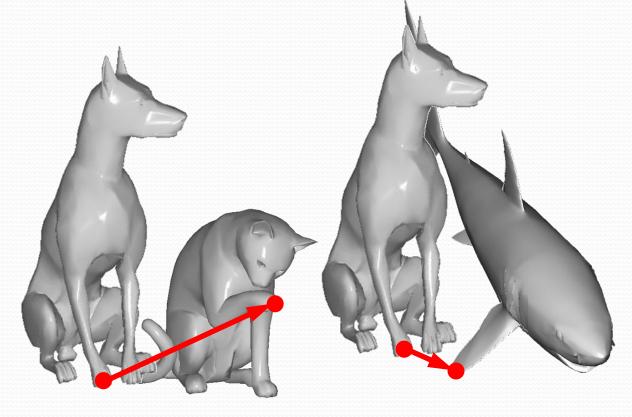
Matching a shark to a tornado



Inter-class matching, or...

Matching a shark to a tornado



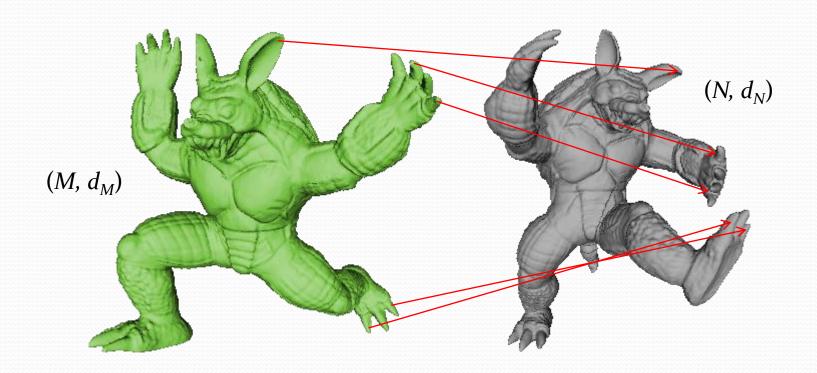


Geometric accurate

Semantic makes sense

Aesthetic beautiful

$$T_{opt} = \underset{T:M \to N}{\arg \min} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

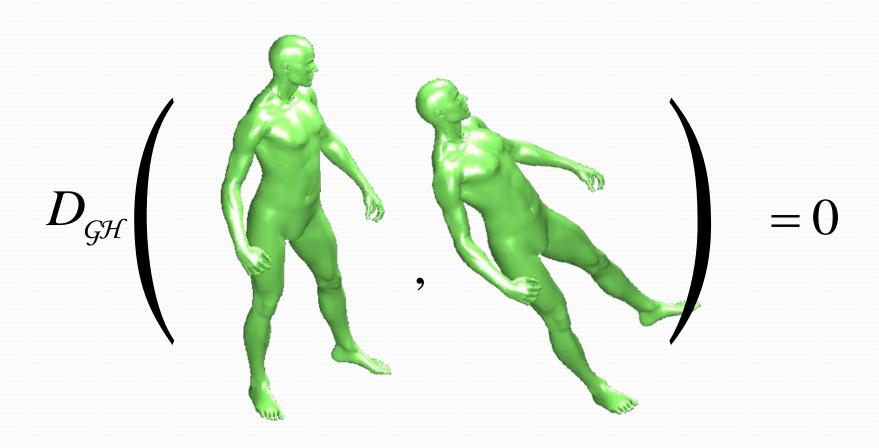


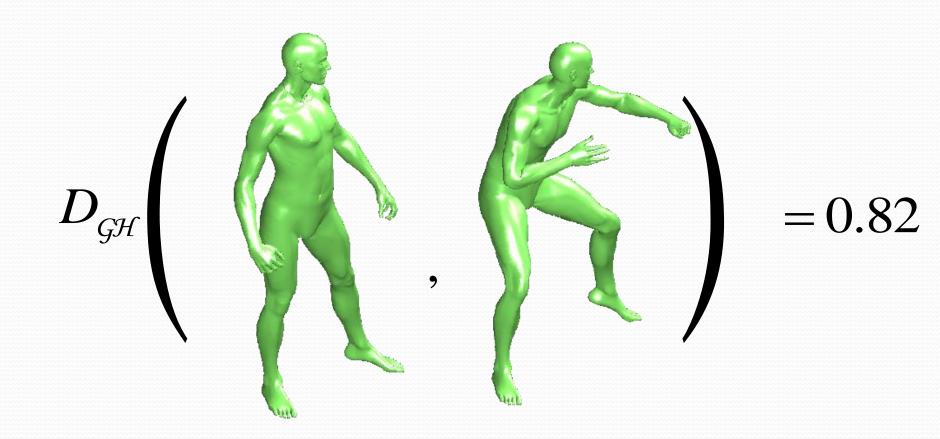
 Minimizing the worst-case distortion of the metric caused by the correspondence T is given by:

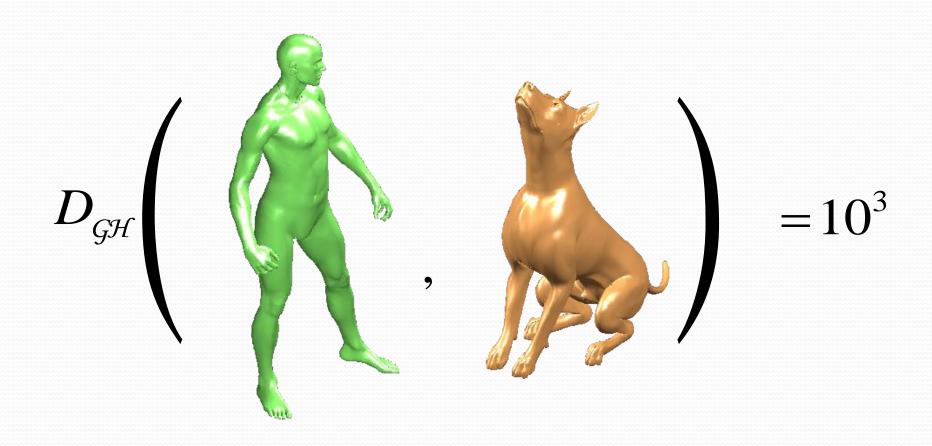
$$D_{\mathcal{GH}}(M,N) =$$

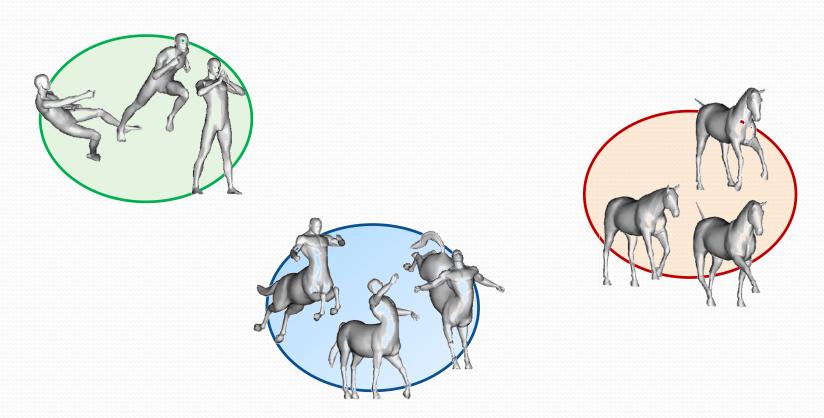
$$= \min_{T:M \to N} \max_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

This is a *true* distance among shapes ©

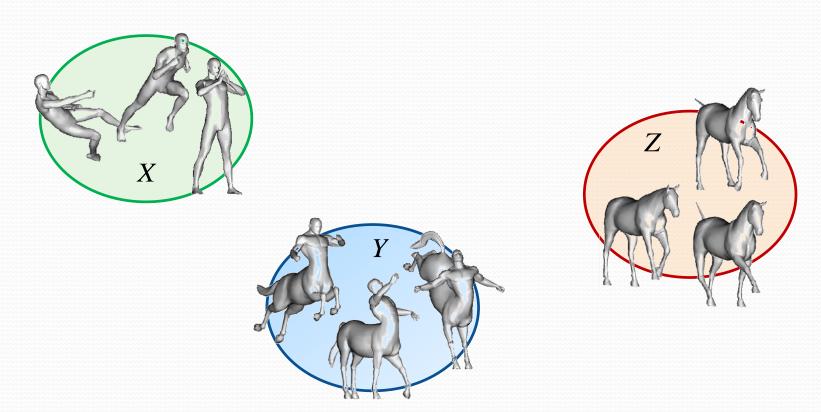




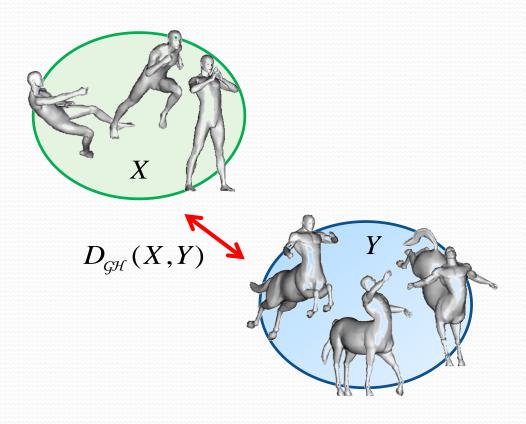


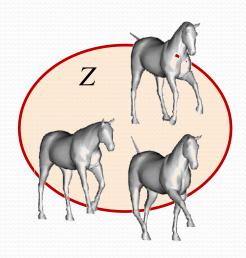


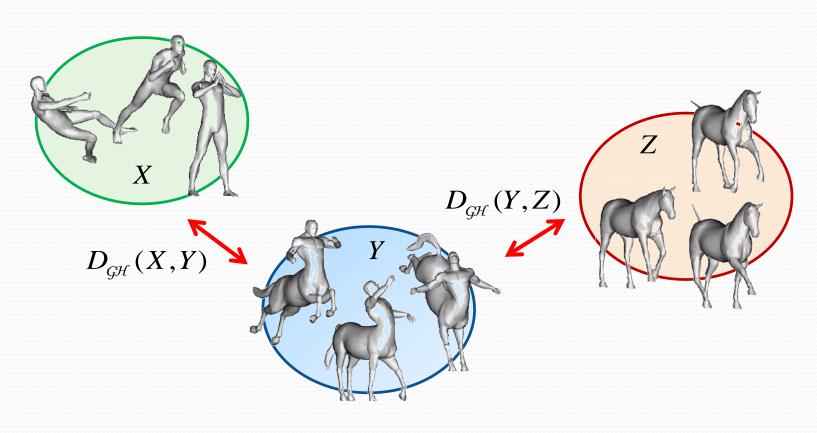
Is there something like a "space of shapes"?

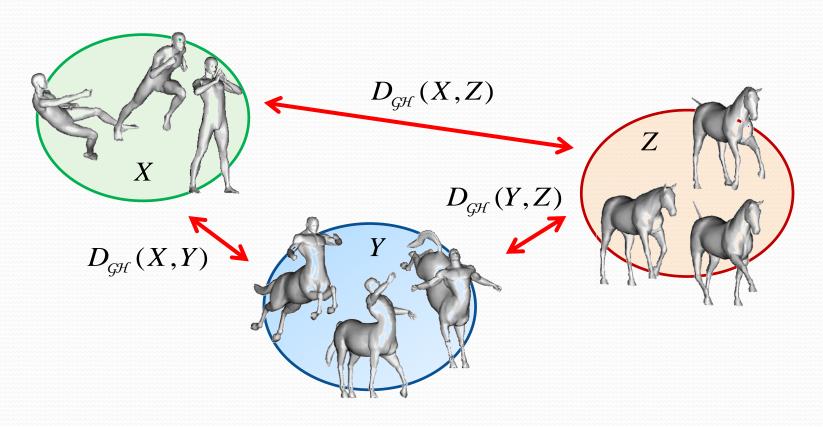


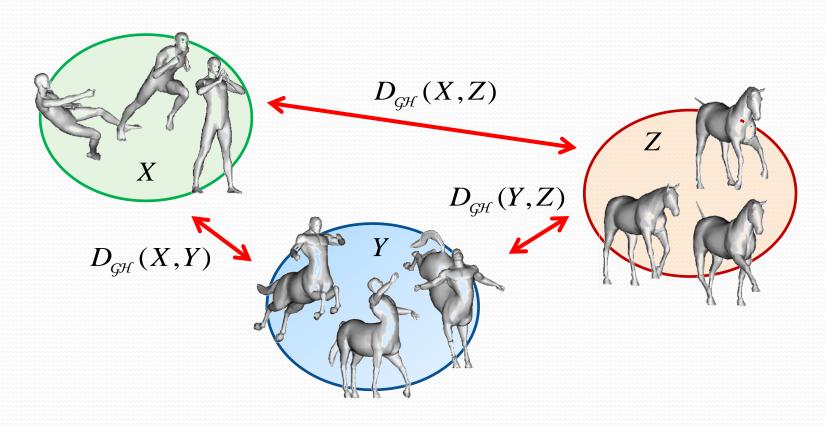
Is there something like a "space of shapes"? Yes!





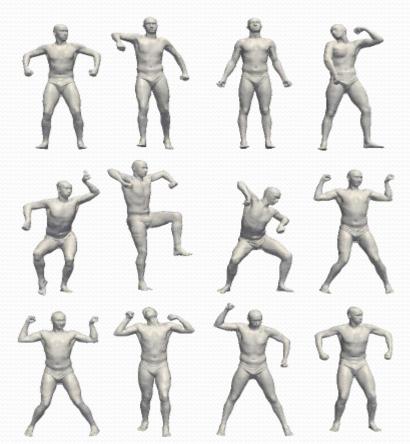


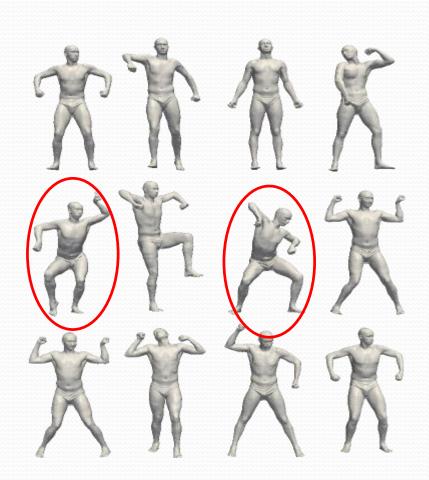




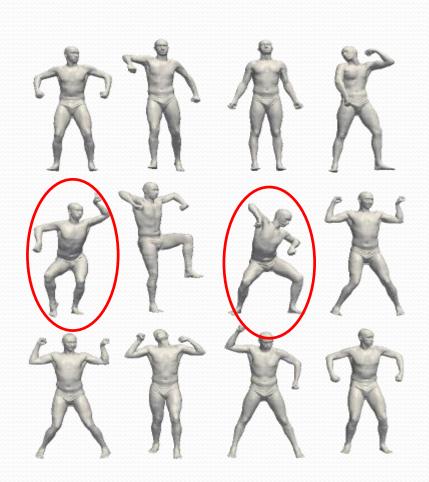
Triangle inequality: $D_{\mathcal{GH}}(X,Y) + D_{\mathcal{GH}}(Y,Z) \ge D_{\mathcal{GH}}(X,Z)$

• Let us consider an entire **collection** of shapes



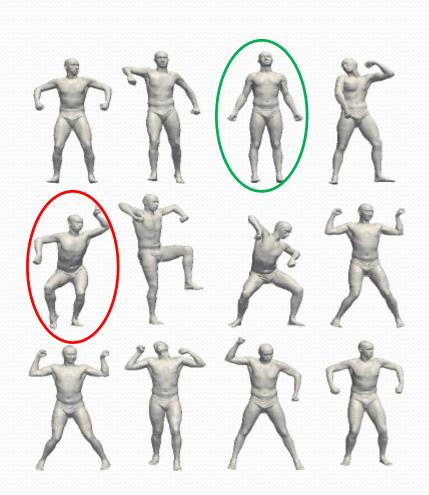


Difficult to match!

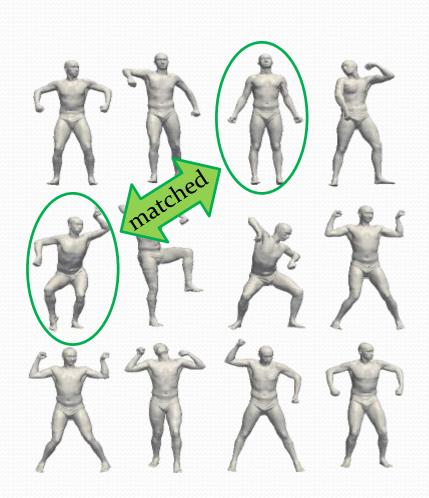


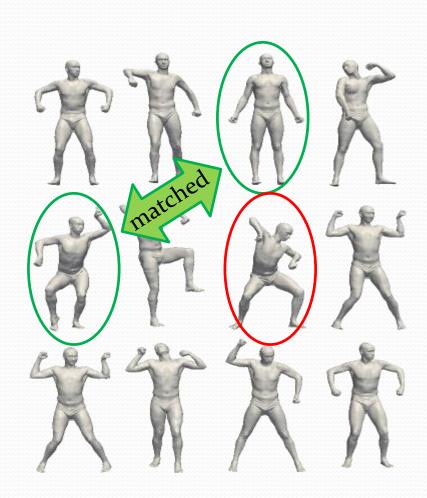
Difficult to match!

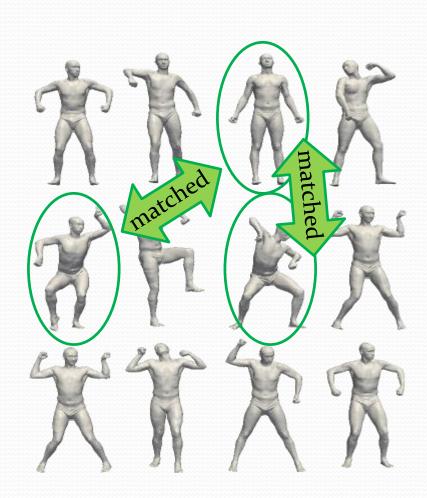
Can we use additional information to produce better correspondences?

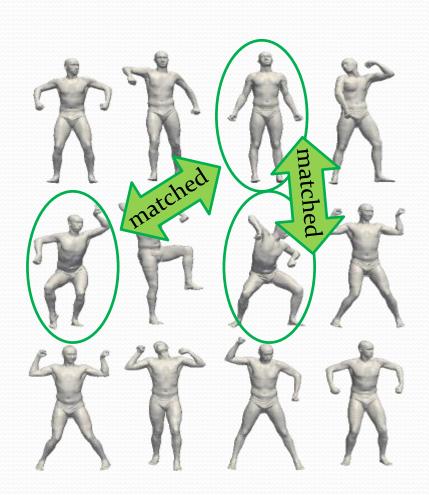


Easier to match!

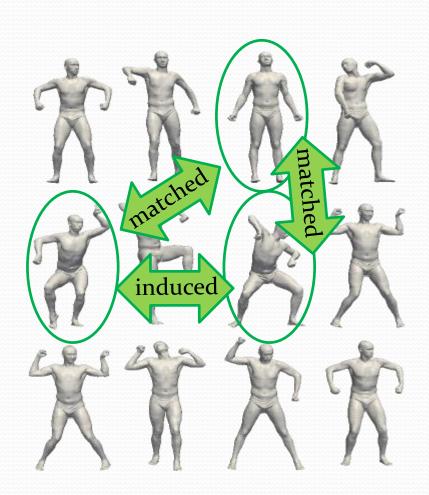








A correspondence can now be induced by transitivity or "triangle consistency"



A correspondence can now be induced by transitivity or "triangle consistency"

Suggested readings

Numerical geometry of non-rigid shapes. Chapter 1 –
 Introduction.