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Space of shapes

Is there something like a “space of shapes”?



Space of shapes
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Is there something like a “space of shapes”? Yes!



Choosing the metric

GeodesicEuclidean Diffusion



Non-rigid similarityRigid similarity

Part of the same metric space Two different metric spaces

3R

Main idea: Find a representation of the two shapes in a common metric space



Metric spaces

A set M is a metric space if for every pair of points there is a 
metric (or distance) function                                                        such that
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),( MdMWe will specify a metric space as the pair

identity of indiscernibles

symmetry

triangle inequality

Satisfying a subset of these properties leads to the definition of “semi”-
metric spaces, “pseudo”-metric spaces, etc.



Examples of metric spaces
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Compactness
For the rest of this class we will assume our metric spaces to be (sequentially) 
compact.

A metric space                  is compact if and only if every sequence in X has a 
Cauchy subsequence (totally boundedness) that converges to a point in X
(completeness).

),( XdX

Compactness allows to apply many techniques of calculus on metric spaces, 
and has some important consequences.

A sequence           in a metric space                 is called a Cauchy sequence if     
as

More formally: for any              there exists an        such that                      
whenever                 
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Isometries

A map                        is called distance-preserving if

A bijective, distance-preserving map is called an isometry. Two spaces 
are isometric if there exists an isometry between them.

YXf :

))(),((),( yfxfdyxd YX  for any Xyx ,

Let                    and                 be two metric spaces.),( XdX ),( YdY
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Isometries

A map                        is called distance-preserving if

A bijective, distance-preserving map is called an isometry. Two spaces 
are isometric if there exists an isometry between them.

YXf :

))(),((),( yfxfdyxd YX  for any Xyx ,

Let                    and                 be two metric spaces.),( XdX ),( YdY

Exercise: Show that “being isometric” is an equivalence relation.

Exercise: Isn’t bijectivity redundant?

Answer: A surjective, distance-preserving map is called an isometry.

Exercise: Show that any isometry is a homeomorphism.



Metrics

Let X be a metric space and             . The metric space         , which we call 
X dilated, is the same set X equipped with another distance function           
defined by
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If X is a metric space and                 , then a metric on Y can be obtained 
by the restriction , such that
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Metrics

The distance from a point x to a set S in a metric space X is defined by
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The diameter of a set S in a metric space X is defined by
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The compactness of X ensures that                             and that there exist two 
points                  such that
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Ambient space

XY 

Restricting           to              is the simplest, but not the only way to define a 
metric on a subset. In many cases it is more natural to consider an 
intrinsic metric, which is generally not equal to the one restricted from the 
ambient space.

Xd YXd |

1
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2R carries the restricted Euclidean metric
1S 

An alternative is the (shortest) arc length

Question:  is                  isometric to               ?),( 1 S),( 1 S



Example

If X is a metric space and                 , then X is called ambient space for Y.



Lipschitz maps

A map                         between metric spaces is called Lipschitz if there 
exists a               such that

YXf :

0C
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Any suitable value of C is referred to as a Lipschitz constant of  f.
The minimal Lipschitz constant is called the dilatation of f, denoted by fdil
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All Lipschitz maps are continuous (exercise!).



Bi-Lipschitz maps

A map                         between metric spaces is called bi-Lipschitz if 
there are positive constants c and C such that

YXf :

),())(),((),( 212121 xxdCxfxfdxxdc XYX 

Xxx 21,for all

A map with Lipschitz constant               is called nonexpanding.1C

Exercise: Prove that                        is a nonexpanding function.),(distX Sx



A first notion of “closeness”

Smooth surfaces in          can be (at least locally) parametrized by a 
domain                 , for example as graphs of smooth functions 
or as images of embeddings 

RDh :
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The two parametrizations determine a homeomorphism from one to the other



A first notion of “closeness”

1p

2p

If the surfaces are “close enough” to each other, the homeomorphism 
should only slightly change certain quantities such as distances, metric 
tensors, or their derivatives.

We can say that two spaces have a small distance between them if there 
is a homeomorphism which “almost preserves” certain geometric 
characteristic, e.g. the distance.



Lipschitz distance
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This definition gives a way to measure relative change between metrics.

The idea is to consider two metric spaces X and Y close to each other if there 
is a homeomorphism such thatYXf :



Lipschitz distance
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The idea is to consider two metric spaces X and Y close to each other if there 
is a homeomorphism such thatYXf :

Equivalently, we may require
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Lipschitz distance
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Recall that the dilatation of a Lipschitz map  f is defined by
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Since we are dealing with homeomorphisms, we get for the inverse map
1f



Lipschitz distance
Let us consider the maximum relative error that we get when mapping via  f
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We are interested in maps yielding a relative error                              .
This corresponds to requiring
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Lipschitz distance

The Lipschitz distance between two metric spaces X and Y is defined by

The infimum is taken over all homeomorphisms such that        and            
are Lipschitz maps (bi-Lipschitz homeomorphisms).

is a metric on the space of isometry classes of compact metric spaces.

 ))(dil),(dillog(maxinf),( 1

:




 ffYXd

YXf
L

f 1f

Ld

X
Z

Y

),( YXdL

),( ZXdL

),( ZYdL



Lipschitz distance

We set                             if there are no bi-Lipschitz homeomorphisms 
from X to Y.

Thus, the Lipschitz distance is not suitable for comparing metric spaces 
that are not bi-Lipschitz homeomorphic.

),( YXdL

The Lipschitz distance between two metric spaces X and Y is defined by

The infimum is taken over all homeomorphisms such that        and            
are Lipschitz maps (bi-Lipschitz homeomorphisms).

is a metric on the space of isometry classes of compact metric spaces.
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Lipschitz distance
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Non-negativity

is a homeomorphism, therefore  either                       or
(     and          cannot both decrease the distances). 

YXf : 1)(dil f
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Lipschitz distance
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Triangle inequality

,  YXf : ZYg : ZXfg :
bi-Lipschitz homeomorphisms         bi-Lipschitz homeomorphism
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Exercise: Prove the above facts.

Hence                                                                                  , and similarly for))(dillog())(dillog())(log(dil gffg  11  gf 
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Lipschitz distance
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0),(  YXdYX L
X and Y are isometric by assumption, thus 
substituting an isometry                       in the 
definition yields

YXf :
0),( YXdL

YXYXd  0),(L Sketch of proof (next page)



Lipschitz distance

YXYXd  0),(L

The sequence       converges to f (this comes from compactness).nf

Then we have for all                                                                                and hence:               1)',(/))'(),((,',  xxdxfxfdXxx XnnY

)',())'(),(( xxdxfxfd XY 

This means that f is distance-preserving, and similarly for                     .XYg :

The composition            is distance-preserving, and bijective by compactness of Y.gf 
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implies that there exists a sequence of maps                      such that                         and  
as                (this comes from compactness)

Hence, f is surjective and thus an isometry.
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Lipschitz distance

YXYXd  0),(L

Note that we needed compactness of X and Y in order to prove



Lipschitz distance
Disadvantage: It requires spaces to be homeomorphic.

X Y

),( YXdL



Lipschitz distance
Disadvantage: Even for two homeomorphic spaces, it may happen that 
the “similarity” is not realized by a homeomorphism.

X Y

Any homeomorphism (in fact, any continuous map) from X to Y
essentially distorts distances between some points.

Intuitively, we see that the distance between X and Y should be small 
because each of them is contained in a small neighborhood of the other in 3R



Hausdorff distance

The Hausdorff distance between two compact subsets
is defined by

is a semi-metric on the space of compact subsets of a metric space.ZdH
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Hausdorff distance

The Hausdorff distance between two compact subsets
is defined by

is a semi-metric on the space of compact subsets of a metric space.ZdH
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Hausdorff distance

Note that a difference in a single point can make         arbitrarily large!ZdH

The Hausdorff distance between two compact subsets
is defined by

is a semi-metric on the space of compact subsets of a metric space.ZdH
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Exercise: Show that                                for all                       , and
for all              , where       denotes the closure of  A.
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Gromov-Hausdorff distance

The general idea is to embed the two metric spaces X and Y into a new 
metric space Z, and compute the Hausdorff distance on the resulting 
embeddings.

We proceed by requiring for              if and only if there 
exists a metric space  Z and subspaces                        which are isometric 
to X and Y, and such that                                .

rYXd ),(GH 0r
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Can we define a Hausdorff distance between metric spaces?



Gromov-Hausdorff distance
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We will indeed define
as the minimum r for which such  
Z, X’ and Y’ exist.
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Gromov-Hausdorff distance

The Gromov-Hausdorff distance between two metric spaces X and Y is 
defined by

The infimum is taken over all ambient spaces Z and isometric 
embeddings (distance preserving)

is a metric on the space of isometry classes of compact metric spaces.
GHd
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All ambient metric spaces Z is indeed a huge class of metric spaces!



Example: rigid isometries
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Let us consider the case in which                 and                  are subsets of a 
larger metric space (this brings us back to the Hausdorff case). For 
example, take                                 .
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Where       sweeps all rigid isometries of the form 
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Example: rigid isometries
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Let us consider the case in which                 and                  are subsets of a 
larger metric space (this brings us back to the Hausdorff case). For 
example, take                                 .
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Correspondence
We will not prove the metric axioms on           (yay!), but let us try to give a 
more “computational friendly” formulation.

GHd

What we are going to prove is:

if and only if there is a correspondence between  X and Y such 
that if and                  are corresponding pairs of points, thenXxx ', Yyy ',
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A correspondence between two sets X and Y is a set                       satisfying:

• for every              there exists at least one             such that
• for every              there exists at least one             such that

YXR 

Xx Yy Ryx ),(
XxYy Ryx ),(



Correspondence

Any surjective map                          defines a correspondenceYXf :

 XxxfxR  :))(,(

Note, however, that not every correspondence is associated with a map!
We can regard a correspondence as a “multi-valued” map, in which a single 
point is allowed to have more than one image.

One way to sidestep this issue is by using an auxiliary set. Let
and                       be two surjective maps from some “reference” set  Z. 
Then we can define a correspondence as

XZf :
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Metric distortion

Let                   and                 be (compact) metric spaces and                         
an arbitrary (even noncontinuous) map. The distortion of       is defined 
by
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Distortion measures the absolute change of distances.
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Compare with the requirement we gave in the Lipschitz case:



Metric distortion
The distortion of a correspondence is defined by
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Note that                             for any surjective map                       , where R is 
the associated correspondence

Rf disdis 
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0dis RThe key result is that                     if and only if R is associated with an 
isometry.

We say that f  is an    -nearisometry if fdis



Gromov-Hausdorff distance

The Gromov-Hausdorff distance between two metric spaces X and Y is 
defined by

The infimum is taken over all correspondences R between X and Y.

is a metric on the space of isometry classes of compact metric spaces.
GHd

RYXd
R

disinf
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1
),( GH

Note that                                if and only if X and Y are isometric.0),( YXdGH
In addition, it is a finite quantity (differently from the Lipschitz distance).



Gromov-Hausdorff distance

With the new formulation, the GH distance is equal to the infimum of             
for which there exists a correspondence with 

0r
rR 2dis 

The equivalence between 
the two formulations must 
be proven!



Gromov-Hausdorff distance

This notion of distance encodes the metric disparity 
between the metric spaces in a computationally 
impractical way.
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Coverings
Let                         . An open ball of radius             centered at x is defined by),( XdXx 0r

 rzxdXzrxB XX  ),(:),(

For a subset A of X, we define
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A set                is an r-covering of X ifXC  XrCBX ),(



Coverings
Let                               be a r-covering of the compact metric space
Then

),( XdX  Xxx n ,,1 

  rxxXd n ),,,( 1 GH

This tells us that “shape samplings” 
are close to the underlying shapes in 
the Gromov-Hausdorff sense



Coverings

Let              be a r-covering of  X,  and              be a r’-covering of  Y. 
Then
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If we have a way to compute          for dense enough (small r’) samplings 
of X and Y, then it would give us a good approximation to what happens 
in the continuous spaces.

This gives a formal justification for the surface recognition problem 
from point samples, showing that it is well posed.

GHd

is consistent to sampling
GHd



Coverings
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Tighter bounds can be computed depending on the algorithm.
Recall for the rigid case
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For example, there is an algorithm with provable bounds:

observed (computable) unknownunknown



A computational approach
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We want to compute a correspondence       minimizing
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Let us rewrite

where f ranges over all surjective mappings from X to Y



where          is the set of all permutations of                  .

• A permutation       provides the correspondence between the two sets
• The error term gives the pairwise distance once this correspondence 
has been assumed.

A computational approach
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Let                        be a r-covering of  X,  and                         be a 
r’-covering of  Y.  Then we can define an alternative distance
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A computational approach

),(),( YXPGH dYXd 

It should be evident that

One can also prove

),('),( YXPGH drrYXd 

The general idea now is to define coverings X, Y that provide a tighter 
bound on the Gromov-Hausdorff distance.



Coverings

Can we devise an optimal sampling 
scheme in a metric sense?



Farthest point sampling

Fix n the number of points we want to have in 
our final covering

We proceed recursively.
Given          , select                          such that

nX

1kX ),( XdXp

),(maxarg 1


 kX
Xx

xdp X

In general the maximum is not unique, one 
could consider all of them or randomly 
pick one.

Set                                  , and repeat. pkk  1XX



Clearly we expect different samplings 
depending on the starting point

Farthest point sampling

 q1X
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One way to get a more stable sampling is 
by setting                         such that qp,2 X

Note however, that such a         is still in 
general not unique.

2X

In other words, select two points 
attaining )(diam X



Voronoi sampling

Its representation error can be quantified by

 ))(~,(var)( xxxdXX

The sampling              represents a region         
as a single point               :
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Xxi 

 XX  ijjXiXi xxxdxxdXxV ),,(),(:)(

This region is also known as Voronoi region.

The Voronoi decomposition replaces          
with the closest point

Xx
X)(~ xx

The optimal sampling is )(minarg X
X





Farthest point sampling

),(maxmax)(
,,1

iX
Vxni

xxd
i

 


X

Alternatively, the optimal sampling is the one 
minimizing the maximum cluster radius

Both error criteria are NP-hard to compute!



Farthest point sampling
Theorem: FPS is “almost” optimal, in the sense

)(min2)( fps XX
X

  



Farthest point sampling

• The final sampling has progressively 
increasing density.

• It is efficient (provided the chosen metric is 
efficient to compute). Time complexity is 
O(mn), where                 . It can be reduced 
using efficient data structures.

• It is worse than optimal sampling by at most 
a factor of 2.

Xm 
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Suggested reading

 Gromov-Hausdorff distances in Euclidean spaces. F.Mémoli. 
Proc. NORDIA 2008. Sections 1 to 3.1.

 Comparing point clouds. F.Mémoli and G.Sapiro. Proc. SGP 
2004. Sections 1, 2, 2.1, 2.2, 3.3

 On the use of Gromov-Hausdorff distances for shape 
comparison. F.Mémoli. Proc. SGP 2007. Sections 1, 2, 4

 Numerical geometry of non-rigid shapes (Bronstein, 
Bronstein, Kimmel) – Chapters 10.1, 10.2, 10.3

 A course in metric geometry (Burago, Burago, Ivanov) –
Chapters 1.1 to 1.5, 7.1, 7.2, 7.3

The references below contain more than needed for the course, but cover 
all the key notions we have seen in this class.


