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Announcement

There will be no class on 21.04.2013

(further announcements via e-mail)



Seminar

“Laplace-Beltrami Operator”

Emanuel Laude
Frank Schmidt

Wednesday, April 16
14:00 Room 02.09.023



Seminar

“Discrete differential geometry”
Thorsten Philipp

Wednesday, April 23
14:00 Room 02.09.023



[s there something like a “space of shapes™?
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Space of shapes

[s there something like a “space of shapes”? Yes!



Euclidean% Geodesic Q Diffusion =]



D XD

Rigid similarity Non-rigid similarity

Part of the same metric space Two different metric spaces

Main idea: Find a representation of the two shapes in a common metric space
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Metric spaces

A set M is a metric space if for every pair of points X, Y € M thereisa
metric (or distance) function d,, :M xM —> R U {O, oo} such that

identity of indiscernibles dM (X, y) =0 X= y

symmetry dM (X, y) = dM (y, X)
triangle inequality dM (X1 Y) = dM (y, Z) + dM (Z, X) forany X,Y,Z € M

We will specify a metric space as the pair (M, d,, )

Satisfying a subset of these properties leads to the definition of “semi”-
metric spaces, “pseudo’-metric spaces, etc.



Examples of metric spaces

X = Ac R¥ dy (X, y) =|x-Y]|,

0 If x=y
X = any set dx(xiy)—{l if X %y
X =R dy (X, y)=|x-Y

dX (X1 y) o IOg‘X— y‘
X =R? dx((xlixz)’(Yyyz)):max(‘xl_xzuy1_y2‘)

X =AxB dy ((a,,b),(a,,b,)) = \/dA(al’ a2)2 +dB(b1’b2)2
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Compactness

For the rest of this class we will assume our metric spaces to be (sequentially)
compact.

A metric space (X, d, ) is compact if and only if every sequence in X has a
Cauchy subsequence (totally boundedness) that converges to a point in X
(completeness).

A sequence {Xn } in a metric space (X, d, ) is called a Cauchy sequence if
d, (X ,x )—0as n,m-—>c0

More formally: forany & >0 there existsan Ny such that dy (X,, X,) <&
whenever n,m=n,

Compactness allows to apply many techniques of calculus on metric spaces,
and has some important consequences.
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lIsometries

Let (X,dy) and (Y,d,) be two metric spaces.
Amap T :X —Y iscalled distance-preserving if

dy (6 y)=dy (F(), F(y)) forany X,y e X

A bijective, distance-preserving map is called an isometry. Two spaces
are isometric if there exists an isometry between them.
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lIsometries

Let (X,dy) and (Y,d,) betwo metric spaces.

Amap T : X —Y iscalled distance-preserving if
dy (%) =dy (F (%), F(y) forany X,y X

A bijective, distance-preserving map is called an isometry. Two spaces
are isometric if there exists an isometry between them.

Exercise: Show that any isometry is a homeomorphism.

Exercise: Isn’t bijectivity redundant?

Answer: A surjective, distance-preserving map is called an isometry.

Exercise: Show that “being isometric” is an equivalence relation.
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Metrics

Let X be a metric space and A > 0 . The metric space AX , which we call
X dilated, is the same set X equipped with another distance function d ,,

defined by

d (X, y) =Ad, (X,y) forall X,y e X .=>

If X is a metric spaceand Y < X | then a metric on Y can be obtained

by the restriction d, =d, |, such that
d,(X,y)=d,(X,y) forall X,yeY .




Metrics

The distance from a point x to a set S in a metric space X is defined by

S
f

1
1
1
4
i 1
! 1
1
% | 1
1
1
] 1
1
1
1

dist, (x,S) =inf dy (x, y)
ye

The diameter of a set S in a metric space X is defined by

diam (S) = sup d (x, ) X

The compactness of X ensures that diam(X) < oo and that there exist two
points X, Yy € X such that diam(X) =d, (X, y)
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Ambient space

If X isa metricspaceand Y — X , then X is called ambient space for Y.

Restricting d, to d, |, isthesimplest, but not the only way to define a
metric on a subset. In many cases it is more natural to consider an
intrinsic metric, which is generally not equal to the one restricted from the
ambient space.

Example

1
S / 1 An alternative is the (shortest) arc length ¥

\/ Question: is (Sl,H : H) isometric to (S, %) ?

2 . : - -
R S?! carries the restricted Euclidean metric H : H
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Lipschitz maps

Amap f : X —Y between metric spaces is called Lipschitz if there
existsa C > (Q such that

d, (f(x), f(x,)) <Cd, (X,X,) forall X, X, € X

All Lipschitz maps are continuous (exercise!).

Any suitable value of C is referred to as a Lipschitz constant of f.
The minimal Lipschitz constant is called the dilatation of f, denoted by dil f

Qi o A1)
Xy, Xo € X dX (X1’ X2)
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Bi-Lipschitz maps

Amap T : X —Y between metric spaces is called bi-Lipschitz if
there are positive constants ¢ and C such that

ey (% %) < 0y (F (%), F (%)) < Clly (%, %,)
forall X, X, € X

A map with Lipschitz constant C =1 is called nonexpanding.

Exercise: Prove that dist, (X, S) is a nonexpanding function.




A first notion of “closeness”

Smooth surfacesin R* can be (at least locally) parametrized by a

domain D — R?, for example as graphs of smooth functions h: D — R
or as images of embeddings p: D — R’

T p,

/ - o
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The two parametrizations determine a homeomorphism from one to the other



A first notion of “closeness”
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If the surfaces are “close enough” to each other, the homeomorphism
should only slightly change certain quantities such as distances, metric
tensors, or their derivatives.

We can say that two spaces have a small distance between them if there
is a homeomorphism which “almost preserves” certain geometric
characteristic, e.g. the distance.
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Lipschitz distance

The idea is to consider two metric spaces X and Y close to each other if there
is a homeomorphism f : X —Y such that

d, (f(x), f(x5)) ~1 forall X,X, € X
dy (X1, %,)

This definition gives a way to measure relative change between metrics.



/‘-
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Lipschitz distance

The idea is to consider two metric spaces X and Y close to each other if there
is a homeomorphism f : X —Y such that

d, (f(x), f(x5)) ~1 forall X,X, € X
dy (X1, %,)

Equivalently, we may require

dX (X11X2) ~1 for all X11X2 € X
dY(f (X1)1 f(XZ))
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Lipschitz distance

Recall that the dilatation of a Lipschitz map f is defined by

.-
X1, X5 € X dX (Xl, X2)

; : : : : g |
Since we are dealing with homeomorphisms, we get for the inverse map f

-1 -1
dll .I:—l = Sup dX (f (y1)7 f (yZ))
Y1.Y2€Y dY (y1’ y2)
-
e Oy (0X), T(%;))
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Lipschitz distance

Let us consider the maximum relative error that we get when mapping via f

g(X,Y, f)=max{ sup dy (T(x), T(x;)) sup dy (X, %,)
A wner 0 06 x) wooxd (E06) )

— max {dil ( f),dil(f %)}

We are interested in maps yielding a relative error £(X,Y, f) =1 .
This corresponds to requiring

Inf loge(X,Y, f)—>0

f: XY
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Lipschitz distance

The Lipschitz distance between two metric spaces X and Y is defined by

d,(X,Y)=inf_log(max {dil(f),dil(f*)})

f: X—>Y

The infimum is taken over all homeomorphisms such that f and f -
are Lipschitz maps (bi-Lipschitz homeomorphisms).

d, isa metric on the space of isometry classes of compact metric spaces.




/
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Lipschitz distance

The Lipschitz distance between two metric spaces X and Y is defined by

d,(X,Y)=inf_log(max {dil(f),dil(f*)})

f: X—>Y

The infimum is taken over all homeomorphisms such that f and f =
are Lipschitz maps (bi-Lipschitz homeomorphisms).

d, isa metric on the space of isometry classes of compact metric spaces.

Weset d,(X,Y) = oo if there are no bi-Lipschitz homeomorphisms
from X to Y.

Thus, the Lipschitz distance is not suitable for comparing metric spaces
that are not bi-Lipschitz homeomorphic.
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Lipschitz distance

d,(X,Y)=inf_log(max {dil(f),dil(f*)})

f: XY

Non-negativity (d o O)

f_ : X —Y isahomeomorphism, therefore either dil(f)>1 or
dil(f ")>1 (f and f ' cannot both decrease the distances).

Symmetry (dL(X,Y) =d (Y, X))

Trivial



Lipschitz distance

d,(X,Y)=inf_log(max {dil(f),dil(f*)})

f: X->Y
Triangle inequality (d,(X,Z)<d_ (X,Y)+d,(Y,Z))
X S g 57 8 gof: X >Z

bi-Lipschitz homeomorphisms bi-Lipschitz homeomorphism

dil(go f)<dil(f)-dil(g)

Exercise: Prove the above facts.

Hence log(dil (g o f)) <log(dil( f))+log(dil(g)), and similarly for f o g‘l
This implies d,(X,Z)<d_ (X,Y)+d (Y,Z)



Lipschitz distance

d,(X,Y)=inf_log(max {dil(f),dil(f*)})

f: XY

Identity of indiscernibles (d (X)Y)=0= X = Y)

X=Y——>d (X, ¥)=0

X and Y are isometric by assumption, thus
substituting an isometry f : X — Y in the
definition yields dL (X,Y)=0

d. (X,Y)=0= X =Y  Sketch of proof (next page)
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Lipschitz distance
d,(X,Y)= inf log(max {dil(f),dil(f )}

f: XY
d (X,Y)=0= X =Y
d.(X,Y) =0 implies that there exists a sequence of maps f, : X —Y such that dil(f ) -1 and
dil(f,”") -1 as n —» oo (this comes from compactness)

The sequence T, converges to f (this comes from compactness).

Then we have forall X,X'e X, d, (f (x), f.(x"))/d, (X,x") >1 and hence:
dy (f(x), (X)) =d (X, X')

This means that fis distance-preserving, and similarly for 9:Y — X .

The composition f © 0 is distance-preserving, and bijective by compactness of Y.

Hence, f'is surjective and thus an isometry.



Lipschitz distance

Note that we needed compactness of X and Y in order to prove

d.(X,Y)=0< X =Y
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Lipschitz distance

Disadvantage: It requires spaces to be homeomorphic.

d (X,Y)=0



Lipschitz distance

Disadvantage: Even for two homeomorphic spaces, it may happen that
the “similarity” is not realized by a homeomorphism.

=
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Any homeomorphism (in fact, any continuous map) from X to Y
essentially distorts distances between some points.

Intuitively, we see that the distance between X and Y should be small
because each of them is contained in a small neighborhood of the other in R®
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Hausdorff distance

The Hausdorff distance between two compact subsets X,Y < (Z,d,)
is defined by

dZ(X,Y)= max{supdistz(x,Y),supdistz(y, X)}

xe X yeY

7 . . . .
d, is a semi-metric on the space of compact subsets of a metric space.

supdist, (y, X)

yeY

supdist, (x,Y)

Xe X



Hausdorff distance

The Hausdorff distance between two compact subsets X,Y < (Z,d,)
is defined by

dZ(X,Y)= max{supdistz(x,Y),supdistz(y, X)}

xe X yeY

7 . . . .
d, is a semi-metric on the space of compact subsets of a metric space.

¥ 4
?v** .;
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Hausdorff distance

The Hausdorff distance between two compact subsets X,Y < (Z,d,)
is defined by

dZ(X,Y)= max{supdistz(x,Y),supdistz(y, X)}

xe X yeY

7 . . . .
d, is a semi-metric on the space of compact subsets of a metric space.

Being a “semi”-metric means that d . (X,Y) =0<> X =Y does not hold.

Exercise: Show that dist, (Xj) =0 forall Xe Ac X, and
dist, (X, A) =0 forall X € A , where A denotes the closure of A.

Note that a difference in a single point can make d f[ arbitrarily large!



Gromov-Hausdorff distance

Can we define a Hausdorff distance between metric spaces?

The general idea is to embed the two metric spaces X and Y into a new
metric space Z, and compute the Hausdorft distance on the resulting
embeddings.

N =

We proceed by requiring d_, (X,Y)<r for r >0 ifand only if there
exists a metric space Z and subspaces X',Y'c Z which are isometric
toXand Y,and such that d (X', Y')<r .



Gromov-Hausdorff distance

(£,d;)

-

(Y.dy)

dgy,

We will indeed define d . (X,Y) (X,dy) ¢ » (Y,dy)

as the minimum r for which such f l l g
d Z
H

Z, X’and Y’ exist.
(f (X)’dz |x)<:> (g(Y)’dz |Y)




Gromov-Hausdorff distance

The Gromov-Hausdorff distance between two metric spaces X and Y'is

defined by
dyye (X,Y) = inf dZ(F(X), 9(Y))

The infimum is taken over all ambient spaces Z and isometric
embeddings (distance preserving) f : X — Z, g:Y »>Z

d

- is a metric on the space of isometry classes of compact metric spaces.

All ambient metric spaces Z is indeed a huge class of metric spaces!



Example: rigid isometries

Let us consider the case in which (X,d, )and (Y,d,) aresubsetsofa
larger metric space (this brinﬁs us back to the Hausdorff case). For

example, take X,Y < (R?, H) :
e Z
A (X,Y) = Inf d;, (T(X),9(Y))

U

dir(X,Y) = inf_d; (X,8(X))

D7 sy

Where ¢ sweeps all rigid isometries of the form @(-) = R(-) +T
with det R = +1
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Example: rigid isometries

Let us consider the case in which (X,d, )and (Y,d,) aresubsetsofa
larger metric space (this brings us back to the Hausdorff case). For

example, take X,Y < (R?, H) :

dir(X,Y) = inf_d; (X,4(X))

PL—>Z




Correspondence

We will not prove the metric axioms on d o (yay!), but let us try to give a
more “computational friendly” formulation.

A correspondence between two sets X and Yisaset R — X xY satisfying:

« for every X € X there exists at least one Y € Y such that (X, Y) € R
« forevery Yy €Y there exists at least one X € X such that (X, y) € R

What we are going to prove is:

dgﬂ (X,Y)<r ifand only if there is a correspondence between X and Y such
thatif X,X'e X and VY, y'€Y are corresponding pairs of points, then

dy (%, x)—d, (y,y')| <2r
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Correspondence

Any surjectivemap f : X —Y defines a correspondence
R={(x f(x)):xeX}

Note, however, that not every correspondence is associated with a map!
We can regard a correspondence as a “multi-valued” map, in which a single
point is allowed to have more than one image.

One way to sidestep this issue is by using an auxiliary set. Let f :Z — X
and g:Z —Y be two surjective maps from some “reference” set Z.
Then we can define a correspondence as

R=1{(f(2),9(2)):z2e2}



Metric distortion

Let (X,d,) and (Y,d,) be (compact) metricspacesand f : X —Y
an arbitrary (even noncontinuous) map. The distortion of f isdefined

by

dis f = sup [dy (f(x), f (%)) —dy (%, %)

X1, X, €X
Distortion measures the absolute change of distances.
Compare with the requirement we gave in the Lipschitz case:

et ;- -
d, (X, X,)
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Metric distortion

The distortion of a correspondence R — (X,d, )x(Y,d, ) is defined by

disR = supﬂdX (X, x)—d, (y, y)|: (X, ). (X', y) e R}

Note that diS f =dISR forany surjectivemap f : X —Y  whereR is
the associated correspondence R = {(X, f(x):xeX }

The key result is that diSR =0 if and onlyif R is associated with an
isometry.

We say that f isan £-nearisometryif dis f < g




Gromov-Hausdorff distance

The Gromov-Hausdorff distance between two metric spaces X and Y'is

defined by
1. :
d (X,Y)= Elrg{f dis R
The infimum is taken over all correspondences R between X and Y.

dg}[ is a metric on the space of isometry classes of compact metric spaces.

Note that d_, (X,Y)=0 ifand onlyif X and Y are isometric.
In addition, it is a finite quantity (differently from the Lipschitz distance).



/ Gromov-Hausdorff distance

What we are going to proveis:

d o (X ¥l - F f.nd cnj_y if thereis a correspondence between Xand Y such
thatif x,x'e X and y, '€ ¥ are corresponding pairs of points, then

| dy (x,x)—dy(y,y')| < 2o
The equivalence between We will indeed define ¢ = (X ¥}
the two formulations must as the minimum r for which such
be proven! £, X' and Y’ exist.

With the new formulation, the GH distance is equal to the infimum of I >0
for which there exists a correspondence with diISR < 2r



Gromov-Hausdorff distance

B
di(X,Y):Elrg{f dis R

This notion of distance encodes the metric disparity
between the metric spaces in a computationally
impractical way.



Coverings

Let X € (X,d, ) .An open ball of radius I > O centered at x is defined by

B. Gcr) =7 X d (7)) -t}

For a subset A of X, we define
B, (Ar)=U_.B,(ar)

Aset C < X isanr-covering of X if B, (C,r) = X




Coverings

Let {Xl, cear X, } — X be a r-covering of the compact metric space (X,d, )

Then
d OG0 K D=T

This tells us that “shape samplings”
are close to the underlying shapes in
the Gromov-Hausdorff sense



y
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Coverings

Let {Xi }Inl , bear-covering of X, and {y ; }mzl be a r’-covering of Y.
Then

m

.. =

is consistent to sampling

d,

If we have a way to compute d = for dense enough (small r’) samplings
of X and Y, then it would give us a good approximation to what happens

in the continuous spaces.

This gives a formal justification for the surface recognition problem
from point samples, showing that it is well posed.
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Coverings

Tighter bounds can be computed depending on the algorithm.
Recall for the rigid case

dor(X,Y) = inf_d(X,4(X))

$Z—>Z
For example, there is an algorithm with provable bounds:
AP (X Y) = (r+r) <dee (b el }T;l))f 10{d;2° (X, Y) +(r+1))

| | |
unknown observed (computable) unknown

\




A computational approach

We want to compute a correspondence R < X XY minimizing
d_(X.Y)=Zinf disR
GH . % 2 R
Let us rewrite

1
. (X Y) :Elan disR

:%igf sup{dy (6 x') =dy (¥, ¥')]: (%, ), (X', ') € R}

_ 2 inf sup |dy (f(x), f(x"))—dy (x,x")

2 f: XY X, X'e X

where f ranges over all surjective mappings from X to Y
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A computational approach

e (X, Y)_— inf_sup|d, (f(x), f(x"))—d, (x,x")]

f: X~ Y)(XEX

Let X =1{x }:i , bear-coveringof X, and Y = {y j }m:1 bea

r-covering of Y. Then we can define an alternative distance

d. (X, Y)_imln max

reP, 1<i, j

o V) —y (%, X;)
where P, isthe set of all permutations of {1, s n}.

* A permutation 77 provides the correspondence between the two sets

* The error term gives the pairwise distance once this correspondence
has been assumed.



A computational approach

It should be evident that

d (X1 -d (XY

One can also prove

dge (X,Y) <1 4+1+d, (X, Y)

The general idea now is to define coverings X, Y that provide a tighter
bound on the Gromov-Hausdorff distance.



overings

Can we devise an optimal sampling
scheme in a metric sense?




Farthest point sampling

Fix n the number of points we want to have in
our final covering X,

We proceed recursively.
Given X, ,,select p e (X,d, ) such that

p=argmaxd, (x,X,_,)

xeX

In general the maximum is not unique, one
could consider all of them or randomly
pick one.

Set X =X U {p} , and repeat.




Farthest point sampling
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Clearly we expect different samplings
depending on the starting point X; = {q}

One way to get a more stable sampling is
by setting X, = {p, q} such that

(p,q)=argmaxd, (p,q)

(p,g)eXxX
In other words, select two points
attaining diam(X)

Note however, that sucha X, isstill in
general not unique.



Voronoi sampling

The sampling {Xi }izl represents a region V. < X
as a single point X; € X

V)= xe X d (ox)<d ox)hx e X;

BANED

This region is also known as Voronoi region.

The Voronoi decomposition replaces X € X
with the closest point X (X) € X

Its representation error can be quantified by
g(X) = var{d, (x,X(x))}

The optimal sampling is arg min £(X)
X




Farthest point sampling

Alternatively, the optimal sampling is the one
minimizing the maximum cluster radius

g, (X) = max maxd, (X, X;)

i:].,. .., N XGVi

Both error criteria are NP-hard to compute!




Farthest point sampling

Theorem: FPS is “almost” optimal, in the sense

s (Xfps) <2 m)!n g, _(X)




Farthest point sampling

* The final sampling has progressively
increasing density.

* It is efficient (provided the chosen metric is
efficient to compute). Time complexity is
O(mn), where m = ’X’ . It can be reduced
using efficient data structures.

* [t is worse than optimal sampling by at most
a factor of 2.




Seminar

“The metric approach to shape matching”
Alfonso Ros

Wednesday, May 28
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Suggested reading

The references below contain more than needed for the course, but cover
all the key notions we have seen in this class.

Gromov-Hausdorff distances in Euclidean spaces. F.Mémoli.
Proc. NORDIA 2008. Sections 1 to 3.1.

Comparing point clouds. FMémoli and G.Sapiro. Proc. SGP
2004. Sections 1, 2, 2.1, 2.2, 3.3

On the use of Gromov-Hausdorff distances for shape
comparison. FMémoli. Proc. SGP 2007. Sections 1, 2, 4

Numerical geometry of non-rigid shapes (Bronstein,
Bronstein, Kimmel) - Chapters 10.1, 10.2, 10.3

A course in metric geometry (Burago, Burago, Ivanov) -
Chapters1.1to 1.5, 7.1, 7.2, 7.3



