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Announcement

On popular demand, we moved the lecture to:

Thursday 16:00-18:00

However, during holidays we will move back to:

Monday 10:00-12:00

Check the calendar on the course web page!



Seminar

“Heat Kernel Signature”
Thomas Hörmann 

Wednesday, April 30
14:00 Room 02.09.023



The matching game

?T

You will be given two shapes. Find the best correspondence you can!

• Do not bother looking for them on the web

• You can use whatever technique you want, or mixtures thereof 

• The best solution will get a prize!



The space of shapes
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Is there something like a “space of shapes”? There are many!



Lipschitz distance
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• The shapes are assumed to be bi-Lipschitz homeomorphic.
• if not.

Ld• is a metric on the space of isometry classes of compact metric spaces.
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Hausdorff distance
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• It captures a more intuitive notion of distance among shapes

• is a semi-metric on the space of compact subsets of a metric space.
• A difference in a single point can make          arbitrarily large.
• It only allows to compare subsets of a common metric space.
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Gromov-Hausdorff distance

• is a metric on the space of isometry classes of compact metric spaces.
• It encodes a natural notion of distance among shapes
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• The infimum is taken over a huge feasible set.



Distances in the space of shapes
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Gromov-Hausdorff distance
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The infimum is taken over all correspondences R between X and Y.

if and only if X and Y are isometric.0),( YXdGH

Still impractical, but it gives an intuition on how to proceed in order to 
actually compute the distance.
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Estimating the GH distance
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where          is the set of all permutations of                  .

Let                        be a r-covering of  X,  and                         be a 
r’-covering of  Y.  Then we can define an alternative distance
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Estimating the GH distance
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Estimating the GH distance
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Estimating the GH distance
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Assume we know the true matches between X and Y:
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If the shapes are 
isometric, then  
we would expect
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Estimating the GH distance
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• In practice, we can only 
expect near-isometries, i.e.

),( YXPd

• In general, we don’t 
know the true matches 
between X and Y!

• is consistent to sampling, 
that is
is bounded above
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Keep in mind that:



Example
Assume we are given a collection of shapes and the true correspondence
among them…

…and we want to sort them “by distortion”



Example
We can approximate their GH distance                  to a preselected “null” pose:

null (X)
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Finding a correspondence
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In general, we don’t know the true correspondence between the two shapes.

In order to compute (an approximation to) the GH distance, we have to 
minimize over all possible correspondences nP

fYXd
YXf

disinf
2

1
),(

: 
GH

This corresponds to minimizing over all possible surjective maps                      
in our original formulation:

YXf :



Discretization
Let us represent shapes by their corresponding ordered collection of points:
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Discretization

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

A correspondence can be represented by a matrix   nn
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Discretization

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

A correspondence can be represented by a matrix   nn
R


 1,0

X

Y

Asking for a bijection 
corresponds to require R to 
be a permutation matrix.

In other words, we are 
optimizing over all 
permutations of  n,,1
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Discretization

The metric distortion terms can be incorporated into a cost matrix                     
such that:
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Quite big!



Discretization
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Rewriting with matrix notation, we get:
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where R is in the space of permutation matrices of size n.



Discretization

As we have already mentioned, this distance is sensitive to outliers.
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We can obtain a family of related problems by relaxing the max to a sum.
Fix             and define the costs as:
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Quadratic Assignment Problem
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In practice we will be interested in finding a minimizer rather than a minimum.
Rewriting in matrix notation, we get to the quadratic program:
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where                            is a column-stacked reshaping of R.
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This quadratic optimization problem is also known as the Lawler formulation 
of the Quadratic Assignment Problem (QAP).



Quadratic Assignment Problem
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This combinatorial optimization problem is unfortunately NP-hard.

In the literature there have been several attempts at relaxing the problem to 
make it more tractable. In the following we will present some of these 
approaches.



Continuous relaxation
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Leave the combinatorial setting by allowing the correspondence to take on 
continuous values.



Continuous relaxation
Leave the combinatorial setting by allowing the correspondence to take on 
continuous values.

0.1 0.1 0.3 0.2 0.3

0.3 0.1 0.1 0.1 0.4

0.2 0.3 0.2 0.2 0.1

0.2 0.2 0.1 0.4 0.1

0.2 0.3 0.3 0.1 0.1

X

Y

1

1

We can now regard 
each row and column 
as a discrete probability 
distribution associated 
to that point.



Continuous relaxation
Leave the combinatorial setting by allowing the correspondence to take on 
continuous values.
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The resulting feasible set is the set of doubly-stochastic matrices.

It forms a convex set known as the Birkhoff polytope (or assignment polytope).
The n! vertices of this polytope are the permutation matrices.



Continuous relaxation



Continuous relaxation
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Optimize by projected gradient descent. Let }{vec Rx
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We can find a local optimum via the recursive equations:
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also called mapping constraints



Continuous relaxation

 Slow convergence
 Local optimum
 Implement efficient projection
 Choose good starting point
 Choose step size or do line search
 Binarize the final solution

 Easy to implement
 Local optima are usually good enough in practice



Spectral relaxation
Other approaches further relax the QAP by taking the point of view of 
regularization theory.
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Each value of x is interpreted as the confidence of the corresponding match.

Note that we are losing the connection with the Gromov-Hausdorff 
distance. The optimal x is not even guaranteed to be a correspondence 
anymore!



where      and v are eigenvalues and eigenvectors of C.

Spectral relaxation
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If C is a Hermitian matrix, its Rayleigh quotient is defined as
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Spectral relaxation
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The global optimum is given by the eigenvector associated to         .
min

It should be noted that, since C has non-negative entries, this eigenvector will 
have values in           (Perron-Frobenius theorem).]1,0[



Spectral relaxation

A common way to compute principal eigenvectors of a given matrix is via the 
power iterations:
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The sequence              converges to the dominant eigenvector  under mild 
assumptions on C and         .
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Spectral relaxation

 The final solution is not a correspondence (needs post-processing)
 Needs binarization
 We are losing contact with the Gromov-Hausdorff…

 Easy to implement
 Global optimum
 Efficient



Spectral relaxation



Partiality

Back to the continuous formulation:

1111 



T

T

]1,0[

  ,    s.t.   

}{vec}{vecmin

RR

RCR
nnR

The mapping constraints are imposing at least one match for each point in 
either shape.

This does not take into account partiality. See the following example.



Partiality



Partiality
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If we want to account for partiality, we have to allow unmatchable points. One 
way to obtain this is by allowing the correspondence matrix R to have rows 
and columns summing up to zero:

Rewriting:
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In other words, we are now optimizing over 
probability distributions over the space of 
possible matches.



Game-theoretic relaxation
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It turns out that we can interpret this relaxation using notions (and solvers!) 
from Game Theory.

Note that the       regularizer will favor sparse solutions.1L



Game-theoretic relaxation
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One possible way to solve the relaxed problem is via the replicator dynamics
equations:
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Compare with the power iterations used in the      case:2L
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Game-theoretic relaxation

It seems like we are losing the mapping constraints again…
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In fact, it can be shown that the mapping constraints can be incorporated into 
the cost matrix, and still have the guarantee that they will be satisfied by the 
final solution.
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Game-theoretic relaxation

 Very sparse
 Local optimum

 The mapping constraints can be incorporated into the cost matrix
 Easy to implement
 Does not need binarization
 Accurate
 Efficient
 Game-theoretic interpretation (why not consider different games?)



Game-theoretic relaxation



Similarity-based matching
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We have considered problems of the form:

with

One could consider other cost functions, at the price of losing connections 
with the theory behind Gromov-Hausdorff distances.
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One popular choice is the Gaussian similarity

Note that you need to pass to 
a maximization problem!



Linear Assignment Problem
A related problem is the Linear Assignment Problem (LAP).
Differently from the QAP, it does not impose preservation of the metric but 
rather of pointwise quantities. This results in a linear cost:
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Mapping constraints for the LAP are the usual
doubly-stochastic constraints on R



Suggested reading

 On the use of Gromov-Hausdorff distances for shape 
comparison. F.Mémoli. Proc. SGP 2007. Sections 4, 5, 8

 A spectral technique for correspondence problems 
using pairwise constraints. M.Leordeanu and 
M.Hebert. Proc. ICCV 2005.

 A game-theoretic approach to deformable shape 
matching. E.Rodolà et al. Proc. CVPR 2012.

The suggestions below follow closely the ideas we covered in this class.


