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Wrap-up

In the previous lectures, we have approached the problem of shape
similarity...

-

Are the shapes
similar?




Wrap-up

In the previous lectures, we have approached the problem of shape
similarity... and shape matching

Canwe find a
correspondence?

\%
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Wrap-up

We modeled our shapes as metric spaces, that is, a set of points plus a
metric (distance) function defined over it.




/
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Wrap-up

We then asked if it is possible to define a meaningful notion of distance
among these metric spaces.

[t turned out that, yes, we can do that! In fact, there are several possible
definitions:

» Lipschitz distance: measures the relative change of the metric
» Hausdorff distance: shapes are subsets of a common ambient space

» Gromov-Hausdorff distance: measures the absolute change of the
metric




Wrap-up

We decided that the Gromov-Hausdorff distance captures the notion of shape

similarity in the most natural way. Then we turned to the problem of actually
computing this distance.

The Gromov-Hausdorff distance between two metric spaces Xand Yis
defined by

gy (X.Y) = Inf_dZ(f(X). g(¥)

The infimum is taken over all ambient spaces Z and isometric
embeddings (distance preserving) fX>Z g ¥Y>Z

d Gor is a metric on the space of isometry classes of compact metric spaces.

...howtodoit?
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Wrap-up

First, we have seen that restricting our attention to only the n farthest point
samples of each shape still gives us a meaningful notion of distance.
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Wrap-up

Then, we gave an alternative definition for the Gromov-Hausdorff distance,
making use of the more intuitive notion of correspondence.

dg?[(X,Y)z1 inf_ sup |d, (x,x")—d,(y,Y")

2 REXXY (x yy,(x',y)eR

& R0 06, %) 059 G2,




Wrap-up

Then, we gave an alternative definition for the Gromov-Hausdorff distance,
making use of the more intuitive notion of correspondence.

L . :
d, (X, Y)==inf  sup dy (X, x")—d, (y,y")

2 REXXY (x yy,(x',y)eR

R =10%0, Y3 ) (X, Y12 ) (X, Y7 ) (e, Yo -

4

sup ‘dx (X1 X') _dY (y’ y')

(X, ¥)(x,y)eR

=13.47
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Wrap-up

Then, we gave an alternative definition for the Gromov-Hausdorff distance,
making use of the more intuitive notion of correspondence.

dg?[(X,Y)z1 inf_ sup |d, (x,x")—d,(y,Y")

2 REXXY (x yy,(x',y)eR

R {(Xv Y13)’ (Xs’ y23)’ (X2’ Y> )’ (X10’ Yo )’ o }




Wrap-up

Then, we gave an alternative definition for the Gromov-Hausdorff distance,
making use of the more intuitive notion of correspondence.

L . :
d, (X, Y)==inf  sup dy (X, x")—d, (y,y")

2 REXXY (x yy,(x',y)eR

% . "-T’:! G ‘_ = R {(Xp y13)’ (Xs’ y23)’ (X2’ Y2 )’ (X10’ Yo )’ e }
na : ‘/ @
e ] sup A, 00x)—dy ()| =2114
. 1 (x,y) (X, y)eR
g I ‘
“— v —




Wrap-up

Then, we gave an alternative definition for the Gromov-Hausdorff distance,
making use of the more intuitive notion of correspondence.

dg?[(X,Y)z1 inf_ sup |d, (x,x")—d,(y,Y")

RE A e O ER

-

— SO L R= {(Xl’ yzs)’ (Xs’ y41)’ (X21 Y- ), (X10, ylg), - }

-}




Wrap-up

Then, we gave an alternative definition for the Gromov-Hausdorff distance,
making use of the more intuitive notion of correspondence.

L . :
d, (X, Y)==inf  sup dy (X, x")—d, (y,y")

2 REXXY (x yy,(x',y)eR

Bt R={0% ¥20) 0. V) 06 Y7 ) 060 Yis) -

4

sup ‘dx (X1 X') _dY (y, y')

(X, ) (x,y)eR

oy
3 +
7 a .
g
- ‘&\ .
o

=3.07




Wrap-up

Then, we gave an alternative definition for the Gromov-Hausdorff distance
making use of the more intuitive notion of correspondence.

d,,, (X, ) = sup  |d, (x,x)—d, (¥, y)
X, Y) (X, y)eR

Requires considering all possible

correspondences. There are n! of
them ®




Wrap-up

Passing to matrix notation, we wrote:

1 ; .
= inf_ sup |dy(x,x")—d,(y,Y")

2 REXXY (x yy,(x',y)eR

U

T
5 ,”J‘% CiniimRiiRim

where R is a binary correspondence matrix and C is a cost matrix.



Wrap-up

Since the original problem seems difficult to solve, we had a look at a few
possible relaxations. A “relaxation” is an approximation of a difficult
problem by another similar problem that is easier to solve.

Hopefully, the solution to the relaxed problem will provide some
information about the original solution.

difficult relax Interpret the solution to the
min f ( X) : relaxed Pr(?blem as a solution
X to the original one




Wrap-up

First relaxation: relax the max to a sum.

e
- m% Cinim Rij Rom

U

dh
= 22 CorximRiRim

I,] £,m



up

Wrap

First relaxation: replace the max with a sum.

ZZC(iﬂ)(jm) I:\)ij Rﬂm
i,j £,m :

1

—min

2

R

%-‘:.- !

max = 27.48

4t
A ey

sum=41.02

sum = 207.44

max =21.14



Wrap-up

Simplify using the dreadful matrix notation.

- m|n D2 CitimRyR

I,j ¢,m

\'g

min vec{R} C vec{R}
Re{0,13™"

st. Rl=1, R'1=1



Wrap-up

Second relaxation: replace binary solutions with continuous solutions.

n

nxn nx
Re{0,1} —> R e[0,1]




Wrap-up

Second relaxation: replace binary solutions with continuous solutions.

n

Re{01}  >Re[01] NI
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Wrap-up

Other relaxations: replace the mapping constraints...

R1I_1 R'1 1
IR =1
1R

...and / or replace the cost function

p
C(iﬂ)(jm) = ‘dx(xi , Xj) e dy(yw ym)‘

C('g)(' ) i e—ﬁ‘dx(xi’Xj)—dv(yz’)’m)‘z
i2)(jm



Wrap-up

Conclusions: The Gromov-Hausdorff distance is difficult to compute, but
it can be approximated by efficient relaxations.

Some of these are also effective, but the whole approach in general suffers
from the following drawbacks:

* The approach does not scale well with the size of the shapes
* The connection with Gromov-Hausdorff gets lost easily
» [t is difficult to give guarantees on the quality of the solution



Hausdorff revisited

Recall that the Gromov-Hausdorff distance is defined in terms of the
Hausdorff distance:

g (X,Y) = inf d7(f(X),g())

where f : X —Z, g:Y — Z areisometric embeddings



S—

Hausdorff revisited

Recall that the Gromov-Hausdorff distance is defined in terms of the
Hausdorff distance:

The Hausdorff distance between two compact subsets X,Y < (Z,d,)
is defined by

dZ(X,Y)= max{supdistz(x,Y),supdistz(y, X)}

xe X yeY

(Z,dz) Syl.eJ\E)dIS'[Z(y, X)

supdist, (x,Y)

xeX



Hausdorff revisited

The Hausdorff distance between two compact subsets X,Y < (Z,d,)
is defined by

dZ(X,Y)= max{supdistz(x,Y),supdistz(y, X)}

xe X yeY




Hausdorff revisited

The Hausdorff distance between two compact subsets X,Y < (Z,d,)
is defined by

dZ(X,Y)= max{supdistz(x,Y),supdistz(y, X)}

xe X yeY




Hausdorff revisited

The Hausdorff distance between two compact subsets X,Y < (Z,d,)
is defined by

dZ(X,Y)= max{supdistz(x,Y),supdistz(y, X)}

xe X yeY

Can be
solved
e.g. via
ICP
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Euclidean embeddings

Let’s have a look at the Gromov-Hausdorff distance again:
o z
dy (X,Y) = Inf dZ(f(X),9(Y))

where re isometric embeddings

From the previous example we have seen that optimizing for rigid
transformations is much simpler and many effective algorithms exist (ICP).

Then can’t we just map each shape to R® and then solve the resulting rigid
problem there?



/X/

Euclidean embeddings

g (X,Y) = inf T (f(X),9(Y))

where f : X > R® g:Y — R?® are isometric embeddings

In other words, we are looking for something like:




//X/

Euclidean embeddings

&9

(X’dx) » (f(X),HH)

Thus, we would like to findamap f :(X,d,)—(R", H : H) such that

dy (X, x) = f ()= f(x)],

forall X,X'e X



Euclidean embeddings

(X.dy) m (FO).]-])

The image f(X) is also called the canonical form of X.

It defines an equivalence class of shapes up to an isometryin R™ (these
correspond to rotations, translations, reflections).



Euclidean embeddings

Note that:

e We are assuming m to be arbitrary (i.e. not necessarily m=3). This will

allow us to keep the approach general, and we will need it in the near
future.

« Topological noise can significantly alter distances.




| A cartographer’s problem

*  We still don’t know to what extent our shapes X are «isometrically

embeddable» into R™!

d. =d Impossible to do without introducing
2 R? distortion.



The smallest non-trivial example

Assume (DS )ij =d_.(2,2;) and consider the triangle Z;,2,,2,
Zy

collinear! - ° ° o

Z, 5 Z5

Now consider the triangle Z5,Z,,Z,

2

Z, Z,
collinear! ° ° °
1 1 Z, Z Z,
22
X e Then z, = Z,, which contradicts (DS )12 =d. .(2,2,)=1
PR SRR
D. — 0T This metric space cannot be embedded into a Euclidean
X space of any finite dimension!
L e D G




Minimum-distortion embedding

Still, we could try to look for an approximate embedding, such that the
distortion of d, is mimimal according to some criterion.

One such criterion is the usual metric distortion induced by the mapping f:

dis f = sup |dy (%, X,) = da (F 06, F (X))

1! J
Xi,XjEX

A minimum-distortion embedding would then be the f minimizing the above.



Minimum-distortion embedding

dis f = sup |dy (%, %;)—d . (f(x), (X))

XXEX

We can define alternative measures of distortion as well, for instance:

o ()= |dx 06, %) =dpn (F (%), £ (X))

i> ]

Keep in mind the the resulting canonical form f{X) will only be an
approximation. The embedding introduces a distortion, which in turn
influences the accuracy of our similarity calculations.




Minimum-distortion embedding

We will consider the quadratic stress o, ( T ) . Then we would like to compute:

f_argman‘d (%, %) —d_. (F(x), F(x ))‘

| B g = gl |>J

Let us consider a sampling X { 4 Xy } of N points over X, and denote their
imagesas Z; = T (X, Arrangmg the Z; intoa N xm matrix Z =(z!), we
can rewrite the distortion criterion as

. .

i>j

where d;(Z) :Hzi _ZJ'H2

Differently from the matching problem, now Z is the unknown!



— e

| Minimum-distortion embedding

Z" =argmin o,(2)

7R Nxm
Note that there is no unique solution, in fact applying any Euclidean isometry
to Z* will not change the value of o, .

Problems of this sort started appearing in psychology in the 1950’s, and are
usually referred to as multidimensional scaling (MDS) problems.

PSYCHOMETRIKA—VOL. 27, NoO. 2
JUNE, 1962

THE ANALYSIS OF PROXIMITIES: MULTIDIMENSIONAL
SCALING WITH AN UNKNOWN DISTANCE FUNCTION. 1.

RoGER N. SHEPARD

BELL TELEPHONE LABORATORIES




Multidimensional scaling

Empirical procedures of several diverse kinds have this in common:
they start with a fixed set of entities and determine, for every pair of these,
a number reflecting how closely the two entities are related psychologically.
The nature of the psychological relation depends upon the nature of the
entities. 1f the entities are all stimuli or all responses, we are inclined to
think of the relation as one of similarity. A somewhat more objective (though
less intuitive) characterization of such a relation, perhaps, is that of sub-
stitutability. The statement that stimulus A is more similar to B than to C,
for example, could be interpreted to say that the psychological (or behavioral)
consequences are greater when C, rather than B, is substituted for A. From
this standpoint a natural procedure for determining similarities of stimuli
or responses is by recording substitution errors during identification learning
[2, 7, 12, 14, 17, 18]. In addition, though, disjunctive reaction time and
sorting time have also been proposed as measures of psychological similarity
[20). Finally, of course, individuals have sometimes been instructed simply
to rate each pair of stimuli, directly, on a scale of apparent similarity [1, 6].
The notion of similarity is not necessarily restricted to stimuli or responses
(in the narrow sense of these words), however. Serviceable measures of
similarity may also be found for concepts, attitudes, personality structures,
or even social institutions. political svstems. and the like.




Quadratic stress

6,(Z, D) =X [dx (%, %)~y (2)]

> ]

For any given configuration Z, the stress measures how well that configuration
matches the data. We look for the configuration of minimum stress.

Let’s rewrite the stress function differently:

0,(Z, D) =X |y (% %;) ~dy (2)]
= > d2(Z) - 2d;(Z)dy (x, X;) +dZ (%, %;)

> | ) | }
Y Y

Term 1 Term 2




Quadratic stress (Term 1)

2 = k
Z d ij (Z) . Z; isthe i-th row of Zand Z; is its k-th coordinate

:é{; 2;)+(22) = 22002;) = 2 (2;,2;) +(2 Z>E2;<Zi’ZJ>J
= —1)iZN1:<Z z>[—£;<zi,z,>—ZN1:<z Z>]



Quadratic stress (Term 1)

2.0;(2) = NZ< Z;)— Z<zi,zj>

i> ] i, ]

— Ntr(ZZ ) —tr(y. . ZZT) 1, isa matrix of ones
—tr(vzZ") v, ={ -

N-1 1=]
=tr(ZVZ)

The last step can be done because

tr(AB) = Z(AB)..—ZZA, =2 ByA Z(BA),,—tr(BA)

=tjel J=kvi=t



Quadratic stress (Term 2)

c,(Z,Dy) :Zdi?(z)_Zdij (Z)d, (Xi’xj)+d)2( (X, X;)

tr( 7 TVZ ) (let’s do it)

= - =

i> i>]

= dy (X, x;)dj (Z)Z(z —25)?

i> ]

— > d (¢ x)d> (Z)(< Z,)+ <z z> 2<zI .

i> ]

S—

)



Quadratic stress (Term 2)
Zd (Z)d, (%,%;) Zd (X, X;)d; (Z)({z Z,)+ <z ,zj>—2<zi,zj>)

|

z NARNAE < )
-3a,(z2)-(z )l Xl ) (2,2)
->a,((z.2)-(z.2,)



Quadratic stress (Term 2)
Zdij(z)dx(xi’xj) :;aij(<zi’zi>_<zi’zj>)

> ]

=tr(BZZT) =tr(ZTBZ)
— | # |
where Bij :<_ZBik i

L €3

Check:

(BZZ'); = (- ZBk)<Z Z;)+ Z < > (Z (2, 2;) + ; aij<zj'zi>
_éaik@i o Za< >_;aij(<zi,zi>—<zj,zi>)



' Quadratic stress (Term 2)

Zdij(z)dx(xi,xj)=tl‘(ZTBZ)
r—dx(xi,Xj)dijl(Z) | # |, dij(Z)7l_-O
| # j’ dij(Z):O

0)
_ZBik i:j

k=i

where B;(Z) =1

We make explicit the dependence of B on Z by writing B(Z).



Least-squares MDS

0,(2) =X Jdx (% %))~ 1 (2

> ]

=tr(Z'VZ)-2tr(Z'B(Z)Z)+ > dy (X, X;)

Our task is to solve the unconstrained non-convex problem:

min o, (Z
min, ,(Z)

We will use gradient descent.



Gradient descent

min f (X)
Allows to find a local minimum of f.

Choose starting point ¢
Iterate: X' =x —a VFf (xV)

The recursive equation produces a
non-increasing sequence

f(X@)> f(x®) > f(x?)--.




Gradient of the quadratic stress

min o, (Z
ZeRNm 2( )

Vo,(Z) = V(tr(ZTVZ) ~2tr(Z7B(Z)Z)+ > d2 (%, xj))

i>]

=VZ —2B(Z)Z

Exercise: Derive the expression given for the gradient Vo, (Z)




Gradient descent

min o,(Z2)
RN xm

Start with a random configuration of points Z (¥

Apply the recursive equations:

78D o0 o vs (70) 70 —2a(\/Z o B(Z(t))Z(t))

Terminate when ‘Gz (2" -0, (2" )‘ <107°



Multidimensional scaling

Demo Time!




=
Suggested reading

Numerical geometry of non-rigid shapes. Bronstein,
Bronstein, Kimmel. Chapters 7.1, 7.2, 7.3, 7.9



