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Wrap-up

In the previous lectures, we have approached the problem of shape 
similarity… 
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Are the shapes 
similar?



Wrap-up

In the previous lectures, we have approached the problem of shape 
similarity… and shape matching

T ?

Can we find a 
correspondence?



Wrap-up

We modeled our shapes as metric spaces, that is, a set of points plus a 
metric (distance) function defined over it.
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Wrap-up

We then asked if it is possible to define a meaningful notion of distance
among these metric spaces.

It turned out that, yes, we can do that! In fact, there are several possible 
definitions:

• Lipschitz distance: measures the relative change of the metric
• Hausdorff distance: shapes are subsets of a common ambient space
• Gromov-Hausdorff distance: measures the absolute change of the 
metric



Wrap-up
We decided that the Gromov-Hausdorff distance captures the notion of shape 
similarity in the most natural way. Then we turned to the problem of actually 
computing this distance.

…how to do it?



Wrap-up
First, we have seen that restricting our attention to only the n farthest point 
samples of each shape still gives us a meaningful notion of distance.
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Wrap-up
Then, we gave an alternative definition for the Gromov-Hausdorff distance, 
making use of the more intuitive notion of correspondence.
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Wrap-up
Then, we gave an alternative definition for the Gromov-Hausdorff distance, 
making use of the more intuitive notion of correspondence.
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Wrap-up
Then, we gave an alternative definition for the Gromov-Hausdorff distance, 
making use of the more intuitive notion of correspondence.
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Wrap-up
Then, we gave an alternative definition for the Gromov-Hausdorff distance, 
making use of the more intuitive notion of correspondence.
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Wrap-up
Then, we gave an alternative definition for the Gromov-Hausdorff distance, 
making use of the more intuitive notion of correspondence.
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Wrap-up
Then, we gave an alternative definition for the Gromov-Hausdorff distance, 
making use of the more intuitive notion of correspondence.
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Wrap-up
Then, we gave an alternative definition for the Gromov-Hausdorff distance 
making use of the more intuitive notion of correspondence.
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Requires considering all possible 
correspondences. There are n! of 
them 



Wrap-up
Passing to matrix notation, we wrote:
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where R is a binary correspondence matrix and C is a cost matrix.



Wrap-up

Since the original problem seems difficult to solve, we had a look at a few 
possible relaxations. A “relaxation” is an approximation of a difficult 
problem by another similar problem that is easier to solve.

Hopefully, the solution to the relaxed problem will provide some 
information about the original solution.

)(min xf
x

difficult

)(min yg
y

easy Interpret the solution to the 
relaxed problem as a solution 
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Wrap-up

First relaxation: relax the max to a sum.
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Wrap-up
First relaxation: replace the max with a sum.
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14.21max  48.27max 44.207sum 02.41sum



Wrap-up

Simplify using the dreadful matrix notation.
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Wrap-up
Second relaxation: replace binary solutions with continuous solutions.
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Wrap-up
Second relaxation: replace binary solutions with continuous solutions.
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Wrap-up

Other relaxations: replace the mapping constraints…

…and / or replace the cost function
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Wrap-up

Conclusions: The Gromov-Hausdorff distance is difficult to compute, but 
it can be approximated by efficient relaxations.

Some of these are also effective, but the whole approach in general suffers 
from the following drawbacks:

• The approach does not scale well with the size of the shapes
• The connection with Gromov-Hausdorff gets lost easily
• It is difficult to give guarantees on the quality of the solution



Hausdorff revisited
Recall that the Gromov-Hausdorff distance is defined in terms of the 
Hausdorff distance: 
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where                                               are isometric embeddingsZYgZXf  :,:



Hausdorff revisited
Recall that the Gromov-Hausdorff distance is defined in terms of the 
Hausdorff distance: 

The Hausdorff distance between two compact subsets
is defined by
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Hausdorff revisited
The Hausdorff distance between two compact subsets
is defined by
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Hausdorff revisited
The Hausdorff distance between two compact subsets
is defined by
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Hausdorff revisited
The Hausdorff distance between two compact subsets
is defined by
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Euclidean embeddings
Let’s have a look at the Gromov-Hausdorff distance again:
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where                                               are isometric embeddingsZYgZXf  :,:

From the previous example we have seen that optimizing for rigid 
transformations is much simpler and many effective algorithms exist (ICP).

Then can’t we just map each shape to        and then solve the resulting rigid
problem there?
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Euclidean embeddings
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where                                                   are isometric embeddings33 :,: RR  YgXf

In other words, we are looking for something like:
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Euclidean embeddings

 XdX ,  ),(Xf

Thus, we would like to find a map                                                 such that),(),(:  m
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Euclidean embeddings

 XdX ,  ),(Xf

The image  f(X) is also called the canonical form of X.

It defines an equivalence class of shapes up to an isometry in         (these 
correspond to rotations, translations, reflections).

mR



Euclidean embeddings

Note that:

• We are assuming m to be arbitrary (i.e. not necessarily m=3). This will 
allow us to keep the approach general, and we will need it in the near 
future.

• Topological noise can significantly alter distances.



A cartographer’s problem

Sd
2R

d

2R
ddS 

?
Impossible to do without introducing 
distortion.

• We still don’t know to what extent our shapes X are «isometrically 
embeddable» into        !mR



The smallest non-trivial example
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This metric space cannot be embedded into a Euclidean 
space of any finite dimension!



Minimum-distortion embedding

Still, we could try to look for an approximate embedding, such that the 
distortion of        is mimimal according to some criterion.Xd

One such criterion is the usual metric distortion induced by the mapping f:
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A minimum-distortion embedding would then be the f minimizing the above.



Minimum-distortion embedding
))(),((),(supdis

,
jijiX

Xxx

xfxfdxxdf m

ji

R




We can define alternative measures of distortion as well, for instance:
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Keep in mind the the resulting canonical form  f(X) will only be an 
approximation. The embedding introduces a distortion, which in turn 
influences the accuracy of our similarity calculations.



Minimum-distortion embedding
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We will consider the quadratic stress . Then we would like to compute:)(2 f

Let us consider a sampling                        of N points over X, and denote their 
images as                      . Arranging the       into a              matrix                   , we 
can rewrite the distortion criterion as 
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Differently from the matching problem, now  Z is the unknown!



Minimum-distortion embedding
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Note that there is no unique solution, in fact applying any Euclidean isometry 
to  Z* will not change the value of        .2

Problems of this sort started appearing in psychology in the 1950’s, and are 
usually referred to as multidimensional scaling (MDS) problems.



Multidimensional scaling



Quadratic stress
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For any given configuration  Z, the stress measures how well that configuration 
matches the data. We look for the configuration of minimum stress.
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Let’s rewrite the stress function differently:

Term 1 Term 2



Quadratic stress (Term 1)
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Quadratic stress (Term 1)

 
 ji

ji

N

i

ii

ji

ij zzzzNZd
,1

2 ,,)(

)1(tr)(tr TT ZZZZN NN NN1 is a matrix of ones

)(tr TVZZ









jiN

ji
Vij

1

1

)(tr TVZZ
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Quadratic stress (Term 2)
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Quadratic stress (Term 2)
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Quadratic stress (Term 2)
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Quadratic stress (Term 2)

)tr(),()( TBZZxxdZd
ji

jiXij 



























jiB

Zdji

ZdjiZdxxd

ZB

ik

ik

ij

ijijjiX

ij 0)(,0

0)(,)(),(

)(

1

where

We make explicit the dependence of B on Z by writing B(Z).



Least-squares MDS
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Our task is to solve the unconstrained non-convex problem:

)(min 2 Z
mNZ


R

We will use gradient descent.



Gradient descent
)(min xf

)0(xChoose starting point
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The recursive equation produces a 
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Allows to find a local minimum of  f.



Gradient of the quadratic stress
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Exercise: Derive the expression given for the gradient )(2 Z



Gradient descent
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Start with a random configuration of points )0(Z

Apply the recursive equations:



Multidimensional scaling

Demo Time!



Suggested reading
 Numerical geometry of non-rigid shapes. Bronstein, 

Bronstein, Kimmel. Chapters 7.1, 7.2, 7.3, 7.9


