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The matching game
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Let                       be the computed correspondence, 
and                        be the ground-truth mapping 
among the two shapes (which we have).
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The matching game
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Let A and B be the number of matched points in X and Y respectively, and let 
N be the total number of points.

We compute the score of C as:
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Overview

• Parametrized surfaces and 
first fundamental form

• Functions defined on 
surfaces

• Laplace-Beltrami operator
• Extension to triangulated 

manifolds



Manifolds without boundary

We will consider  2-dimensional manifolds without boundary.

Note that this is but one particular choice. For example, we could instead 
model our shapes as 3-dimensional manifolds with boundary 
(interior+surface).



Some examples

2-dimensional manifold 
without boundary

not a manifold 2-dimensional manifold 
with boundary (the 
boundary itself is a 1-
dimensional manifold)



Non-manifolds

self-intersecting geometry topological noise lower-dimensional structures



This is your world



Regular surfaces
Intuitively: A regular surface in         is obtained by taking pieces of a plane, 
deforming them, and arranging them so that the resulting shape has no sharp 
points, edges, or self-intersections.

This way, it makes sense to speak of tangent planes, and the figure is smooth
enough so that the usual notions of calculus can be extended to it.

3R



Parametrized curves

A parametrized differentiable curve is a differentiable map                    
of an open interval I = (a,b) of the real line into        .

3: RI
3R

))(),(),(()( tztytxt  • t is called parameter
• x(t), y(t), z(t) are differentiable

The tangent vector (or velocity vector) of the curve at t is defined as:

))('),('),('()(' tztytxt 



Parametrized curves

)),sin(),cos(()( bttatat  ),()( 23 ttt 

Both curves are differentiable, the 
second curve has                          , 
thus only the first curve is regular.

)0,0()0(' 



Parametrized surfaces

Here                open and                              
regular if                          has full rank.

A parametrized surface element is a regular 
homeomorphism                               The curves
and are the parameter curves of

A parametrized surface is the union of parametrized surface elements:



Example of regular surface

Let us show that the unit sphere

}1;),,{( 22232  zyxzyxS R

is a regular surface.

Consider the parametrization                                     given by
32

1 : RRx U

 )(1,,),( 22

1 yxyxyx x

where                                                   .}1;,{ 222  yxyxU R

is the open part of        above the xy plane.
2S)(1 Ux



Example of regular surface
Since                       , the function                             has continuous partial 
derivatives of all orders and thus       is differentiable.

122  yx )(1 22 yx 

1x

Similarly, consider the parametrization

 )(1,,),( 22

2 yxyxyx x

Observe that                               covers        minus the equator:)()( 21 UU xx  2S



Example of regular surface
We can proceed and define the additional parametrizations:

 zzxxzx ,)(1,),( 22

3 x

 zzxxzx ,)(1,),( 22

4 x

 zyzyzy ,,)(1),( 22

5 x

 zyzyzy ,,)(1),( 22

6 x

These, together with        and        , cover        completely and show that it is 
indeed a regular surface.

1x 2x 2S



Example of regular surface



Parametrized surfaces: Examples



Parametrized surfaces: Examples



Local properties of surfaces

Differential geometry is concerned with those properties of surfaces which 
depend on their behavior in a neighborhood of a point. 

The definition we gave for a regular surface seems to be adequate for this 
purpose. According to this definition, each point of a regular surface belongs 
to a surface element (or coordinate neighborhood), and we should be able to 
define the local properties that interest us in terms of these coordinates.



Change of parameters

As also seen from the previous example (the sphere), in general a surface 
point can belong to many surface elements.

In fact, in general we could choose other coordinate systems and 
parametrizations, for example via stereographic projection or geographical 
coordinates.

The local properties of the surface should not depend on the 
specific choice of a system of coordinates!



Change of parameters

Fortunately, the following proposition holds:

Let p be a point of a regular surface S, and let                                 and   
be two parametrizations of S such that                                       .

Then the change of coordinates                                                             is a 
diffeomorphism (that is, h is differentiable and has a differentiable inverse).

SU  2: Rx

SV  2: Ry WVUp  )()( yx
)()(: 111 WWh   xyyx 

Simply put, if p belongs to two coordinate neighborhoods, with parameters 
(u,v) and (a,b), it is possible to pass from one of the pairs of coordinates to 
the other by means of a differentiable transformation.



Change of parameters

yx 1h



Differentiable function on a surface

Thus, a function f is differentiable at p if its expression in the coordinate 
neighborhood spanned by (u,v) admits continuous partial derivatives of all 
orders.

Let                               be a function defined in an open subset V of a regular 
surface S. Then f is said to be differentiable at p if, for some parametrization                

with                    , the composition                                       is 
differentiable at               .

R SVf :

SU  2: Rx VU )(x RRx  2:Uf 
)(1 p

x

We will now define the notion of a differentiable function on a regular surface.



Differentiable function on a surface

Note that this definition does not depend on the choice of the parametrization. 
In fact, if                                 is another parametrization with                   , and if

, then                                 is also differentiable.
SU  2: Ry )(Vp x

yx 1h hff  xy 

Example:

The height function h relative 
to a unit vector              :3

Rv

vpph ,)( 

v

0

Example:

The distance function
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Differentiable mappings
We have previously seen the notion of homeomorphic functions among shapes 
(= continuous in both directions). Similarly, we can extend the definition of 
differentiability to mappings between surfaces.

A continuous map                                  is said to be differentiable at p if, given 
parametrizations

211: SSV 

2

2

221

2

11 :,: SUSU  RxRx

with                       and                                        , the map)(1 Up x )())(( 2211 UU xx 

211

1

2 : UU  xx 

is differentiable at )(1

1 pq  x



Differentiable mappings



Diffeomorphisms

We say that two shapes are diffeomorphic if there exists a differentiable 
map between them, with a differentiable inverse. Such a map is called a 
diffeomorphism between the two surfaces.

The notion of diffeomorphism plays the same role in the study of regular 
surfaces that the notion of isometry plays in the study of metric spaces.

From the point of view of differentiability, two diffeomorphic surfaces are 
indistinguishable.

Also note that every regular surface is locally diffeomorphic to a plane.



Tangent plane

The set of tangent vectors to the parametrized curves of S, passing through 
p, constitutes the tangent plane at p. We will denote it by             .)(STp



Tangent plane

Let us try to be more rigorous. First, note that given a tangent vector                
and a point                          , we can always find a differentiable curve                        

with                      and                     .

3
Rw

3

0 RSp
S ),(:  0)0( p w)0('

(simply write                           )twpt  0)(



Differential of a map
Now let                                    be a differentiable map, and let
be a differentiable curve on the parameter domain. Consider the differentiable 
curve                                               . Then the differential of x at p is defined as:

32: RRx U U ),(: 

3),(: Rx   

)0(')(d wpx

x )( px

)(d wpx

 x

))(),(()( tvtut 

))(),(())(()( tvtutt xx  



Differential of a map

• The differential is defined as                             , and is mapping tangent 
vectors to tangent vectors.

32:d RRx p

• The differential is a property of x, and as such it does not depend on the 
choice of the curve     .

• The differential is a linear map.

Now let                                    be a differentiable map, and let
be a differentiable curve on the parameter domain. Consider the differentiable 
curve                                               . Then the differential of x at p is defined as:

32: RRx U U ),(: 

3),(: Rx   

)0(')(d wpx

The latter two facts are made more evident in the next slide.



Differential of a map

Let (u,v) be coordinates in  U and (x,y,z) be coordinates in       . Then for 
the differentiable map                                  , we have defined the differential 
as                               , where                                                      . In order to 
differentiate       with respect to t, we apply the chain rule and obtain, in 
matrix form:
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“Jacobian matrix” of x at p

Notice that, indeed, the 
Jacobian matrix does 
not depend on the 
specific curve     that 
we introduced to 
define the differential.



)0(')(d wpx ))(),(())(()( tvtutt xx  
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Differential of a map

These are just the 
two red curves in 
U, which get 
mapped to S via x.

The differential is 
mapping the 
tangent vectors            
to tangent vectors 
on S.



Tangent plane

We can now give a more rigorous definition for the tangent plane             .
Let                                be a parametrization of a regular surface S and let           
The vector subspace of dimension 2,                           , coincides with the set 
of tangent vectors to S at          .

)(STp

SU  2: Rx .Uq
32)(d RRx q

)(qx



First fundamental form

The quadratic form                              given byR)(: STI pp

2
,)( wwwwI p 

is called the first fundamental form of the regular surface S at p.

The first fundamental form is, intuitively, the expression of how the 
surface S “inherits” the natural inner product of .3

R

Geometrically, it allows us to make measurements on the surface (length of 
curves, areas of regions, etc.) without referring back to the ambient space.



First fundamental form

Let us denote by                 the basis associated to a parametrization               
at p (thus,                spans the tangent plane             ).

},{ vu xx ),( vux

},{ vu xx )(STp

Then we can write:

))0('()( pp IwI  )0('),0('  '','' vuvu vuvu xxxx 

22 )'(,'',2)'(, vvuu vvvuuu xxxxxx 

22 )'(''2)'( vGvFuuE 

chain rule

Any vector                      is the tangent vector to a curve
which lies on the surface, with                      and  

))(),(()( tvtut x
),( t ).0(p

)(STw p



First fundamental form
22 )'(''2)'()( vGvFuuEwI p 

uuE xx ,

vuF xx ,

vvG xx ,

E, F, and G are often called the “coefficients” of the first fundamental form.
These coefficients play important roles in many intrinsic properties of the 
surface.

Note: The first fundamental form is also often called metric tensor or 
Riemannian metric. Note however, that this is a different concept than the 
metric function we introduced in the previous lectures.
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First fundamental form
22 )'(''2)'()( vGvFuuEwI p 

uuE xx ,

vuF xx ,

vvG xx ,

The parametrization x is called:

• orthogonal if
• conformal if, in addition, 
• isometric if, moreover, 
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A first (confusing) example
Consider a plane                 passing through       and containing the 
orthonormal vectors        and

3RP 0p

1w .2w

210),( vwuwpvu x

We want to compute the first fundamental form for an arbitrary point w in P. 
To this end, observe that ., 21 ww vu  xx

1,  uuE xx

0,  vuF xx

1,  vvG xx

2222 )'(''2)'()(   vGvFuuEwI p

Just the usual 
Pythagorean 
theorem.
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Another (less confusing) example
Consider a plane                 passing through       and containing the 
orthogonal vectors       and         In this example,                 and

3RP 0p

1w .2w

210),( vwuwpvu x

We want to compute the first fundamental form for an arbitrary point w in P. 
To this end, observe that ., 21 ww vu  xx

4,  uuE xx

0,  vuF xx

1,  vvG xx
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Compared with the 
previous example, 
the first 
fundamental form 
does not change!



Example

We notice that the plane and the cylinder behave locally in the same way, 
since their first fundamental forms are equal.

Indeed, plane and cylinder are isometric surfaces!
The first fundamental form is an isometry invariant.

),sin,(cos),( vuuvu x

},20;),{( 2  vuvuU R

)1,0,0(,)0,cos,sin(  vu uu xx
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Length of a path
By knowing the first fundamental form, we can treat metric questions on a 
regular surface without further references to the ambient space.

dttIdttts

t t

 
0 0

))('()(')( arc-length of a curve ST ),0(:

where
222 ))('())('())('()(' tztytxt 

 

t

dtvGvFuuEts
0

22 )'(''2)'()(
Thus, if                                       is contained 
in a surface element parametrized by x(u,v), 
we can compute the length as:

))(),(()( tvtut x



Area of a region
The first fundamental form can be employed to compute the area of a 
bounded region R of a regular surface S. If                is contained in the 
coordinate neighborhood of the parametrization                                , the
area of R is defined by

SR
SU  2: Rx

)(,)( 1 RQdudvRA
Q

vu

  xxx

Observing that                                                                , we can rewrite
2222

, vuvuvu xxxxxx 

2222
, FEGvuvuvu  xxxxxx



Integral of a function
We can follow the same approach to compute the integral of a function 
defined over the surface, RSf :

)(,)),(()( 1 RQdudvvufRA
Q

vu

  xxxx

)dddet( T

ppvu xxxx 

Note that we can also write:

(check it!)



Suggested reading
 Differential geometry of curves and surfaces. Do 

Carmo – Chapters 2.1-2.5, Appendix 2.B

 Differential Geometry: Curves – Surfaces – Manifolds. 
W. Kühnel – Chapter 3A


