Analysis of

Three-Dimensional Shapes

(IN2238, TU München, Summer 2014)
Differential Geometry II
(15.05.2014)

Dr. Emanuele Rodolà
Matthias Vestner
\{rodola,vestner\}@in.tum.de
Room 02.09.058, Informatik IX

Seminar

«The metric approach to shape matching» Alfonso Ros

Wednesday, May 28th
14:00 Room 02.09.023

Overview

- Parametrized surfaces and first fundamental form
- Functions defined on surfaces
- Laplace-Beltrami operator
- Extension to triangulated manifolds

Wrap-up

Last time we have introduced the main notions of differential geometry that we will be using in this course.

In particular, we showed how to model a 3D shape as a regular surface, that is, just a collection of deformed plane patches (called surface elements) glued together so as to form something smooth.

Wrap-up

The general idea of this approach is that we wish to analyze shapes according to a simple recipe:

- Consider each point of the shape as belonging to some surface element.
- Each surface element is the image of a known parametrization function \mathbf{x}.
- Instead of studying the point directly on the surface, we pull it back to the plane and do our calculations there.

Wrap-up

Wrap-up

In doing so, the are some properties that we naturally expect to be satisfied:

- The local properties of the surface should not depend on the specific choice of a parametrization \mathbf{x}.
- Since we want to speak about tangent planes, the parametrization should be differentiable.
- Since we know how to do calculus in \mathbf{R}^{n}, we would like to transfer this knowledge to the study of non-Euclidean domains (the surface).

Wrap-up

$q=\mathbf{x}(p)=\left.\mathbf{x}(u(t), v(t))\right|_{t=0}$

$w=\left.\frac{d}{d t} q\right|_{t=0}=\left.\frac{d}{d t} \mathbf{x}(u(t), v(t))\right|_{t=0}=\frac{\partial \mathbf{x}}{\partial u} \frac{d u}{d t}+\frac{\partial \mathbf{x}}{\partial v} \frac{d v}{d t}=\mathbf{x}_{u} u^{\prime}+\mathbf{x}_{v} v^{\prime}=\alpha \mathbf{x}_{u}+\beta \mathbf{x}_{v}$
$\mathrm{d} \mathbf{x}_{p}((\alpha, \beta))=w$
$\mathrm{d} \mathbf{x}_{p}\left(e_{1}\right)=\mathbf{x}_{u}$
$\mathrm{d} \mathbf{x}_{p}\left(e_{2}\right)=\mathbf{x}_{v}$

First fundamental form

We introduced the notion of first fundamental form on a regular surface as the quadratic function $I_{p}: T_{p}(S) \rightarrow \mathbf{R}$ given by

$$
I_{p}((\alpha, \beta))=\langle w, w\rangle=\|w\|^{2}
$$

which, given a vector w in the tangent plane at p, simply computes its length.
In fact, we can generalize this function to take two arguments as follows:

$$
\begin{aligned}
& I_{p}: T_{p}(S) \times T_{p}(S) \rightarrow \mathbf{R} \\
& I_{p}((\alpha, \beta),(\gamma, \delta))=\langle(\alpha, \beta),(\gamma, \delta)\rangle
\end{aligned}
$$

The first fundamental form is a tool we use to compute angles and lengths on the surface (and we actually found out we can also use it to compute areas).

First fundamental form

The first fundamental form can be conveniently rewritten as:

$$
\begin{aligned}
& I_{p}((\alpha, \beta))=\left\langle\alpha \mathbf{x}_{u}+\beta \mathbf{x}_{v}, \alpha \mathbf{x}_{u}+\beta \mathbf{x}_{v}\right\rangle=\left(\begin{array}{ll}
\alpha & \beta
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \\
& E=\left\langle\begin{array}{l}
\alpha \\
\beta
\end{array}\right) \\
& \left.E=\mathbf{x}_{u}, \mathbf{x}_{u}\right\rangle \quad F=\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle \quad G=\left\langle\mathbf{x}_{v}, \mathbf{x}_{v}\right\rangle \quad \underbrace{}_{g}
\end{aligned}
$$

Or, in case we regard it as the more general bilinear form, as:

$$
I_{p}((\alpha, \beta),(\gamma, \delta))=\left\langle\alpha \mathbf{x}_{u}+\beta \mathbf{x}_{v}, \gamma \mathbf{x}_{u}+\delta \mathbf{x}_{v}\right\rangle=\left(\begin{array}{ll}
\alpha & \beta
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)\binom{\gamma}{\delta}
$$

The confusing example

Consider a plane $S \subset \mathbf{R}^{3}$ passing through q_{0} and containing the orthonormal vectors \widetilde{w}_{1} and \widetilde{w}_{2}.

$$
\tilde{\mathbf{x}}(u, v)=q_{0}+u \tilde{w}_{1}+v \tilde{w}_{2} \quad \Rightarrow \quad \begin{aligned}
& \tilde{\mathbf{x}}_{u}=\tilde{w}_{1} \\
& \tilde{\mathbf{x}}_{v}=\tilde{w}_{2}
\end{aligned}
$$

We want to compute the first fundamental form for an arbitrary point q in S.

$$
\tilde{g}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Euclidean metric tensor
Thus, the first fundamental form of w at p is $I_{p}((\tilde{\alpha}, \tilde{\beta}))=\left(\begin{array}{ll}\tilde{\alpha} & \tilde{\beta}\end{array}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{\tilde{\alpha}}{\tilde{\beta}}=\tilde{\alpha}^{2}+\tilde{\beta}^{2}\right.$

Example 2 (plane)

Consider the previous example, but this time let $\left\|w_{1}\right\|=1$ and $\left\|w_{2}\right\|=2$. We are changing the parametrization \mathbf{x}, but still we expect that the lengths of vectors in $T_{p}(S)$ do not change (as they are a property of the surface). Say, for example, that we take the same (p, w) from the previous example.
As before, we have $\mathbf{x}_{u}=w_{1}, \mathbf{x}_{v}=w_{2}$, and then $g=\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$.

We can now compute $I_{p}((\alpha, \beta))=\left(\begin{array}{ll}\alpha & \beta\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)\binom{\alpha}{\beta}=\left(\begin{array}{ll}\tilde{\alpha} & \frac{\tilde{\beta}}{2}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)\binom{\tilde{\alpha}}{\frac{\tilde{\beta}}{2}}=\tilde{\alpha}^{2}+\tilde{\beta}^{2}$

Example 3 (plane)

Let's make it more interesting and let $\left\|w_{1}\right\|=1,\left\|w_{2}\right\|=1$, and $\left\langle w_{1}, w_{2}\right\rangle=\frac{1}{\sqrt{2}}$.
Again, we expect that the length of w does not change.
Once again, we have $\mathbf{x}_{u}=w_{1}, \mathbf{x}_{v}=w_{2}$, and now $g=\left(\begin{array}{cc}1 & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1\end{array}\right)$.
Even though the metric tensor g is different, again we expect the first fundamental form to be the same as before.

So we get $I_{p}((\alpha, \beta))=\left(\begin{array}{ll}\alpha & \beta\end{array}\right)\left(\begin{array}{cc}1 & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1\end{array}\right)\binom{\alpha}{\beta}=\left(\begin{array}{ll}\tilde{\alpha}-\tilde{\beta} & \sqrt{2} \tilde{\beta}\end{array}\right)\left(\begin{array}{cc}1 & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1\end{array}\right)\binom{\tilde{\alpha}-\tilde{\beta}}{\sqrt{2} \tilde{\beta}}=\tilde{\alpha}^{2}+\tilde{\beta}^{2}$

Example 4 (cylinder)

$$
\begin{aligned}
& \mathbf{x}(u, v)=(\cos u, \sin u, v) \\
& U=\left\{(u, v) \in \mathbf{R}^{2} ; 0<u<2 \pi,-\infty<v<\infty\right\} \\
& \mathbf{x}_{u}=(-\sin u, \cos u, 0), \mathbf{x}_{v}=(0,0,1) \\
& E=\sin ^{2} u+\cos ^{2} u=1 \\
& F=0 \\
& \Rightarrow g=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

We notice that the plane and the cylinder behave locally in the same way, since their first fundamental forms are equal.

In other words, plane and cylinder are locally isometric. However, the isometry cannot be extended to the entire cylinder because the cylinder is not even homeomorphic to a plane.

Example 5a (sphere)

$\mathbf{x}:(0,2 \pi) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}^{3} \quad \mathbf{x}(u, v)=\left(\begin{array}{c}\cos (u) \cos (v) \\ \sin (u) \cos (v) \\ \sin (v)\end{array}\right)$
$d \mathbf{x}=\left(\begin{array}{cc}\vdots & \vdots \\ \mathbf{x}_{u} & \mathbf{x}_{v} \\ \vdots & \vdots\end{array}\right)=\left(\begin{array}{cc}-\sin (u) \cos (v) & -\cos (u) \sin (v) \\ \cos (u) \cos (v) & -\sin (u) \sin (v) \\ 0 & \cos (v)\end{array}\right)$

$g=d \mathbf{x}^{\mathrm{T}} d \mathbf{x}=\left(\begin{array}{cc}\cos ^{2}(v) & 0 \\ 0 & 1\end{array}\right) \quad \begin{aligned} & \text { From this example it becomes evident that the coefficien } \\ & E, F, G \text { are indeed differentiable functions } E(u, v), F(u, v),\end{aligned}$

Thus, if $w=\alpha \mathbf{x}_{u}+\beta \mathbf{x}_{v}$ is the tangent vector to the sphere at point $\mathbf{x}(u, v)$, then its squared length is given by $|w|^{2}=I(w)=\alpha^{2} \cos ^{2}(v)+\beta^{2}$.

Example 5b (sphere)

$\mathrm{y}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

$$
\mathbf{y}(\tilde{u}, \tilde{v})=\frac{1}{\tilde{u}^{2}+\tilde{v}^{2}+1}\left(\begin{array}{c}
2 \tilde{u} \\
2 \tilde{v} \\
\tilde{u}^{2}+\tilde{v}^{2}-1
\end{array}\right)
$$

$d \mathbf{y}(\tilde{u}, \tilde{v})=\frac{2}{\left(\tilde{u}^{2}+\tilde{v}^{2}+1\right)^{2}}\left(\begin{array}{cc}\tilde{v}^{2}-\tilde{u}^{2}+1 & 2 \tilde{u} \tilde{v} \\ 2 \tilde{u} \tilde{v} & \tilde{u}^{2}-\tilde{v}^{2}+1 \\ 2 \tilde{u} & 2 \tilde{v}\end{array}\right)$

$g=d \mathbf{y}^{\mathrm{T}} d \mathbf{y}$
The result is probably going to look not very nice.
In general, from a computational point of view it is much more convenient to plug in the values for \tilde{u}, \tilde{v} directly in $d \mathbf{y}(\tilde{u}, \tilde{v})$, and only then compute g.

Notation

In the following, in order to simplify things we will commit a slight abuse of notation and write:

$$
p \equiv \mathbf{x}(p)
$$

that is, we identify a point on the surface by its pre-image in the parameter domain

$$
w \equiv(\alpha, \beta)
$$

in the sense that we identify the vector by its coefficients in the proper basis:

$$
\binom{\alpha}{\beta}=\alpha b_{1}+\beta b_{2} \quad \mathbf{R}^{2}: \quad b_{1}=\binom{1}{0}, b_{2}=\binom{0}{1}
$$

Function on a surface

Consider a surface S with parametrization $\mathrm{x}: U \rightarrow S$ and a differentiable function $f: S \rightarrow \mathbb{R}$

We want to define the gradient $\nabla f(p)$ at a point $p \in S$.

Again this property should be independent of the parametrization

The gradient in R^{2}

The gradient of a differentiable function $\tilde{f}: U \rightarrow \mathbb{R}$ is the vector field

$$
\nabla \tilde{f}(p)=\binom{\frac{\partial \tilde{f}}{\partial u}(p)}{\frac{\partial f}{\partial v}(p)}
$$

The gradient on a reg. surface

Let now $f: S \rightarrow \mathbb{R}$ be a differentiable function. Ideas how to define $\nabla f(p)$:

- Use the same formula as before, but in terms of $\mathrm{x}, \mathrm{y}, \mathrm{z}$:

$$
\nabla f(p)=\left(\begin{array}{l}
\frac{\partial f}{\partial x}(p) \\
\frac{\partial f}{\partial y}(p) \\
\frac{\partial f}{\partial z}(p)
\end{array}\right)
$$

No information about f outside of S!

The gradient on a reg. surface

Let now $f: S \rightarrow \mathbb{R}$ be a differentiable function. Ideas how to define $\nabla f(p)$:

- Write f in terms of a parametrization: $\tilde{f}\left(u_{1}, u_{2}\right)=f\left(\mathbf{x}\left(u_{1}, u_{2}\right)\right)$ and set

$$
\nabla f(p)=\binom{\frac{\partial \tilde{f}}{\partial u}(p)}{\frac{\partial f}{\partial v}(p)}
$$

Depends on the choice of the parametrization!

The gradient on a reg. surface

Let now $f: S \rightarrow \mathbb{R}$ be a differentiable function. Ideas how to define $\nabla f(p)$:

- Interpret the geometric meaning of the gradient
- the vector that points in the direction of steepest increase of f
- its length measures the degree of increase

$$
\begin{aligned}
\langle\nabla \tilde{f}, \vec{v}\rangle & =d \tilde{f}_{p}(\vec{v}) \\
& =\left.\frac{d}{d t} \tilde{f}(p+t \vec{v})\right|_{t=0}
\end{aligned}
$$

The gradient in on a reg. surface

Definition

The gradient $\nabla f(p) \in T_{p} S$ is defined via
$I_{p}(\nabla f, \vec{v})=d f_{p}(\vec{v})$

$$
=\left.\frac{d}{d t} f(\beta(t))\right|_{t=0} \quad \forall \vec{v} \in T_{p} S
$$

$$
\begin{aligned}
& \beta(0)=p \\
& \dot{\beta}(0)=\vec{v}
\end{aligned}
$$

The gradient in local coordinates

Since the gradient is a member of $\mathrm{T}_{\mathrm{p}} \mathrm{S}$ we should be able to find coefficients f_{1}, f_{2} such that

$$
\begin{aligned}
\nabla f(p) & =f_{1} \mathbf{x}_{u}+f_{2} \mathbf{x}_{v} \\
& =d \mathbf{x} \cdot\binom{f_{1}}{f_{2}}
\end{aligned}
$$

These coefficients will depend on the gradient of $\tilde{f}=f \circ \mathbf{x}: U \rightarrow \mathbb{R}$

An example

Consider the function $f: \mathbb{S}^{2} \backslash\{n\} \rightarrow \mathbb{R}$ that assigns to each point on the unitsphere its distance to the north pole $\mathrm{n}: f(p)=d_{\mathbb{S}^{2}}(n, p)$

An example

$$
\begin{aligned}
& \mathbf{x}:(0,2 \pi) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}^{3} \\
& \mathbf{x}(u, v)=\left(\begin{array}{c}
\cos (u) \cos (v) \\
\sin (u) \cos (v) \\
\sin (v)
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{y}(\tilde{u}, \tilde{v})=\frac{1}{\tilde{u}^{2}+\tilde{v}^{2}+1}\left(\begin{array}{c}
2 \tilde{u} \\
2 \tilde{v} \\
\tilde{u}^{2}+\tilde{v}^{2}-1
\end{array}\right)
$$

$$
\tilde{f}(u, v)=\frac{\pi}{2}-v
$$

An example

$$
\tilde{f}(u, v)=\frac{\pi}{2}-v
$$

$\hat{f}(\tilde{u}, \tilde{v})=-\arcsin \left(\frac{\tilde{u}^{2}+\tilde{v}^{2}-1}{\tilde{u}^{2}+\tilde{v}^{2}+1}\right)$
$\nabla \hat{f}(\tilde{u}, \tilde{v})=\frac{-2}{r\left(r^{2}+1\right)}\binom{\tilde{u}}{\tilde{v}}$

An example

$\nabla f(-1,0,0)=$? • $\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)$

The gradient in local coordinates

Aim:

 calculate the coefficients of$$
\begin{aligned}
\nabla f(p) & =f_{1} \mathbf{x}_{u}+f_{2} \mathbf{x}_{v} \\
& =d \mathbf{x} \cdot\binom{f_{1}}{f_{2}}
\end{aligned}
$$

Let us first write

$$
\begin{aligned}
\frac{\partial \tilde{f}}{\partial u} & =\frac{\partial(f \circ \mathbf{x})}{\partial u} \\
& =d f\left(\frac{\partial \mathbf{x}}{\partial u}\right)
\end{aligned}
$$

which is the change of f in direction x_{u}

The gradient in local coordinates

Let now $\vec{v}=v_{1} \mathbf{x}_{u}+v_{2} \mathbf{x}_{v}$
The linearity of df_{p} yields

$$
d f_{p}(\vec{v})=v_{1} d f_{p}\left(\mathbf{x}_{u}\right)+v_{2} d f_{p}\left(\mathbf{x}_{v}\right)
$$

$$
\begin{aligned}
& =v_{1} \frac{\partial \tilde{f}}{\partial u}+v_{2} \frac{\partial \tilde{f}}{\partial v} \\
& =(\nabla \tilde{f})^{T}
\end{aligned}
$$

On the other hand

$$
d f_{p}(\vec{v})=I_{p}(\nabla f, \vec{v})=\left(\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right) g\binom{v_{1}}{v_{2}}
$$

This means

$$
\binom{f_{1}}{f_{2}}=g^{-1} \nabla \tilde{f}
$$

First parametrization

$$
\begin{aligned}
& d \mathbf{x}(\pi, 0)=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right) \\
& g_{\mathbf{x}}(\pi, 0)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(g_{\mathbf{x}}(\pi, 0)\right)^{-1}
\end{aligned}
$$

$$
\nabla \tilde{f}(\pi, 0)=\binom{0}{-1}
$$

$$
\begin{aligned}
\nabla f(-1,0,0) & =d \mathbf{x} \cdot g_{\mathbf{x}}^{-1} \cdot \nabla \tilde{f}(\pi, 0) \\
& =d \mathbf{x} \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\binom{0}{-1} \\
& =\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

Second parametrization

$d \mathbf{y}(-1,0)=\left(\begin{array}{cc}0 & 0 \\ 0 & 1 \\ -1 & 0\end{array}\right)$
$g_{\mathbf{y}}(-1,0)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)_{\tilde{\tilde{v}}}=\left(g_{\mathbf{y}}(-1,0)\right)^{-1}$

$$
\begin{aligned}
\nabla f(-1,0,0) & =d \mathbf{y} \cdot g_{\mathbf{y}}^{-1} \cdot \nabla \hat{f}(-1,0) \\
& =d \mathbf{y} \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{1}{0} \\
& =\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

Gradient on a triangle

$$
\begin{aligned}
& w_{1} \\
& q_{1} \\
& \nabla f=\left(\begin{array}{ll}
\left\langle w_{1}, w_{1}\right\rangle & \left\langle w_{1}, w_{2}\right\rangle \\
\left\langle w_{1}, w_{2}\right\rangle & \left\langle w_{2}, w_{2}\right\rangle
\end{array}\right)^{-1} \quad(u, v)=\binom{f\left(q_{1}\right)-f\left(q_{0}\right)}{f\left(q_{2}\right)-f\left(q_{0}\right)} \\
& q_{2} \\
& \approx\left(\begin{array}{ll}
\left\langle w_{1}+w_{1}, w_{1}\right\rangle & \left\langle w_{1}, w_{2}\right\rangle \\
\left\langle w_{1}, w_{2}\right\rangle & \left\langle w_{2}, w_{2}\right\rangle
\end{array}\right)^{-1}\binom{f\left(q_{1}\right)-f\left(q_{0}\right)}{f\left(q_{2}\right)-f\left(q_{0}\right)}
\end{aligned}
$$

Application of the gradient

Segmentation based on texture:

Main idea: Consider the norm of the gradient $\|\nabla f\|^{2}=(\nabla \tilde{f})^{T} g^{-1} \nabla \tilde{f}$

Suggested reading

- Differential geometry of curves and surfaces. Do Carmo - Chapters 2.5, Appendix 2.B
- Differential Geometry: Curves - Surfaces - Manifolds. W. Kühnel - Chapter 3A

