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Overview

» Parametrized surfaces and
first fundamental form

* Functions defined on
surfaces

* Laplace-Beltrami operator

« Extension to triangulated
manifolds




Wrap-up

Last time we have introduced the main notions of differential geometry
that we will be using in this course.

In particular, we showed how to model a 3D shape as a regular surface, that
is, just a collection of deformed plane patches (called surface elements) glued
together so as to form something smooth.




Wrap-up

The general idea of this approach is that we wish to analyze shapes according
to a simple recipe:

Consider each point of the shape as belonging to some surface element.
Each surface element is the image of a known parametrization function x.
Instead of studying the point directly on the surface, we pull it back to the
plane and do our calculations there.
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Wrap-up

In doing so, the are some properties that we naturally expect to be satisfied:

* The local properties of the surface should not depend on the specific choice
of a parametrization x.

» Since we want to speak about tangent planes, the parametrization should

be differentiable.

« Since we know how to do calculusin R", we would like to transfer this
knowledge to the study of non-Euclidean domains (the surface).
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First fundamental form

We introduced the notion of first fundamental form on a regular surface as
the quadratic function I, : T,(S) = R given by

2
s (@ ) = (w, w) = [w]
which, given a vector w in the tangent plane at p, simply computes its length.

In fact, we can generalize this function to take two arguments as follows:
1T, (S)xT,(S) >R
|, (2, B),(7,6)) ={(e, B), (7, 6))

The first fundamental form is a tool we use to compute angles and lengths on
the surface (and we actually found out we can also use it to compute areas).
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First fundamental form

The first fundamental form can be conveniently rewritten as:

| ((a, B)) = <ax + PBX,, 0X, +,BX a ,6’)( J( ]

E=0¢ x) F=(¢ x) G=ix,

«metrlc tensor»

Or, in case we regard it as the more general bilinear form, as:

s (e, ), (7,8)) = {ex, + P, %, + %, ) = (@ ﬂ)( j( j
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The confusing example

Considera plane S — R® passing through (, and containing the
orthonormal vectors W; and W,.
- - X, =,
X(U,v) =0, +uw, +vwW, o= _
X, =W,

We want to compute the first fundamental form for an arbitrary point g in S.

= 10
0

Euclidean metric tensor

W=axX, + X,

Thus, the first fundamental form of wat p is 1,(@ A) =@ B ((1) 2)(;—} =a’+



Example 2 (plane)

Consider the previous example, but this time let ||W1|| =1 and ||W2 || =2.
We are changing the parametrization x, but still we expect that the lengths
of vectorsin T (S) do not change (as they are a property of the surface).

Say, for example, that we take the same (p,w) from the previous example.

0 4
W, R B
I\ previous example: W = X, + ,BXV
this example: W=aoaX, + ,BXV

10
As before, we have X, =W, X, =W,,and then g = ( J :

The two bases, and thus the coefficients
for w are different in the two examples.

! o
[ocxu + X, =aX, + BX, ]

Loe 2yt aoyel
We can now compute |,((,8)) =(a ﬁ)( J{ J{a —j( j{ﬁ}=a2+ﬂ2
0 4)p 2 o 4



Example 3 (plane)

Let’s make it more interesting and let ||W1“ =1, ||W2 || =1, and <W1, W2> = —
Again, we expect that the length of w does not change. V2

1 1/&}

Once again, we have X, =W, X, =W, ,and now g = (1/ /3 .

Even though the metric tensor g is different, again we expect the first
fundamental form to be the same as before.

1 '[ oW, + AW, = ozw+ﬂw2
77777777 (avﬂ)y—' u
P :el = e
- i
a=d-f, f=v2p

o 1 1/2 ) @ i s V2 a- ,E R
Sowe get 1,((a,5)=(a [)’)(1/\/5 : j(ﬁJ—(a P \/5,5{ ){ ~j—a .
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Example 4 (cylinder)

x(u,v) =(cosu,sinu,V)

. U={(u,v)eR?*;0<u<2r, —0<V<o}
Xy X, = (=sinu,cosu,0), x, =(0,0,1)
g ] E =sin“u+cos’u=1
e 1 O
: F=0 = gZ(o 1]
G=1

N ey

We notice that the plane and the cylinder behave locally in the same way, since their
first fundamental forms are equal.

In other words, plane and cylinder are locally isometric. However, the isometry
cannot be extended to the entire cylinder because the cylinder is not even
homeomorphic to a plane.



Example 5a (sphere)

- cos(u) cos(v)
D 2n el R x(u,v) = | sin(u) cos(v)

- - sin(v)

—sin(u) cos(v) — cos(u)sin(v) =
de— e e e eoR i rORE B ST S =
0 cos(v)
g T cos” ('U) 0 From this example it becomes evident that the coefficients

g E 0 1 E, F, G are indeed differentiable functions E(u,v), F(u,v),

G(u,v).

Thus, if w = ax,, + Bx, isthe tangent vector to the sphere at point x(u,v),
then its squared length is given by |w|* = I(w) = a® cos?*(v) + 2.



/

Example 5b (sphere)
1 2U
y : R? 5 RS y(a,@):a2+62+1 2%

a2 + 9% —1

5 ¢ — @ + 1 240
dy(u = — & 2uv 4% — 9% +1
2u 20 2
g = ddey The result is probably going to look not very nice.

In general, from a computational point of view it is much more
convenient to plug in the values for u, v directly in dy(u,?), and
only then compute g.



Notation

In the following, in order to simplify things we will commit a slight abuse of
notation and write:

that is, we identify a point on the surface by its pre-image in the

P= X( p) parameter domain
75>
p
Sz
i in the sense that we identify the vector by its coefficients in the
W= (a1 ﬁ ) proper basis:

2 1 0
- = bl:(o} bz:m
(ﬂj—a1+ﬂbz



Function on a surface

Consider a surface S with parametrization x : U —_ S
and a differentiable functionf : S = R

We want to define the gradientV f(p)
ata pointp € S.

Again this property should be
independent of the
parametrization
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" The gradient in R?

The gradient of a differentiable function f:U — R is the vector field

Vfp) = (%(p))

L (p)



The gradient on a reg. surface

Letnow [ : S — IR be a differentiable
function.

Ideas how to define Vf(p):

 Use the same formula as
before, but in terms of x,y,z:

2z (0)
T )

L (p)

Vi) =

QQ

No information about f
outside of S!



" The gradient on a reg. surface

Letnow [ : S — IR be a differentiable
function.

Ideas how to define Vf(p):

* Write f in terms of a
parametrization: f(uq,us) = f(x(uy,us))

and set oF
Vip) = (%(p))

Depends on the choice of
the parametrization!
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The gradient on a reg. surface

Letnow [ : S — IR be a differentiable
function.

Ideas how to define Vf(p): A

 Interpret the geometric
meaning of the gradient

the vector that points in the
direction of steepest increase

of f

its length measures the < <
degree of increase

directional derivative: — flp P tollio






The gradient in local coordinates

Since the gradient is a member of TS
we should be able to find coefficients f,
f, such that

Vf(p) = leu o f2xv

.
= (fg)

These coefficients will depend on the

gradientof f= fox:U — R
v



An example n

Consider the function f:S*\ {n} >R
that assigns to each point on the
unitsphere its distance to the north pole

nf(p) = dg2 (?’L,p)



. 2 3
x:(O,Qﬂ)X(—g,g)%RB YR K
cos(u) cos(v) N o ] 24
x(u,v) = | sin(u) cos(v) y(i,7) = ——— 2%
sin(v) e e
- S
= arcsin(u s

g et




An example

A

.+t -1 ) =



An example

Vf(—]., Oa 0) =7




Let us first write

df d(fox)
g g
G,

= df(5>)

which is the change of f in direction x,
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The gradient in local coordinates

Let now U = v1Xy, + V29X,

The(linearity)of df ylelds “

(D) = 1 df, (%) + vdf, () /

0 0
= ”Ul —f e ?)2 f .

()

On the other hand

dfp(¥) = I,(V f,7) (5;)

This means 5
-
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First parametrization

00
dx(m,0) = (1 0)
0 1

=m0 = (g 1) = Glm0)?




Second parametrization

00
dy(—1,0) = ( 0 1)
el

5(-10)= (3 9) = Gr(-1,0)"
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Application of the gradient

Segmentation based on
texture:

Main idea: Consider the norm of the gradient |V f||*> = (V) g 'V [



/ B M e e

Suggested reading

Differential geometry of curves and surfaces. Do
Carmo - Chapters 2.5, Appendix 2.B

Differential Geometry: Curves — Surfaces - Manifolds.
W. Kiihnel - Chapter 3A



