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Overview

• Parametrized surfaces and
first fundamental form

• Functions defined on 
surfaces

• Laplace-Beltrami operator
• Extension to triangulated 

manifolds



Wrap-up
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Wrap-up
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Wrap-up
We introduced a more generalized notion of first fundamental form on a 
regular surface, as the bilinear function                                              given byR )()(: STSTI ppp
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The metric tensor shows up when calculating quantities of interest on the 
surface, such as areas, lengths, angles, gradients of functions.

«metric tensor»



Wrap-up

Thus, if                               is the tangent vector to the sphere at point x(u,v), 
then its squared length is given by                                                       .

The coefficients of the metric tensor are, in fact, functions defined on the 
surface element. Recall from this example:



Wrap-up

Length of a tangent vector

Length of a curve
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Wrap-up

Integral of a function

Gradient of a function

Area of a region
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We defined the gradient of a differentiable function                       as the 
unique vector field                             such that the following holds:

Wrap-up

By giving this definition, we are implicitly applying the Riesz representation 
theorem, stated below.

Let H be a Hilbert space, and let H* be the space consisting of all continuous 
linear functions                      (the space H* is also called the dual space of H). 
Then, every element of H* can be written uniquely as an inner product:

directional derivative of f at 
p, along direction v

In our case, is the space of tangent vectors and                is the 
directional derivative of f at p (do not confuse it with the differential        !)



The definition we gave for the gradient is quite appropriate for our purposes, 
because we can transfer its computation to the parametrization domain U.

Wrap-up
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As with the previous quantities, the gradient will be independent of the 
specific parametrization x we choose.

easy to compute!

x
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notice that



Wrap-up
Thus, according to our definition of the gradient, we have to find the unique      
such that:

Interestingly, by passing to local coordinates, we found that we can compute 
the directional derivative directly in U, as:

where

defined on 
the parameter 
domain U

defined on 
the surface S

We can thus write



Wrap-up

Using the «bilinear» definition of first fundamental form, we can also write

Together with the last equation from the previous slide, we have

And thus we can finally obtain:



Isometries
We have already seen that plane and cylinder behave locally in the same way, 
since their metric tensors are equal (at least on the surface elements we 
considered).

We captured this behavior by saying that plane and cylinder are «locally 
isometric». We will now give a more formal definition for isometry, and we 
will link it to the notion we already have from metric geometry.

0q
q

vx

q
ux



Isometries

A diffeomorphism                     is called an isometry if

for all              and all pairs of tangent vectors                         .

In other words, a diffeomorphism       is an isometry if its associated 
differential        preserves the inner product.



Isometries

isometryfirst 
fundamental 

form on S

first 
fundamental 

form on

A direct consequence is that isometries preserve the first fundamental form:

for all                .

The converse is also true.  If a diffeomorphism      preserves the first 
fundamental form, then it is an isometry:

by assumption that      
preserves the first 
fundam. form



Local isometries

If this is not the case, then a map                      of a neighborhood V of             is 
called a local isometry at p if there exists a neighborhood      of                   such 
that                           is an isometry.

If there exists a local isometry at every            , the surface S is said to be 
locally isometric to    .

Note that the definition we gave for isometry requires     to be a diffeomorphism. 



Example
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w is tangent to the curve is tangent to the curve

As we have seen previously, we can get the same metric tensor for      and x. 
Thus, the two surfaces are locally isometric, since it holds:

Note that                              is indeed 
a diffeomorphism, but it is acting 
locally.



Local isometries
The previous example can be generalized to get an important result:

If two parametrizations x and     give rise to the same metric tensor, then the 
composition                         is a local isometry. The proof follows the same 
steps as in the previous example.

The converse is also true. That is, if a map                      is an isometry and           
is a parametrization at           , then                    is a 

parametrization at           and the metric tensors      and     are equal.



Intrinsic distance
We have seen how to use the first fundamental form to measure lengths of 
paths on a surface. This allows us to introduce a notion of «intrinsic» distance 
for points on the surface.

We define the distance d(p,q) between two points of S as

where

According to this definition, every regular surface comes with a «natural» 
metric induced by the first fundamental form (the fact that d defined above 
is actually a metric should be proven, but we will not do it here).



Isometries: equivalence of the definitions
The distance d is invariant under isometries, that is, if                      is an 
isometry, then

for all               .

From this proposition it seems like our original notion of isometry (i.e. from 
the point of view of metric spaces) is just a consequence of the new 
«differential» definition we gave in the previous slides.

In fact, we will now show that the two definitions are equivalent if we consider 
the natural, intrinsic metric induced by the first fundamental form.



Equivalence (1/2)

If                      is an isometry, then                                          and thus by 
integrating we get:

In particular, the infimum will also have the same value. As a consequence,

identifies the same set



Equivalence (2/2)
Let us now assume that                      is such that, for all pairs of points p,q:

This means that there exist two curves of equal length attaining the infima 
(this follows from Hopf-Rinow theorem, which we won’t cover):

where                                     and

It is not difficult to show that one can find two parametrizations x,      such that

But then, following the reasoning from the cylinder/plane example, this means 
that                    and that the first fundamental forms on S and     are the same.

Hence,      is an isometry.



Suggested reading
 Differential geometry of curves and surfaces. Do 

Carmo – Chapters 4.1, 4.2, Exercises 2, 3, 9, 18


