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Wrap-up

We introduced two other linear operators for our manifolds, namely:

The Laplacian, or Laplace-Beltrami operator of a scalar function f defined 
on the surface:

The divergence of a vector field V (e.g.                ):



Wrap-up
Then we considered the Helmholtz equation, involving the Laplace-Beltrami 
operator:

• The eigenvalues are real, non-positive, and countable.

Weyl‘s law

• There is exactly one zero eigenvalue, and its corresponding 
eigenfunction is constant

• Eigenvectors to distinct eigenvalues are orthogonal



Wrap-up

The Laplace-Beltrami operator only depends on the metric tensor g. It is
therefore invariant under isometric deformations of the surface.



Wrap-up
«finite element»

piecewise linear



Wrap-up

Main idea: Test with 

stiffness matrix

mass matrix

Vi'

Vi''



Wrap-up

Note that, since                                  , we can rewrite the Helmholtz equation 
as an equivalent generalized eigenvalue problem:

The eigenvalues and eigenvectors (eigenfunctions) are the same as in the 
original case. In particular, since C is symmetric and M is symmetric positive-
definite, the generalized eigenvectors f are still orthonormal with respect to 
the M-inner product:

In other words, we are approximating the continuous inner product as follows:



Wrap-up
For a regular surface S the diffusion of heat is described by the heat equation: 

Our newly derived expressions for the Laplacian 
allow us to study heat diffusion on surfaces from a 
practical point of view.



Euclidean embeddings
In the previous lectures we have seen how to translate a general, non-rigid 
matching problem to a rigid matching problem.
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We did so by finding maps                                                 minimizing a quadratic 
stress:
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Euclidean embeddings
We referred to the minimizing f as a minimum-distortion embedding of 
the shape into Euclidean space.

The minimum-distortion embedding is defined in terms of pairwise
quantities on the shape (namely, evaluations of a distance function).

Can we define alternative embeddings by making use of the new differential-
geometric tools we have introduced?

The embedding should be:

• deformation-invariant
• robust to discretization process
• defined using intrinsic properties of the shape (i.e. metric tensor)
• easy to deal with



General approach
Construct an embedding that relies on the Laplace-Beltrami operator. Two 
important properties are immediately evident:

• The operator is isometry invariant
• Its eigenfunctions have a global nature, and are thus more stable to local changes



Euclidean embedding via

The most straightforward approach is to map each point             to an 
infinite-dimensional vector according to the eigenfunctions of        :



Euclidean embedding via

Is this a meaningful embedding?

In general, we can not expect to be given two exactly isometric shapes.
Two main issues we can directly deal with:

• The eigenfunctions have different signs
• The eigenfunctions have different scales

rescale



Changes in scale
Observe that for       we have:

by orthonormality of 

In general, the scale of the eigenfunctions depends on the size of the shape.

This should come as no surprise, remember for instance Weyl’s law:



Rescaling areas
Let us be given a shape S and its scaled version

u

v



Let us be given a shape S and its scaled version                 , and let us consider 
the generalized eigenvalue problem for the first shape:

Rescaling eigenvalues

For the second shape, we have:

since cotangents 
do not change with 
scale

the areas in M
scale up with

One could pre-process the shapes by normalizing their eigenvalues. For 
instance, pick an eigenvalue       and rescale the given shape S as

for example, choose



Rescaling eigenfunctions

What happens to the eigenfunctions?

Let us have a look at what happens to the first (constant) eigenfunction:

It looks like eigenfunctions are rescaled as                 . We are going to prove 
this statement for arbitrary eigenfunctions in the following slides.



Rescaling eigenfunctions

u

v
A few slides ago we showed that

Since this holds for any eigenfunction, we have proved that

In particular, since                , we can 
compute the area element on S’ as

Let us consider the generic eigenfunction     on S. How is it transformed by the 
rescaling                ?

unknown

By orthonormality of      :



Scale-invariant embedding
These results allow us to act directly at the descriptor level, i.e. when the 
embedding is performed:

The resulting embedding is scale-invariant. Indeed:

rescale



Global Point Signature

This new, scale-invariant embedding defines a descriptor known as the 
Global Point Signature (GPS).

The GPS embedding of a shape is an isometry-invariant Euclidean embedding.

Differently, multi-dimensional scaling was determined only up to rigid 
motions!

In practice, GPS is truncated to the first m eigenfunctions.

Main issues:
1. The signs of eigenvectors are undefined
2. Two eigenvectors may be swapped



Example: Segmentation

Distance maps (standard Euclidean metric on GPS descriptors) from 
different source points. Distance goes from blue to red.

Segmentation obtained 
via k-means clustering 
of the GPS embedding.

Robust to isometric 
deformations!



Example: Matching
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Recall the Gromov-Hausdorff formulation we gave for the matching problem:

all possible 
correspondences!

We can use descriptors to reduce
the set of correspondences over 
which to optimize:

Just consider as good «candidate» 
matches the ones among points 
with similar descriptors.



Point descriptors

Goal:
• invariant under isometric deformations
• multiscale (from local to global)



1

Multiscale property
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For small scales (locally) 1 and 3 are
not distinguishable
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Heat diffusion on surfaces
For a regular surface S the diffusion of heat can be described by the heat
equation: 

We write                    for the amount of 
heat at point x after time t, when at 
time zero the distribution of heat is 
given by



Heat kernel
A solution to the heat equation is given by

kt is called the heat kernel and depends on the geometry of S.

The function describes how much heat is transferred
from one point to the other in time t:

The dirac-“function“
satisfies



Heat kernel

One can recover the geodesic distances on 
general surfaces from the respective heat
kernel:

The heat kernels in       are given by:

Informative property
A surjective is an isometry iff

The dirac-“function“
can be seen as



Solving the heat equation

We know that the eigenfunctions                       of the Laplace-Beltrami 
operator form a basis, thus for every t we can write



Solving the heat equation



Solving the heat equation

!



Heat diffusion on discrete surface
In the discrete setting functions are represented as vectors and linear 
operators as matrices. In particular we can collect all the eigenvectors of
the Laplacian matrix in a matrix

and write

Note that due to our discretization of the Laplacian is not necessarily orthogonal!



Heat kernel signature
Informative property
A surjective is an isometry iff

But
• to compare two heat kernels 

at points on different shapes, 
one needs information about 
the ordering of the vertices

One could use the functions as descriptors.        

S

S‘

• a lot of information in the
heat kernel is redundant



Heat kernel signature
Given a point x on a surface its Heat Kernel 
Signature HKS(x) is a function over the temporal 
domain :

The amount of heat staying at point x when
starting with a unit heat source at the same 
point.

Informative property
If the eigenvalues of the Laplacian of S and S‘ are not repeated then a 
homeomorphism is an isometry iff .                                                



Heat kernel signature

Main issues of GPS:
1. The signs of eigenvectors are undefined
2. Two eigenvectors may be swapped

We are now squaring!

We are taking sums!

Similarly to GPS, in practice HKS is truncated to the first m eigenfunctions.



Heat kernel signature



Multiscale property
encodes information about neighborhood in a multiscale way

© Thomas Hörmann



Scaled Heat Kernel Signature
Difference decreases
exponentially as t increases.

Large scales have minor influence.

Workaround
Consider scaled heat kernel signatures

Differences between two signatures at 
different time scales contribute 
approximately equally.



Heat kernel signature



Distance between signatures

sample sHKS uniformly over the logarithmic scaled temporal domain

log t

t



Example: Feature detection

Feature points can be selected as the local maxima of                for a fixed t, or 
as the persistent maxima across different time steps.



Suggested reading
 Laplace-Beltrami eigenfunctions for deformation 

invariant shape representation. Rustamov. Proc. SGP 
2007.

 A concise and provably informative multi-scale 
signature based on heat diffusion. Sun, Ovsjanikov, 
Guibas. Proc. SGP 2009.


