
Analysis of Three-Dimensional Shapes Computer Vision Group
E. Rodolà, T. Windheuser, M. Vestner Institut für Informatik
Summer Term 2014 Technische Universität München

Exercise Sheet 2
Room: 02.09.023

Tue, 29.04.2014, 14:00-15:00
Submission deadline: Mon, 28.04.2014, 23:59 to windheus@in.tum.de

Mathematics: Metric Spaces

Exercise 1 (From the lecture, One point). Show that...

1. ... every isometry is an homomorphism.

2. ... every isometry is injective.

3. ... being isometric is an equivalence relation.

4. ... distX(x, S) is a nonexpanding function.

Let f : X → Y, g : Y → Z be bi-Lipschitz homeomorphisms. Show that...

5. ... g ◦ f : X → Z is a bi-Lipschitz homomorphism.

6. ... dil(g ◦ f) ≤ dil(f) · dil(g)

7. ... the Lipschitz distance is a metric.

Exercise 2 (Continuity, One point). Let X ⊂ R2, Y ⊂ R3. Find metrics dX , dY ,
such that...

1. ... every function f : X → Y is continuous.

2. ... the only continuous functions f : X → Y are the constant functions.

Show that...

3. ... every Lipschitz function is continuous.

4. ... there exist continuous functions that are not Lipschitz.

1

Programming: Farthest Point Sampling

Exercise 3 (One point). Download and expand the file exercise2.zip from the
lecture website. Modifiy the files euclideanfps.m, euclideanvoronoi.m to imple-
ment the functions as explained below. You can run the script exercise.m to test
and visualize your solutions.

1. Given a triangle mesh M = (V ,F), a metric d : V ×V → R≥0, a number K ∈
N and an initial vertex v1 ∈ V , the farthest-point-sampling method computes
a set of K vertices by the following algorithm:

for i = 2 to K do
vi ← arg maxv∈V(minj∈{1,...,i−1} d(v, vj))

end for
return {v1, . . . , vK}

Implement function euclideanfps that computes the farthest point sampling of
a mesh with respect to the euclidean metric. The resulting set of vertices should
be returned as a vector of indices.

2. Given a triangle meshM = (V ,F) and a metric d : V×V → R≥0, the Voronoi
cells with respect to a set of K ∈ N vertices {v1, . . . , vK} ⊂ V are defined as
the partition V1∪̇ . . . ∪̇VK∪̇B = V such that

v ∈ Vi ⇐⇒ (∀j 6= i : d(v, vi) < d(v, vj)),

for all i ∈ {1, . . . , K}, v ∈ V .
If we assume B = ∅ the partition into Voronoi cells can be represented by a
function f : V → {1, . . . , K}. Implement function euclideanvoronoi that com-
putes this partition of vertices into Voronoi cells with respect to the euclidean
metric. (If you encounter vertices lying on the boundary B, just pick the index
of one of the neighbouring cells.)

Exercise 4 (One point). Modifiy the matlab files metricfps.m, metricvoronoi.m,
distortion.m and ghdistance.m to implement the functions as explained below.
You can run the script exercise.m to test and visualize your solutions.

1. Implement function metricfps that computes the farthest point sampling of a
mesh with respect to a metric given by matrix D ∈ R|V|×|V|. The resulting set
of vertices should be returned as a vector of indices.

2. Implement function metricvoronoi that computes the partition of vertices into
Voronoi cells with respect to a metric given by matrix D ∈ R|V|×|V|.

3. Now we want to match two shapes, i.e. two set of vertices V1,V2, both equipped
with a metric represented by D1 ∈ R|V1|×|V1|, D2 ∈ R|V2|×|V2|. To make the task
computationally tractable we will use farthest point sampling to obtain two
smaller subsets S1 ⊂ V1, S2 ⊂ V2, such that |S1| = |S2|. We will represent

2

the metric D1 restricted to S1 by matrix D̂1 ∈ R|S1|×|S1|. Analogically define
D̂2 ∈ R|S2|×|S2|. A surjective correspondence can be represented by function
f : {1, . . . , |S1|} → {1, . . . , |S2|}, where f(i) = j means that vertex vi ∈ S1 is
set into correspondence with vj ∈ S2.

Implement function distortion that computes the distortion of given function
f : {1, . . . , |S1|} → {1, . . . , |S2|} with respect to metrics D̂1 ∈ R|S1|×|S1|, D̂2 ∈
R|S2|×|S2|. Recall that the distortion is defined by

dis(f) = sup
v,w∈S1

|D̂1(v, w)− D̂2(f(v), f(w))|.

4. Implement function ghdistance that computes the Gromov-Hausdorff distance
between the two sets S1, S2 and also returns the optimal permutation p∗. You
can use exhaustive search over the space of all permutations p : {1, . . . , |S1|} →
{1, . . . , |S2|}.

3

