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Shape Optimization

Shape optimization is a field of mathematics that is focused on
formulating the estimation of geometric structures by means of
optimization methods.

Among the major challenges in this context is the question how
to mathematically represent shape. The choice of
representation entails a number of consequences, in particular
regarding the question of how efficiently one can store
geometric structures and how efficiently one can compute
optimal geometry.

There exist numerous representations of shape which can
loosely be grouped into two classes:

• Explicit representations: The points of a surface are
represented explicitly (directly), either as a set of points, a
polyhedron or a parameterized surface.

• Implicit representations: The surface is represented
implicity by specifying the parts of ambient space that are
inside and outside a given surface.
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Explicit Shape Representations

An explicit representations of a closed curve C ⊂ Rd is a
mapping C : S1 → Rd from the circle S1 to Rd . Examples are
polygons or – more generally – spline curves:

C(s) =
N∑

i=1

Ci Bi (s),

where C1, . . . ,CN ∈ Rd denote control points and
B1, . . . ,BN : S1 → R denote a set of spline basis functions:

basis functions spline & control points
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Explicit Shape Representations

For a closed surface of spherical topology S ⊂ Rd is a mapping
S : S2 → R2 from the sphere S2 to Rd . Examples are triangle
meshes or – more generally – spline surfaces:

S(s, t) =
∑
i,j

Ci,j Bi (s)Bj (t),

where Ci,j ∈ Rd denote control points and B1, . . . ,BN : S1 → R
denote a set of spline basis functions:

basis functions spline surface & cntrl. points
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Implicit Shape Representations

One example of an implicit representation is the indicator
function of the surface S, which is a function u : V → {0,1}
defined on the surrounding volume V ⊂ R3 that takes on the
values 1 inside the surface and 0 outside the surface:

u(x) =

1, if x ∈ int(S)

0, if x ∈ ext(S)

Another example is the signed distance function φ : V → R
which assigns all points in the surrounding volume the (signed)
distance from the surface S:

φ(x) =

+d(x ,S), if x ∈ int(S)

−d(x ,S), if x ∈ ext(S)

Depending on the application it may be useful to know for
every voxel how far it is from the surface. Signed distance
functions can be computed in polynomial time. MatLab: bwdist.
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Explicit Versus Implicit Representations

In general, compared to explicit rerpresentations the implicit
representations have the following strengths and weaknesses:

- Implicit representations typically require more memory in
order to represent a geometric structure at a specific
resolution. Rather than storing a few points along the
curve or surface, one needs to store an occupancy value
for each volume element.

- Moving or updating an implicit representation is typically
slower: rather than move a few control points, one needs
to update the occupancy of all volume elements.

+ Methods based on implicit representations do not depend
on a choice of parameterization.

+ Implicit representations allow to represent objects of
arbitrary topology (i.e. the number of holes is arbitrary).

+ With respect to an implicit representation many shape
optimization challenges can be formulated as convex
optimization problems and can then be optimized globally.
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Multiview Reconstruction as Shape Optimization

How can we cast multiple view reconstruction as a shape
optimization problem? To this end, we will assume that the
camera orientations are given.
Rather than estimate the correspondence between all pairs of
pixels in either image we will simply ask:

How likely is a given voxel x on the object surface S?

If the voxel x ∈ V of the given volume V ⊂ R3 was on the
surface then (up to visibility issues) the projection of that voxel
into each image should give rise to the same color (or local
texture). Thus we can assign to each voxel x ∈ V a so-called
photoconsistency function

ρ : V → [0,1],

which takes on low values (near 0) if the projected voxels give
rise to the same color (or local texture) and high values (near
1) otherwise.
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A Weighted Minimal Surface Approach

The reconstruction from multiple views can now be formulated
as finding the maximally photoconsistent surface, i.e. a surface
Sopt with an overall minimal photoconsistency score:

Sopt = arg min
S

∫
S

ρ(s)ds. (1)

This seminal formulation was proposed among others by
Faugeras & Keriven (1998). Many good reconstructions were
computed by starting from an initial guess of S and locally
minimizing this energy using gradient descent. But can we
compute the global minimum?

The above energy has a central drawback:

The global minimizer of (1) is the empty set.

It has zero cost while all surfaces have a non-negative energy.
This short-coming of minimal surface formulations is often
called the shrinking bias. How can we prevent the empty set?
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Imposing Silhouette Consistency

Assume that we additionally have the silhouette Si of the
observed 3D object outlined in every image i = 1, . . . ,n. Then
we can formulate the reconstruction problem as a constrained
optimization problem (Cremers, Kolev, PAMI 2011):

min
S

∫
S

ρ(s)ds, such that πi (S) = Si ∀i = 1, . . . ,n.

Written in the indicator function u : V → {0,1} of the surface S
this reads:

min
u:V→{0,1}

∫
V
ρ(x)|∇u(x)| dx

s. t.
∫

Rij

u(x) dRij ≥ 1, if j ∈ Si (∗)∫
Rij

u(x) dRij = 0, if j /∈ Si ,

where Rij denotes the visual ray through pixel j of image i .
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Imposing Silhoutte Consistency

Rij

S
Si

Top view of the geometry and respective visual rays.

Any ray passing through the silhoutte must intersect the object
in at least one voxel.

Any ray passing outside the silhouette may not intersect the
object in any pixel.

Cremers, Kolev, PAMI 2011
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Convex Relaxation and Thresholding

By relaxing the binarity constraint on u and allowing
intermediate values between 0 and 1 for the function u, the
optimization problem (∗) becomes convex.

Proposition

The set

D :=

u : V → [0,1]

∣∣∣∣∣
∫

Rij
u(x) dRij ≥ 1 if j ∈ Si ∀i , j∫

Rij
u(x) dRij = 0 if j /∈ Si ∀i , j


of silhouette consistent functions is convex.

Proof.

For a proof we refer to Kolev, Cremers, ECCV 2008.

Thus we can compute solutions to the silhouette constrained
reconstruction problem by solving the relaxed convex problem
and subsequently thresholding the computed solution.
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Reconstructing Complex Geometry

3 out of 33 input images of resolution 1024× 768
Data courtesy of Y. Furukawa.
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Reconstructing Complex Geometry

Estimated multiview reconstruction

Cremers, Kolev, PAMI 2011
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Reconstruction from a Handheld Camera

2/28 images Estimated multiview reconstruction

Cremers, Kolev, PAMI 2011
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Multi-view Texture Reconstruction
In addition to the dense geometry S, we can also recover the
texture T : S → R3 of the object from the images Ii : Ωi → R3.
Rather than simply back-projecting respective images onto the
surface, Goldlücke & Cremers ICCV 2009 suggest to solve a
variational super-resolution approach of the form:

min
T :S→R3

n∑
i=1

∫
Ωi

(
b ∗
(
T ◦ π−1

i

)
− Ii

)2
dx + λ

∫
S

‖∇S T‖ds,

where b is a linear operator representing blurring and
downsampling and πi denotes the projection onto image Ωi :
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Multi-view Texture Reconstruction
The super-resolution texture estimation is a convex
optimization problem which can be solved efficiently. It
generates a textured model of the object which cannot be
distinguished from the original:

One of 36 input images textured 3D model

Goldlücke, Cremers, ICCV 2009, DAGM 2009
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Multi-view Texture Reconstruction
The super-resolution approach exploits the fact that every
surface patch is observed in multiple images. It allows to invert
the blurring and downsampling, providing a high-resolution
texturing which is sharper than the individual input images:

input image close-up super-resolution texture

Goldlücke, Cremers, ICCV 2009, DAGM 2009
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Space-Time Reconstruction from Multi-view Video
Although laser-based reconstruction is often more accurate
and more reliable (in the absence of texture), image-based
reconstruction has two advantages:

• One can extract geometry and color of the objects.

• On can reconstruct actions over time filmed with multiple
synchronized cameras.

Oswald & Cremers 4DMOD 2013 and Oswald, Stühmer,
Cremers, ECCV 2014, propose convex variational approaches
for dense space-time reconstruction from multi-view video.

1/16 input videos Dense reconstructions over time

Oswald, Cremers, 4DMOD 2013
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Toward Free-Viewpoint Television
Space-time action reconstructions as done in Oswald &
Cremers 2013 entail many fascinating applications, including:

• For video conferencing one can transmit a full 3D model of
a speaker which gives stronger sense of presence and
immersion.

• For sports analysis one can analyze the precise motion of
a gymnast.

• For free viewpoint television, the spectator at home can
interactively chose from which viewpoint to follow an
action.

Textured action reconstruction for free-viewpoint television

Oswald, Cremers, 4DMOD 2013
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