

Multiple View Geometry: Exercise Sheet 3

Prof. Dr. Daniel Cremers, Julia Bergbauer, Jakob Engel, TU Munich
http://vision.in.tum.de/teaching/ss2014/mvg2014

Exercise: May 5th, 2014

Part I: Theory

The following exercises should be **solved at home**. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

- 1. Indicate the matrices $M \in SE(3) \subset \mathbb{R}^{4 \times 4}$ representing the following transformations:
 - (a) Translation by the vector $T \in \mathbb{R}^3$.
 - (b) Rotation by the rotation matrix $R \in \mathbb{R}^{3 \times 3}$.
 - (c) Rotation by R followed by the translation T.
 - (d) Translation by T followed by the rotation R.
- 2. Let $M_1, M_2 \in \mathbb{R}^{3 \times 3}$. Please prove the following:

$$\mathbf{x}^T M_1 \mathbf{x} = \mathbf{x}^T M_2 \mathbf{x} \quad \text{iff} \quad M_1 - M_2 \text{ is skew-symmetric}$$

for all $\mathbf{x} \in \mathbb{R}^3$ (i.e. $M_1 - M_2 \in so(3)$)

Info: The group SO(3) is called a Lie group. The space $so(3) = \{\hat{\omega} \mid \omega \in \mathbb{R}^3\}$ of skew-symmetric matrices is called its Lie algebra.

- 3. Consider a vector $\omega \in \mathbb{R}^3$ with $\|\omega\| = 1$ and its corresponding skew-symmetric matrix $\hat{\omega}$.
 - (a) Show that $\hat{\omega}^2 = \omega \omega^{\top} I$ and $\hat{\omega}^3 = -\hat{\omega}$.
 - (b) Following the result of (a), find simple rules for the calculation of $\hat{\omega}^n$ and proof your result. Distinguish between odd and even numbers n.
 - (c) Derive the Rodrigues' formula for a skew-symmetric matrix $\hat{\omega}$ corresponding to an arbitrary vector $\omega \in \mathbb{R}^3$ (i.e. $\|\omega\|$ does not have to be equal to 1):

$$e^{\hat{\omega}} = I + \frac{\hat{\omega}}{\|\omega\|} \sin(\|\omega\|) + \frac{\hat{\omega}^2}{\|\omega\|^2} (1 - \cos(\|\omega\|))$$

Hint: Combine your result from (b) with

$$e^X = \sum_{n=0}^{\infty} \frac{X^n}{n!}$$
 and $\sin(t) = \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n+1}}{(2n+1)!}$ and $1 - \cos(t) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{t^{2n}}{(2n)!}$

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

- Download the package mvg_exerciseSheet_02.zip and use openOFF.m to load the 3D model model.off.
- (a) Write a function that rotates the model around its center (i.e. the mean of its vertices) for given rotation angles α, β and γ around the x-, y- and z-axis. Use homogeneous coordinates and describe the overall transformation by a single matrix. The rotation matrices around the respective axes are as follows:

rotation matrix (x-axis)				rotation matrix (y-axis)				rotation matrix (z-axis)		
(1)	0	0)		$\cos \beta$	0	$\sin\beta$		$\cos \gamma$	$-\sin\gamma$	0 \
0	$\cos \alpha$	$-\sin \alpha$		0	1	0		$\sin\gamma$	$\cos\gamma$	0
$\int 0$	$\sin \alpha$	$\cos \alpha$ /		$-\sin\beta$	0	$\cos\beta$		0	0	1/

- (b) Rotate the model first 5 degrees around the *x*-axis and then 25 degrees around the *z*-axis. Now start again by doing the same rotation around the *z*-axis first followed by the *x*-axis rotation. What do you observe?
- (c) Perform a translation in addition to the rotation. Find a suitable matrix from SE(3) for this purpose and add it to your function from 2. Translate the model by the vector $(0.5 \ 0.2 \ 0.1)^{\top}$.
- 3. (a) Write a function which takes a vector $w \in \mathbb{R}^3$ as input and returns its corresponding element $R = e^{\hat{w}} \in SO(3) \subset \mathbb{R}^{3 \times 3}$ from the Lie group. Hence, the function will be a concatenation of the hat operator $\hat{}: \mathbb{R}^3 \to so(3)$ and the exponential mapping.
 - (b) Implement another function which performs the corresponding inverse transformation and test the two functions on some examples.
 - (c) Implement similar functions which calculate the transformation for twists. I.e. from $\xi \in \mathbb{R}^6$ to $e^{\hat{\xi}} \in SE(3) \subset \mathbb{R}^{4x4}$ and the other way around.
 - (d) How can you use Matlab's built-in functions expm and logm to achieve the same functinoality (your solutions to (a)-(c) should *not* use these functions)?

Matlab-Tutorials:

```
http://www.math.utah.edu/lab/ms/matlab/matlab.html
http://www.math.ufl.edu/help/matlab-tutorial/
```